Work on thermal plant expansion begins

By Industrial Info Resources


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Construction of China Huaneng Group's Beijing Thermal Power Plant Phase II combined-cycle expansion project, namely the Beijing Southeast Thermal & Electricity Center, has begun.

Lin Ji, the deputy mayor of Beijing City Cao Peixi, the general manager of China Huaneng Group and other leaders and representatives attended the ceremony.

Huaneng Beijing Thermal Power Plant, located at Gaobeidian in the Chaoyang district, is the largest combined heat and power project operated by China Huaneng Group in Beijing, and also the largest heat supplier in China. The power plant currently has a total installed capacity of 845 megawatts MW with a total heat supply capacity of 1.34 billion kilocalories per hour, accounting for about one-third of the total heat supply in Beijing.

The Phase II Expansion project will be furnished with two 9F-class combined-cycle gas turbine generators together with one steam turbine generator. The project has an estimated total investment value of $480 million. Huaneng Beijing Thermal Power Company Limited, a wholly owned subsidiary of China Huaneng Group, is responsible for the construction and the future operation of the project.

According to the schedule, the project will begin operation by the winter of 2011. Upon completion, the project will add an additional 900 MW of installed capacity and another 13 million square meters of heat supply area.

As reported, Beijing will promote the construction of four large-scale thermal and electricity centers to establish a highly efficient urban heat supply system in the next five years.

Related News

Nova Scotia Power delays start of controversial new charge for solar customers

Nova Scotia Power solar charge proposes an $8/kW monthly system access fee on net metering customers, citing grid costs. UARB review, carbon credits, rate hikes, and solar industry impacts fuel political and consumer backlash.

 

Key Points

A proposed $8/kW monthly grid access fee on net metered solar customers, delayed to Feb 1, 2023, pending UARB review.

✅ $8/kW monthly system access fee on net metering

✅ Delay to Feb 1, 2023 after industry and political pushback

✅ UARB review; debate over grid costs and carbon credits

 

Nova Scotia Power has pushed back by a year the start date of a proposed new charge for customers who generate electricity and sell it back to the grid, following days of concern from the solar industry and politicians worried that it will damage the sector.

The company applied to the Nova Scotia Utility and Review Board (UARB) last week for various changes, including a "system access charge" of $8 per kilowatt monthly on net metered installations, and the province cannot order the utility to lower rates under current law. The vast majority of the province's 4,100 net metering customers are residential customers with solar power, according to the application. 

The proposed charge would have come into effect Tuesday if approved, but Nova Scotia Power said in a news release Tuesday it will change the date in its filing from Feb. 1, 2022, to Feb. 1, 2023.

"We understand that the solar industry was taken off guard," utility CEO Peter Gregg said in an interview.

"There could have been an opportunity to have more conversations in advance."

Gregg said the utility will meet with members of the solar industry over the next year to work on finding solutions that support the sector's growth, while addressing what NSP sees as an inequity in the net metering system.

NSP recognized that customers who choose solar invest a significant amount and pay for the electricity they use, but they don't pay for costs associated with accessing the electrical grid when they need energy, such as on cold winter evenings when the sun is not shining.

"I know that's hit a nerve, but it doesn't take away the fact that it is an issue," Gregg said.

He said this is an issue utilities are navigating around North America, where seasonal rate designs have sparked consumer backlash in New Brunswick, and NSP is open to hearing ideas for other models of charges or fees.

The utility's suggested system access charge closely resembles one proposed in California, which has also raised major concerns from the solar industry and been criticized by the likes of Elon Musk, and has parallels to Massachusetts solar demand charges as well.

Although the "solar profile" of Nova Scotia and California is very different, with far more solar customers in that state, and in other provinces such as Saskatchewan, NDP criticism of 8% hikes has intensified affordability debates, Gregg said the fundamental issues are the same.

For those with a typical 10-kilowatt solar system, which generates around $1,800 of electricity a year, the new charge would mean those customers would be required to pay $960 back to NSP. That would roughly double the length of time it takes for those customers to pay off their investment for the panels.

David Brushett, chair of Solar Nova Scotia, said he relayed concerns from solar installers and others in the industry to Gregg on Monday. 

