World renewable power on course to shatter more records


world renewables

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Global Renewable Capacity Additions 2023 surge on policy momentum, high fossil prices, and energy security, with solar PV and wind leading growth as grids expand and manufacturing scales across China, Europe, India, and the US.

 

Key Points

Record solar PV and wind growth from policy and energy security, adding 440+ GW toward 4,500 GW total capacity in 2024.

✅ Solar PV to supply two-thirds of additions; rooftop demand rising.

✅ Wind rebounds ~70% as delayed projects complete in China, EU, US.

✅ Grid upgrades and better permitting, auctions key for 2024 growth.

 

Global additions of renewable power capacity are expected to jump by a third this year as growing policy momentum, higher fossil fuel prices and energy security concerns drive strong deployment of solar PV and wind power, building on a record year for renewables in 2016, according to the latest update from the International Energy Agency.

The growth is set to continue next year with the world’s total renewable electricity capacity rising to 4 500 gigawatts (GW), equal to the total power output of China and the United States combined, and in the United States wind power has surged in the electricity mix, says the IEA’s new Renewable Energy Market Update, which was published today.

Global renewable capacity additions are set to soar by 107 gigawatts (GW), the largest absolute increase ever, to more than 440 GW in 2023. The dynamic expansion is taking place across the world’s major markets. Renewables are at the forefront of Europe’s response to the energy crisis, accelerating their growth there. New policy measures are also helping drive significant increases in the United States, where solar and wind growth remains strong, and India over the next two years. China, meanwhile, is consolidating its leading position and is set to account for almost 55% of global additions of renewable power capacity in both 2023 and 2024.

“Solar and wind are leading the rapid expansion of the new global energy economy. This year, the world is set to add a record-breaking amount of renewables to electricity systems – more than the total power capacity of Germany and Spain combined,” said IEA Executive Director Fatih Birol. “The global energy crisis has shown renewables are critical for making energy supplies not just cleaner but also more secure and affordable – and governments are responding with efforts to deploy them faster. But achieving stronger growth means addressing some key challenges. Policies need to adapt to changing market conditions, and we need to upgrade and expand power grids to ensure we can take full advantage of solar and wind’s huge potential.”

Solar PV additions will account for two-thirds of this year’s increase in renewable power capacity and are expected to keep growing in 2024, according to the new report. The expansion of large-scale solar PV plants is being accompanied by the growth of smaller systems. Higher electricity prices are stimulating faster growth of rooftop solar PV, which is empowering consumers to slash their energy bills, and in the United States renewables' share is projected to approach one-fourth of electricity generation.

At the same time, manufacturing capacity for all solar PV production segments is expected to more than double to 1 000 GW by 2024, led by China's solar PV growth and increasing supply diversification in the United States, where wind, solar and battery projects dominate the 2023 pipeline, India and Europe. Based on those trends, the world will have enough solar PV manufacturing capacity in 2030 to comfortably meet the level of annual demand envisaged in the IEA’s Net Zero Emissions by 2050 Scenario.

Wind power additions are forecast to rebound sharply in 2023 growing by almost 70% year-on-year after a difficult couple of years in which growth was slugging, even as wind power still grew despite Covid-19 challenges. The faster growth is mainly due to the completion of projects that had been delayed by Covid-19 restrictions in China and by supply chain issues in Europe and the United States. However, further growth in 2024 will depend on whether governments can provide greater policy support to address challenges in terms of permitting and auction design. In contrast to solar PV, wind turbine supply chains are not growing fast enough to match accelerating demand over the medium-term. This is mainly due to rising commodity prices and supply chain challenges, which are reducing the profitability of manufacturers.

The forecast for renewable capacity additions in Europe has been revised upwards by 40% from before Russia’s invasion of Ukraine, which led many countries to boost solar and wind uptake to reduce their reliance on Russian natural gas. The growth is driven by high electricity prices that have made small-scale rooftop solar PV systems more financially attractive and by increased policy support in key European markets, especially in Germany, Italy and the Netherlands.