Brushett said the year delay is a positive first step, but he is still calling on the province to take a strong stance against the application, which has led to customers cancelling their panel installations and companies considering layoffs.

"There's still an urgency to this situation that hasn't been addressed, and we need to kind of protect the industry," he said Tuesday.

NSP's original application proposed exempting net metering customers who enrolled before Feb. 1, 2022, from the charge for 25 years after they sign up. But any benefit would be lost if those customers sold their home, and the exemption wouldn't extend to the new buyers, said Brushett.


Carbon offsets missing from equation: industry
Brushett said NSP "completely ignored" the fact that it's getting free carbon offset credits from homeowners who use solar energy under the provincial cap and trade program.

If the net metering system continues as is, NSP has said non-solar customers would pay about $55 million between now and 2030. That number assumes about 2,000 people sign up for net metering each year over the next nine years.

When asked whether those carbon emission credits were factored into the calculations for the proposed charge, Gregg said, "I don't believe in the current structure it is, but it's something that certainly we'd be open to hearing about."

Brushett said his group is finalizing a legal response to NSP's proposal and has already filed an official complaint against the company with the UARB.


Base charge on actual electrical output: customer
At least one shareholder in NSP parent company Emera is considering selling his shares in response to the application.

Joe Hood, a shareholder from Middle Sackville, said the proposed charge won't apply to his existing 11.16-kilowatt solar system, but if it did, it would cost him $1,071 a year.

"I am offended that a company I would invest in would do this to the solar industry in Nova Scotia," he said.

According to his meter, Hood said he pushed 9,600 kilowatt hours of solar electricity to the grid last year— some only for a brief period, and all of which was used by his home by the end of the year.

Under the proposed charge, someone with one solar panel who goes away on vacation in the summer would push all their electricity to the grid, and be charged far less than someone with 10 panels who has used all their own power and hasn't pushed anything.

"Nova Scotia Power's argument is that it's an issue with the grid. Well, then it should be based on what touches the grid," Hood said.

Far from actually making the system fair for everyone, Hood said this charge places solar only in the hands of the super-rich or NSP, with projects like its community solar gardens in Amherst, N.S.


Green Party suggests legislation update
Nova Scotia's Green Party also said Tuesday that Gregg's arguments of fairness are misleading, echoing earlier premier opposition to a 14% hike on rates.

The party is calling for an update to the Electricity Act that would "prevent penalizing any activity that helps Nova Scotia reach its emissions target," aligning with calls to make the electricity system more accountable to residents.

In its application, NSP has also asked to increase electricity rates for residential customers by at least 10 per cent over the next three years, amid debate that culminated in a 14% rate hike approval by regulators. 

The company wants to maintain its nine per cent rate of return.

NSP expects to earn $153 million this year, $192 million in 2023, and $213 million in 2024 from its rate of return. 

 

Related News

View more

USDA Grants $4.37 Billion for Rural Energy Upgrades

USDA Rural Energy Infrastructure Funding boosts renewable energy, BESS, and transmission upgrades, delivering grid modernization, resilience, and clean power to rural cooperatives through loans and grants aligned with climate goals, decarbonization, and energy independence.

 

Key Points

USDA Rural Energy Infrastructure Funding is a $4.37B program advancing renewables, BESS, and grid upgrades for rural power.

✅ Loans and grants for cooperatives modernizing rural grids.

✅ Prioritizes BESS to integrate wind and solar reliably.

✅ Upgrades transmission to cut losses and boost grid stability.

 

The U.S. Department of Agriculture (USDA) has announced a major investment of $4.37 billion aimed at upgrading rural electric cooperatives across the nation. This funding will focus on advancing renewable energy projects, enhancing battery energy storage systems (BESS), and upgrading transmission infrastructure to support a grid overhaul for renewables nationwide.

The USDA’s Rural Development initiative will provide loans and grants to cooperatives, supporting efforts to transition to cleaner energy sources that help rural America thrive, improve energy resilience, and modernize electrical grids in rural areas. These upgrades are expected to bolster the reliability and efficiency of energy systems, making rural communities more resilient to extreme weather events and fostering the expansion of renewable energy.

The funding will primarily support energy storage technologies, such as BESS, which allow excess energy from renewable sources like wind energy, solar, and hydropower technology to be stored and used during periods of high demand or when renewable generation is low. These systems are critical for integrating more renewable energy into the grid, ensuring a stable and sustainable power supply.

In addition to energy storage, the USDA’s investment will go toward enhancing the transmission networks that carry electricity across rural regions, aligning with a recent rule to boost renewable transmission across the U.S. By upgrading these systems, the USDA aims to reduce energy losses, improve grid stability, and ensure that rural communities have reliable access to power, particularly in remote and underserved areas.

This investment aligns with the Biden administration’s broader climate and clean energy goals, focusing on reducing greenhouse gas emissions and fostering sustainable energy practices, including next-generation building upgrades that lower demand. The USDA's support will also promote energy independence in rural areas, enabling local cooperatives to meet the energy demands of their communities while decreasing reliance on fossil fuels.

The funding is expected to have a far-reaching impact, not only reducing carbon footprints but also creating jobs in the renewable energy and construction sectors. By modernizing energy infrastructure, rural electric cooperatives can expand access to clean, affordable energy while contributing to the nationwide shift toward a more sustainable energy future.

The USDA’s commitment to supporting rural electric cooperatives marks a significant step in the transition to a more resilient and sustainable energy grid, mirroring grid modernization projects in Canada seen in recent years. By investing in renewables and modernizing transmission and storage systems, the government aims to improve energy access and reliability in rural communities, ultimately driving the growth of a cleaner, more energy-efficient economy.

As part of the initiative, the USDA has also highlighted its commitment to helping rural cooperatives navigate the challenges of implementing new technologies and infrastructure. The agency has pledged to provide technical assistance, ensuring that cooperatives have the resources and expertise needed to successfully complete these projects.

In conclusion, the USDA’s $4.37 billion investment represents a significant effort to improve the energy landscape of rural America. By supporting the development of renewable energy, energy storage, and transmission upgrades, the USDA is not only fostering a cleaner energy future but also enhancing the resilience of rural communities. This initiative will contribute to the nationwide transition toward a sustainable, low-carbon economy, ensuring that rural areas are not left behind in the global push for renewable energy.

 

Related News

View more

Prevent Summer Power Outages

Summer Heatwave Electricity Shutoffs strain utilities and vulnerable communities, highlighting energy assistance, utility moratoriums, cooling centers, demand response, and grid resilience amid extreme heat, climate change, and rising air conditioning loads.

 

Key Points

Service disconnections for unpaid bills during extreme heat, risking vulnerable households and straining power grids.

✅ Moratoriums and flexible payment plans reduce shutoff risk.

✅ Cooling centers and assistance programs protect at-risk residents.

✅ Demand response, smart grids, and efficiency ease peak loads.

 

As summer temperatures soar, millions of people across the United States face the grim prospect of electricity shutoffs due to unpaid bills, as heat exacerbates electricity struggles for many families nationwide. This predicament highlights a critical issue exacerbated by extreme weather conditions and economic disparities.

The Challenge of Summer Heatwaves

Summer heatwaves not only strain power grids, as unprecedented electricity demand has shown, but also intensify energy consumption as households and businesses crank up their air conditioning units. This surge in demand places considerable stress on utilities, particularly in regions unaccustomed to prolonged heatwaves or lacking adequate infrastructure to cope with increased loads.

Vulnerable Populations

The threat of electricity shutoffs disproportionately affects vulnerable populations, including low-income households who face sky-high energy bills during extreme heat, elderly individuals, and those with underlying health conditions. Lack of access to air conditioning during extreme heat can lead to heat-related illnesses such as heat exhaustion and heatstroke, posing serious health risks.

Economic and Social Implications

The economic impact of electricity shutoffs extends beyond immediate discomfort, affecting productivity, food storage, and the ability to work remotely for those reliant on electronic devices, while rising electricity prices further strain household budgets. Socially, the inability to cool homes and maintain basic comforts strains community resilience and exacerbates inequalities.

Policy and Community Responses

In response to these challenges, policymakers and community organizations advocate for measures to prevent electricity shutoffs during heatwaves. Proposed solutions include extending moratoriums on shutoffs, informed by lessons from COVID-19 energy insecurity measures, implementing flexible payment plans, providing financial assistance to at-risk households, and enhancing communication about available resources.