 

Related News

Related News

BWE - Wind power potential even higher than expected

German Wind Power 2030 Outlook highlights onshore and offshore growth, repowering, higher full-load hours, and efficiency gains. Deutsche WindGuard, BWE, and LEE NRW project 200+ TWh, potentially 500 TWh, covering rising electricity demand.

 

Key Points

Forecast: efficiency and full-load gains could double onshore wind to 200+ TWh; added land could lift output to 500 TWh.

✅ Modern turbines and repowering boost full-load hours and yields

✅ Onshore generation could hit 200+ TWh on existing areas by 2030

✅ Expanding land to 2% may enable 500 TWh; offshore adds more

 

Wind turbines have become more and more efficient over the past two decades, a trend reflected in Denmark's new green record for wind-powered generation.

A new study by Deutsche WindGuard calculates the effect on the actual generation volumes for the first time, underscoring Germany's energy transition balancing act as targets scale. Conclusion of the analysis: The technical progress enables a doubling of the wind power generation by 2030.

Progressive technological developments make wind turbines more powerful and also enable more and more full-load hours, with wind leading the power mix in many markets today. This means that more electricity can be generated continuously than previously assumed. This is shown by a new study by Deutsche WindGuard, which was commissioned by the Federal Wind Energy Association (BWE) and the State Association of Renewable Energies NRW (LEE NRW).

The study 'Full load hours of wind turbines on land - development, influences, effects' describes in detail for the first time the effects of advances in wind energy technology on the actual generation volumes. It can thus serve as the basis for further calculations and potential assessments, reflecting milestones like UK wind surpassing coal in 2016 in broader analyses.

The results of the investigation show that the use of modern wind turbines with higher full load hours alone on the previously designated areas could double wind power generation to over 200 terawatt hours (TWh) by 2030. With an additional area designation, generation could even be increased to 500 TWh. If the electricity from offshore wind energy is added, the entire German electricity consumption from wind energy could theoretically be covered, and renewables recently outdelivered coal and nuclear in Germany as a sign of momentum: The current electricity consumption in Germany is currently a good 530 TWh, but will increase in the future.

Christian Mildenberger, Managing Director of LEE NRW: 'Wind can do much more: In the past 20 years, technology has made great leaps and bounds. Modern wind turbines produce around ten times as much electricity today as those built at the turn of the millennium. This must also be better reflected in potential studies by the federal and state governments. '

Wolfram Axthelm, BWE Managing Director: 'We need a new look at the existing areas and the repowering. Today in Germany not even one percent of the area is designated for wind energy inland. But even with this we could cover almost 40 percent of the electricity demand by 2030. If this area share were increased to only 2 percent of the federal area, it would be almost 100 percent of the electricity demand! Wind energy is indispensable for a CO2-neutral future. This requires a clever provision of space in all federal states. '

Dr. Dennis Kruse, Managing Director of Deutsche WindGuard: 'It turns out that the potential of onshore wind energy in Germany is still significantly underestimated. Modern wind turbines achieve a significantly higher number of full load hours than previously assumed. That means: The wind can be used more and more efficiently and deliver more income. '

On the areas already designated today, numerous older systems will be replaced by modern ones by 2030 (repowering). However, many old systems will still be in operation. According to Windguard's calculations, the remaining existing systems, together with around 12,500 new, modern wind systems, could generate 212 TWh in 2030. If the area backdrop were expanded from 0.9 percent today to 2 percent of the land area, around 500 TWh would be generated by inland wind, despite grid expansion challenges in Europe that shape deployment.

The ongoing technological development must also be taken into account. The manufacturers of wind turbines are currently working on a new class of turbines with an output of over seven megawatts that will be available in three to five years. According to calculations by the LEE NRW, by 2040 the same number of wind turbines as today could produce over 700 TWh of electricity inland. The electricity demand, which will increase in the future due to electromobility, heat pumps and the production of green hydrogen, can thus be completely covered by a combination of onshore wind, offshore wind, solar power, bioenergy, hydropower and geothermal energy, and a net-zero roadmap for Germany points to significant cost reductions.