Public Awareness and Preparedness

Raising public awareness about energy conservation during peak hours and promoting strategies to stay cool without overreliance on air conditioning are crucial steps towards mitigating electricity demand. Encouraging energy-efficient practices and investing in renewable energy sources also contribute to long-term resilience against climate-driven energy challenges.

Collaborative Efforts

Collaboration between government agencies, utilities, nonprofits, and community groups is essential in developing comprehensive strategies to safeguard vulnerable populations during heatwaves, especially when systems like the Texas power grid face renewed stress during prolonged heatwaves. By pooling resources and expertise, stakeholders can better coordinate emergency response efforts, distribute cooling centers, and ensure timely assistance to those in need.

Technology and Innovation

Advancements in smart grid technology and decentralized energy solutions offer promising avenues for enhancing grid resilience and minimizing disruptions during extreme weather events. These innovations enable more efficient energy management, demand response programs, and proactive monitoring of grid stability, though some utilities face summer supply-chain constraints that delay deployments.

Conclusion

As summer heatwaves become more frequent and severe, the risk of electricity shutoffs underscores the urgent need for proactive measures to protect vulnerable communities. By prioritizing equity, sustainability, and resilience in energy policy and practice, stakeholders can work towards ensuring reliable access to electricity, particularly during times of heightened climate vulnerability. Addressing these challenges requires collective action and a commitment to fostering inclusive and sustainable solutions that prioritize human well-being amid changing climate realities.

 

Related News

View more

Florida Court Blocks Push to Break Electricity Monopolies

Florida Electricity Deregulation Ruling highlights the Florida Supreme Court decision blocking a ballot measure on retail choice, preserving utility monopolies for NextEra and Duke Energy, while similar deregulation efforts arise in Virginia and Arizona.

 

Key Points

A high court decision removing a retail choice ballot measure, keeping Florida utility monopolies intact for incumbents.

✅ Petition language deemed misleading for 2020 ballot

✅ Preserves NextEra and Duke Energy market dominance

✅ Similar retail choice pushes in VA and AZ

 

Florida’s top court ruled against a proposed constitutional amendment that would have allowed customers to pick their electricity provider, even as Florida solar incentives face rejection by state leaders, threatening monopolies held by utilities such as NextEra Energy Inc. and Duke Energy Corp.

In a ruling Thursday, the court said the petition’s language is “misleading” and doesn’t comply with requirements to be included on the 2020 ballot, reflecting debates over electricity pricing changes at the federal level. The measure’s sponsor, Citizens for Energy Choice, said the move ends the initiative, even as electricity future advocacy continues nationwide.

“While we were confident in our plan to gather the remaining signatures required, we cannot overcome this last obstacle,” the group’s chair, Alex Patton, noting ongoing energy freedom in the South efforts, said in a statement.

The proposed measure was one of several efforts underway to deregulate U.S. electricity markets, including New York’s review of retail energy markets this year. Earlier this week, two Virginia state lawmakers unveiled a bill to allow residents and businesses to pick their electricity provider, threatening Dominion Energy Inc.’s longstanding local monopoly. And in Arizona, where Arizona Public Service Co. has long reigned, regulators are considering a similar move, while in New England Hydro-Quebec’s export bid has been energized by a court decision.

 

Related News

View more

Americans aren't just blocking our oil pipelines, now they're fighting Hydro-Quebec's clean power lines

Champlain Hudson Power Express connects Hydro-Québec hydropower to the New York grid via a 1.25 GW high voltage transmission line, enabling renewable energy imports, grid decarbonization, storage synergy, and reduced fossil fuel generation.

 

Key Points

A 1.25 GW cross-border transmission project delivering Hydro-Québec hydropower to New York City to displace fossil power.

✅ 1.25 GW buried HV line from Quebec to Astoria, Queens

✅ Supports renewable imports and grid decarbonization in NYC

✅ Enables two-way trade and reservoir storage synergy

 

Last week, Quebec Premier François Legault took to Twitter to celebrate after New York State authorities tentatively approved the first new transmission line in three decades, the Champlain Hudson Power Express, that would connect Quebec’s vast hydroelectric network to the northeastern U.S. grid.

“C’est une immense nouvelle pour l’environnement. De l’énergie fossile sera remplacée par de l’énergie renouvelable,” he tweeted, or translated to English: “This is huge news for the environment. Fossil fuels will be replaced by renewable energy.”

The proposed construction of a 1.25 gigawatt transmission line from southern Quebec to Astoria, Queens, known as the Champlain Hudson Power Express, ties into a longer term strategy by Hydro Québec: in the coming decade, as cities such as New York and Boston look to transition away from fossil fuel-generated electricity and decarbonize their grids, Hydro-Québec sees opportunities to supply them with energy from its vast network of 61 hydroelectric generating stations and other renewable power, as Quebec has closed the door on nuclear power in recent years.

Already, the provincial utility is one of North America’s largest energy producers, generating $2.3 billion in net income in 2020, and planning to increase hydropower capacity over the near term. Hydro-Quebec has said it intends to increase exports and had set a goal of reaching $5.2 billion in net income by 2030, though its forecasts are currently under review.

But just as oil and gas companies have encountered opposition to nearly every new pipeline, Hydro-Québec is finding resistance as it seeks to expand its pathways into major export markets, which are all in the U.S. northeast. Indeed, some fossil fuel companies that would be displaced by Hydro-Québec are fighting to block the construction of its new transmission lines.

“Linear projects — be it a transmission line or a pipeline or highway or whatever — there’s always a certain amount of public opposition,” Gary Sutherland, director of strategic affairs and stakeholder relations for Hydro-Québec, told the Financial Post, “which is a good thing because it makes the project developer ask the right questions.”

While Sutherland said he isn’t expecting opposition to the line into New York, he acknowledged Hydro-Québec also didn’t fully anticipate the opposition encountered with the New England Clean Energy Connect, a 1.2 gigawatt transmission line that would cost an estimated US$950 million and run from Quebec through Maine, eventually connecting to Massachusetts’ grid.

In Maine, natural gas and nuclear energy companies, which stand to lose market share, and also environmentalists, who oppose logging through sensitive habitat, both oppose the project.

In August, Maine’s highest court invalidated a lease for the land where the lines were slated to be built, throwing permits into question. Meanwhile, Calpine Corporation and Vistra Energy Corp., both Texas-based companies that operate natural gas plants in Maine, formed a political action committee called Mainers for Local Power. It has raised nearly US$8 million to fight the transmission line, according to filings with the Maine Ethics Commission.

Neither Calpine nor Vistra could be reached for comment by the time of publication.

“It’s been 30 years since we built a transmission line into the U.S. northeast,” said Sutherland. “In that time we have increased our exports significantly … but we haven’t been able to build out the corresponding transmission to get that energy from point A to point B.”

Indeed, since 2003, Hydro-Québec’s exports outside the province have grown from roughly two terrawatts per year to more than 30 terrawatts, including recent deals with NB Power to move more electricity into New Brunswick. The provincial utility produces around 210 terrawatts annually, but uses less than 178 terrawatts in Quebec.

Linear projects — be it a transmission line or a pipeline or highway or whatever — there’s always a certain amount of public opposition

In Massachusetts, it has signed contracts to supply 9.4 terrawatts annually — an amount roughly equivalent to 8 per cent of the New England region’s total consumption. Meanwhile, in New York, Hydro-Québec is in the final stages of negotiating a 25-year contract to sell 10.4 terawatts — about 20 per cent of New York City’s annual consumption.

In his tweets, Legault described the New York contract as being worth more than $20 billion over 25 years, although Hydro Québec declined to comment on the value because the contract is still under negotiation and needs approval by New York’s Public Services Commission — expected by mid-December.

Both regions are planning to build out solar and wind power to meet their growing clean energy needs and reach ambitious 2030 decarbonization targets. New York has legislated a goal of 70 per cent renewable power by that time, while Massachusetts has called for a 50 per cent reduction in emissions in the same period.