 

Related News

View more

Scrapping coal-fired electricity costly, ineffective, says report

Canada Coal Phase-Out Costs highlight Fraser Institute findings on renewable energy, wind and solar integration, grid reliability, natural gas backup, GDP impacts, greenhouse gas emissions reductions, nuclear alternatives, and transmission upgrades across provincial electricity systems.

 

Key Points

Costs to replace coal with renewables, impacting taxpayers and ratepayers while ensuring grid reliability.

✅ Fraser Institute estimates $16.8B-$33.7B annually for renewables.

✅ Emissions cut from coal phase-out estimated at only 7.4% nationally.

✅ Natural gas backup and grid upgrades drive major cost increases.

 

Replacing coal-fired electricity with renewable energy will cost Canadian taxpayers and hydro ratepayers up to $33.7 billion annually, with only minor reductions in global greenhouse gas emissions linked to climate change, according to a new study by the Fraser Institute.

The report, Canadian Climate Policy and its Implications for Electricity Grids by University of Victoria economics professor G. Cornelis van Kooten, said replacing coal-fired electricity with wind and solar power would only cut Canada’s annual emissions by 7.4%,

Prime Minister Justin Trudeau’s has promised a reduction of 40%-45% compared to Canada’s 2005 emissions by 2030, and progress toward the 2035 clean electricity goals remains uncertain.

The study says emission cuts would be relatively small because coal accounted for only 9.2% of Canada’s electricity generation in 2017. (According to Natural Resources Canada, that number is lower today at 7.4%).

In 2019, the last year for which federal data are available, Canada’s electricity sector generated 8.4% of emissions nationally — 61.1 million tonnes out of 730 million tonnes.

“Despite what advocates, claim, renewable power — including wind and solar — isn’t free and, as Europe's power crisis lessons suggest, comes with only modest benefits to the environment,” van Kooten said.

“Policy makers should be realistic about the costs of reducing greenhouse gas emissions in Canada, which accounts for less than 2% of emissions worldwide.”

The report says the increased costs of operating the electricity grid across Canada — between $16.8 billion and $33.7 billion annually or 1% to 2% of Canada’s annual GDP — would result from having to retain natural gas, consistent with net-zero regulations allowing some natural gas in limited cases, as a backup to intermittent wind and solar power, which cannot provide baseload power to the electricity grid on demand.

Van Kooten said his cost estimates are conservative because his study “could not account for scenarios where the scale of intermittency turned out worse than indicated in our dataset … the costs associated with the value of land in other alternative uses, the need for added transmission lines, as analyses of greening Ontario's grid costs indicate, environmental and human health costs and the life-cycle costs of using intermittent renewable sources of energy, including costs related to the disposal of hazardous wastes from solar panels and wind turbines.”

If nuclear power was used to replace coal-fired electricity, the study says, costs would drop by half — $8.3 billion to $16.7 billion annually — but that’s unrealistic because of the time it takes to build nuclear plants and public opposition to them.

The study says to achieve the federal government’s target of reducing emissions to 40% to 45% below 2005 levels by 2030 and net-zero emissions by 2050, would require building 30 nuclear power plants before 2030, highlighting Canada’s looming power problem as described by analysts — meaning one plant of 1,000-megawatt capacity coming online every four months between now and 2030.

Alternatively, it would take 28,340 wind turbines, each with 2.5-megawatts capacity, or 1,050 turbines being built every four months, plus the costs of upgrading transmission infrastructure.

Van Kooten said he based his calculations on Alberta, which generates 39.8% of its electricity from coal and the cost of Ontario eliminating coal-fired electricity, even as Ontario electricity getting dirtier in coming years, which generated 25% of its electricity, between 2003 and 2014, replacing it with a combination of natural gas, nuclear and wind and solar power.

According to Natural Resources Canada, Nova Scotia generates 49.9% of its electricity from coal, Saskatchewan 42.9%, and New Brunswick 17.2%.

In 2018, the Trudeau government announced plans to phase-out traditional coal-fired electricity by 2030, though the Stop the Shock campaign seeks to bring back coal power in some regions. 

Canada and the U.K. created the “Powering Past Coal Alliance” in 2017, aimed at getting other countries to phase out the use of coal to generate electricity.

 

Related News

View more

New legislation will make it easier for strata owners to install EV charging stations

BC Strata EV Charging Reforms streamline approvals under the Strata Property Act, lowering the voting threshold and requiring an electrical planning report to expand EV charging stations in multi-unit strata buildings across British Columbia.

 

Key Points

BC reforms ease EV charger installs in stratas by lowering votes, requiring plans, and fast-tracking compliant requests.

✅ Vote threshold drops to 50% for EV infrastructure

✅ Electrical planning report required for stratas

✅ Stratas must approve compliant owner charging requests

 

Owning an electric vehicle (EV) will be a little easier for strata property owners, the province says, after announcing changes to legislation to facilitate the installation of charging stations in strata buildings.

On Thursday, the province said it would be making amendments to the Strata Property Act, the legal framework all strata corporations are required to follow, and align with practical steps for retrofitting condos with chargers in older buildings.

Three areas will improve access to EV charging stations in strata complexes, the province says, including lowering the voting threshold from 75 per cent to 50 per cent for approval of the costs, supported by EV charger rebates that can offset expenses, and changes to the property that are needed to install them, as well as requiring strata corporations to have an electrical planning report to make installation of these stations easier.

The amendments would mean stratas would have to approve owners' requests for such charging stations, even amid high-rise EV charging challenges reported across Canada, as long as "reasonable criteria are met."

Minister of Energy, Mines and Low Carbon Innovation Josie Osborne said people are more likely to buy an electric vehicle if they have the ability to charge it — something that's lacking for many British Columbians living in multi-unit residences, where Vancouver's EV-ready policy is setting a local example for multi-family buildings. 

"B.C. has one of the largest public electric vehicle charging networks in Canada, and leads the country in going electric, but we need to make it easier for more people to charge their EVs at home," Osborne said in a statement.

Tony Gioventu, the executive director of the Condominium Home Owners Association of B.C., said the new legislation strikes a balance between allowing people access to EV charging stations, as examples from Calgary apartments and condos demonstrate, while also ensuring stratas still have control over their properties. 

This is just the latest step in the B.C. government's move to get more EVs on the road: alongside rebates for home and workplace charging, the province passed the Zero-Emission Vehicles Act, which aims for 10 per cent of all new light-duty cars and trucks sold in B.C. to be zero emission by 2025. By 2040, they'll all need to be emission-free.

 

Related News

View more

Building Energy Celebrates the Beginning of Operations and Electricity Generation

Building Energy Iowa Wind Farm delivers 30 MW of renewable energy near Des Moines, generating 110 GWh annually with wind turbines, a long-term PPA, CO2 reduction, and community benefits like jobs and clean power.

 

Key Points

Building Energy Iowa Wind Farm is a 30 MW project generating 110 GWh a year, cutting CO2 and supporting local jobs.

✅ 30 MW capacity, 10 onshore turbines (3 MW each)

✅ ~110 GWh per year; power for 11,000 households

✅ Long-term PPA; jobs and emissions reductions in Iowa

 

With 110 GWh generated per year, the plant will be beneficial to Iowa's environment, reflecting broader Iowa wind power investment trends, contributing to the reduction of 100,000 tons of CO2 emissions, as well as providing economic benefits to host local communities.

Building Energy SpA, multinational company operating as a global integrated IPP in the Renewable Energy Industry, amid milestones such as Enel's 450 MW U.S. wind project, through its subsidiary Building Energy Wind Iowa LLC, announces the inauguration of its first wind farm in Iowa, which adds up to 30 MW of wind distribution generation capacity. The project, located north of Des Moines, in Story, Boone, Hardin and Poweshiek counties, will generate approximately 110 GWh per year. The beginning of operations has been celebrated on the occasion of the Wind of Life event in Ames, Iowa, in the presence of Andrea Braccialarghe, MD America of Building Energy, Alessandro Bragantini, Chief Operating Officer of Building Energy and Giuseppe Finocchiaro, Italian Consul General.