Hydro-Quebec signage is displayed on a manhole cover in Montreal. PHOTO BY BRENT LEWIN/BLOOMBERG FILES
According to a 2020 paper titled “Two Way Trade in Green Electrons,” written by three researchers at the Center for Energy and Environmental Policy Research at the Massachusetts’ Institute for Technology, Quebec’s hydropower, which like fossil fuels can be dispatched, will help cheaply and efficiently decarbonize these grids.

“Today transmission capacity is used to deliver energy south, from Quebec to the northeast,” the researchers wrote, adding, “…in a future low-carbon grid, it is economically optimal to use the transmission to send energy in both directions.”

That is, once new transmission lines and wind and solar power are built, New York and Massachusetts could send excess energy into Quebec where it could be stored in hydroelectric reservoirs until needed.

“This is the future of this northeast region, as New York state and New England are decarbonizing,” said Sutherland. “The only renewable energies they can put on the grid are intermittent, so they’re going to need this backup and right to the north of them, they’ve got Hydro-Québec as backup.”

Hydro-Québec already sells roughly 7 terrawatts of electricity per year into New York on the spot market, but Sutherland says it is constrained by transmission constraints that limit additional deliveries.

And because transmission lines can cost billions of dollars to build, he said Hydro-Québec needs the security of long-term contracts that ensure it will be paid back over time, aligning with its broader $185-billion transition strategy to reduce reliance on fossil fuels.

Sutherland expressed confidence that the Champlain Hudson Power Express project would be constructed by 2025. He noted its partners, Blackstone-backed Transmission Developers, have been working on the project for more than a decade, and have already won support from labour unions, some environmental groups and industry.

The project calls for a barge to move through Lake Champlain and the Hudson River, and dig a trench while unspooling and burying two high voltage cables, each about 10-12 centimetres in diameter. In certain sections of the Hudson River, known to have high concentrations of PCP pollutants, the cable would be buried underground alongside the river.

 

Related News

View more

Japan to host one of world's largest biomass power plants

eRex Biomass Power Plant will deliver 300 MW in Japan, offering stable baseload renewable energy, coal-cost parity, and feed-in tariff independence through economies of scale, efficient fuel procurement, and utility-scale operations supporting RE100 demand.

 

Key Points

A 300 MW Japan biomass project targeting coal-cost parity and FIT-free, stable baseload renewable power.

✅ 300 MW capacity; enough for about 700,000 households

✅ Aims to skip feed-in tariff via economies of scale

✅ Targets coal-cost parity with stable, dispatchable output

 

Power supplier eRex will build its largest biomass power plant to date in Japan, hoping the facility's scale will provide healthy margins, a strategy increasingly seen among renewable developers pursuing diverse energy sources, and a means of skipping the government's feed-in tariff program.

The Tokyo-based electric company is in the process of selecting a location, most likely in eastern Japan. It aims to open the plant around 2024 or 2025 following a feasibility study. The facility will cost an estimated 90 billion yen ($812 million) or so, and have an output of 300 megawatts -- enough to supply about 700,000 households. ERex may work with a regional utility or other partner

The biggest biomass power plant operating in Japan currently has an output of 100 MW. With roughly triple that output, the new facility will rank among the world's largest, reflecting momentum toward 100% renewable energy globally that is shaping investment decisions.

Nearly all biomass power facilities in Japan sell their output through the government-mediated feed-in tariff program, which requires utilities to buy renewable energy at a fixed price. For large biomass plants that burn wood or agricultural waste, the rate is set at 21 yen per kilowatt-hour. But the program costs the Japanese public more than 2 trillion yen a year, and is said to hamper price competition.

ERex aims to forgo the feed-in tariff with its new plant by reaping economies of scale in operation and fuel procurement. The goal is to make the undertaking as economical as coal energy, which costs around 12 yen per kilowatt-hour, even as solar's rise in the U.S. underscores evolving benchmarks for competitive renewables.

Much of the renewable energy available in Japan is solar power, which fluctuates widely according to weather conditions, though power prediction accuracy has improved at Japanese PV projects. Biomass plants, which use such materials as wood chips and palm kernel shells as fuel, offer a more stable alternative.

Demand for reliable sources of renewable energy is on the rise in the business world, as shown by the RE100 initiative, in which 100 of the world's biggest companies, such as Olympus, have announced their commitment to get 100% of their power from renewable sources. ERex's new facility may spur competition.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.