The overall investment in the construction of the Iowa distribution generation wind farms amounted to $58 million and it sells its energy and related renewable credits under a bundled, long-term power purchase agreement with a local utility, reflecting broader utility investment trends such as WEC Energy's Illinois wind stake in the region.

The wind facility, developed, financed, owned and operated by Building Energy, consists of ten 3.0 MW geared onshore wind turbines, each with a rotor diameter of 125 meters mounted on an 87.5 meter steel tower. The energy generated will satisfy the energy needs of 11,000 U.S. households every year, similar in community impact to North Carolina's first wind farm, while avoiding the emission of about 70,000 tons of CO2 emissions every year, according to US Environmental Protection Agency methodology, which is equivalent to taking 15,000 cars off the road each year.

Besides the environmental benefits, the wind farm also has advantages for the local community, providing it with clean energy and creating jobs for local Iowans. The project involved more than a hundred of local skilled workers during the construction phase. Some of those jobs will be also permanent as necessary for the operation and maintenance activities as well as for additional services such as delivery, transportation, spare parts management, landscape mitigation, and further environmental monitoring studies.

The Company is present in many US states since 2013 with more than 500 MW of projects under development, spread across different renewable energy technologies, and aligning with federal initiatives like DOE wind energy awards that support innovation.

 

Related News

View more

Most planned U.S. battery storage additions in next three years to be paired with solar

U.S. Solar-Plus-Storage Growth 2021-2024 highlights rising battery storage co-location with solar PV, grid flexibility, RTO/ISO market signals, and ITC incentives, enabling peak shaving, firming renewable output, and reliable night-time power.

 

Key Points

Summary of U.S. plans pairing battery storage with solar PV, guided by RTO/ISO markets, grid needs, and ITC policy.

✅ 9.4 GW (63%) co-located with solar PV by 2024

✅ 97% of standalone capacity sited in RTO/ISO regions

✅ ITC improves project economics and grid services revenue

 

Of the 14.5 gigawatts (GW) of battery storage power capacity planned to come online amid anticipated growth in solar and storage in the United States from 2021 to 2024, 9.4 GW (63%) will be co-located with a solar photovoltaic (PV) solar-plus-storage power plant, based on data reported to us and published in our Annual Electric Generator Report. Another 1.3 GW of battery storage will be co-located at sites with wind turbines or fossil fuel-fired generators, such as natural gas-fired plants. The remaining 4.0 GW of planned battery storage will be located at standalone sites.

Historically, most U.S. battery systems have been located at standalone sites. Of the 1.5 GW of operating battery storage capacity in the United States at the end of 2020, 71% was standalone, and 29% was located onsite with other power generators.

Most standalone battery energy storage sites have been planned or built in power markets that are governed by regional transmission organizations (RTOs) and independent system operators (ISOs). RTOs and ISOs can enforce standard market rules that lay out clear revenue streams for energy storage projects in their regions, which promotes the deployment of battery storage systems. Of the utility-scale pipeline battery systems announced to come online from 2021 to 2024, 97% of the standalone battery capacity and 60% of the co-located battery capacity are in RTO/ISO regions.

Over 90% of the planned battery storage capacity outside of RTO and ISO regions will be co-located with a solar PV plant. At some solar PV co-located plants, the batteries can charge directly from the onsite solar generator when electricity demand and prices are low. They can then discharge electricity to the grid when peak demand is higher or when solar generation is unavailable, such as at night.

Although factors such as cloud cover can affect solar generation output, solar generators, now the number three renewable source in the U.S., in particular can effectively pair with battery storage because of their relatively regular daily generation patterns. This predictability works well with battery systems because battery systems are limited in how long they can discharge their power capacity before needing to recharge. If paired with a wind turbine, for example, a battery system could go days before having the opportunity to fully recharge.

Another advantage of pairing batteries with renewable generators is the ability to take advantage of tax incentives such as the Investment Tax Credit (ITC), which is available for solar projects, and other favorable government plans supporting deployment.

 

Related News

View more

Bus depot bid to be UK's largest electric vehicle charging hub

First Glasgow Electric Buses will transform the Caledonia depot with 160 charging points, zero-emission operations, grid upgrades, and rapid charging, supported by Transport Scotland funding and Alexander Dennis manufacturing for cleaner urban routes by 2023.

 

Key Points

Electric single-deckers at Caledonia depot with 160 chargers and upgrades, delivering zero-emission service by 2023

✅ 160 charging points; 4-hour rapid recharge capability

✅ Grid upgrades to power a fleet equal to a 10,000-person town

✅ Supported by Transport Scotland; built by Alexander Dennis

 

First Bus will install 160 charging points and replace half its fleet with electric buses at its Caledonia depot in Glasgow.

The programme is expected to be completed in 2023, similar to Metro Vancouver's battery-electric rollout milestones, with the first 22 buses arriving by autumn.

Charging the full fleet will use the same electricity as it takes to power a town of 10,000 people.

The scale of the project means changes are needed to the power grid, a challenge highlighted in global e-bus adoption analysis, to accommodate the extra demand.

First Glasgow managing director Andrew Jarvis told BBC Scotland: "We've got to play our part in society in changing how we all live and work. A big part of that is emissions from vehicles.

"Transport is stubbornly high in terms of emissions and bus companies need to play their part, and are playing their part, in that zero emission journey."

First Bus currently operates 337 buses out of its largest depot with another four sites across Glasgow.

The new buses will be built by Alexander Dennis at its manufacturing sites in Falkirk and Scarborough.

The transition requires a £35.6m investment by First with electric buses costing almost double the £225,000 bill for a single decker running on diesel.

But the company says maintenance and running costs, as seen in St. Albert's electric fleet results, are then much lower.

The buses can run on urban routes for 16 hours, similar to Edmonton's first e-bus performance, and be rapidly recharged in just four hours.

This is a big investment which the company wouldn't be able to achieve on its own.

Government grants only cover 75% of the difference between the price of a diesel and an electric bus, similar to support for B.C. electric school buses programmes, so it's still a good bit more expensive for them.

But they know they have to do it as a social responsibility, and large-scale initiatives like US school bus conversions show the direction of travel, and because the requirements for using Low Emissions Zones are likely to become stricter.

The SNP manifesto committed to electrifying half of Scotland's 4,000 or so buses within two years.

Some are questioning whether that's even achievable in the timescale, though TTC's large e-bus fleet offers lessons, given the electricity grid changes that would be necessary for charging.

But it's a commitment that environmental groups will certainly hold them to.

Transport Scotland is providing £28.1m of funding to First Bus as part of the Scottish government's commitment to electrify half of Scotland's buses in the first two years of the parliamentary term.

Net Zero Secretary Michael Matheson said: "It's absolute critical that we decarbonise our transport system and what we have set out are very ambitious plans of how we go about doing that.

"We've set out a target to make sure that we decarbonise as many of the bus fleets across Scotland as possible, at least half of it over the course of the next couple of years, and we'll set out our plans later on this year of how we'll drive that forward."

Transport is the single biggest source of greenhouse gas emissions in Scotland which are responsible for accelerating climate change.

In 2018 the sector was responsible for 31% of the country's net emissions.

Electric bus
First Glasgow has been trialling two electric buses since January 2020.

Driver Sally Smillie said they had gone down well with passengers because they were much quieter than diesel buses.

She added: "In the beginning it was strange for them not hearing them coming but they adapt very easily and they check now.

"It's a lot more comfortable. You're not feeling a gear change and the braking's smoother. I think they're great buses to drive."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.