Solar Is Now 33% Cheaper Than Gas Power in US, Guggenheim Says


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

US Renewable Energy Cost Advantage signals cheaper utility-scale solar and onshore wind versus natural gas, with LCOE declines, tax credits, and climate policy cutting electricity costs for utilities and grids across the United States.

 

Key Points

Cheaper solar and wind than natural gas, driven by LCOE drops, tax credits, and policy, lowering US electricity costs.

✅ Utility-scale solar is about one-third cheaper than gas

✅ Onshore wind costs roughly 44 percent less than natural gas

✅ Policy and tax credits accelerate renewables and cut power prices

 

Natural gas’s dominance as power-plant fuel in the US is fading fast as the cost of electricity generated by US wind and solar projects tumbles and as wind and solar surpass coal in the generation mix, according to Guggenheim Securities.

Utility-scale solar is now about a third cheaper than gas-fired power, while onshore wind is about 44% less expensive, Guggenheim analysts led by Shahriar Pourreza said Monday in a note to clients, a dynamic consistent with falling wholesale power prices in several markets today. 

“Solar and wind now present a deflationary opportunity for electric supply costs,” the analysts said, which “supports the case for economic deployment of renewables across the US,” as the country moves toward 30% wind and solar and one-fourth of total generation in the near term.

Gas prices have surged amid a global supply crunch after Russia’s invasion of Ukraine, while tax-credit extensions and sweeping US climate legislation have brought down the cost of wind and solar, even as renewables surpassed coal in 2022 nationwide. Renewables-heavy utilities like NextEra Energy Inc. and Allete Inc. stand to benefit, and companies that can boost spending on wind and solar, as wind, solar and batteries dominate the 2023 pipeline, will also see faster growth, Guggenheim said.
 

Related News

Why a green recovery goes far deeper than wind energy

Scotland Green Recovery Strategy centers on renewable energy, onshore wind, energy efficiency, battery storage, hydrogen, and electric vehicles, alongside public transport and digital infrastructure, local manufacturing, and grid flexibility to decarbonize industry and communities.

 

Key Points

A plan to cut emissions by scaling renewables, efficiency, storage, and infrastructure for resilient, low-carbon growth.

✅ Prioritize energy efficiency retrofits in homes and workplaces

✅ Invest in battery storage, hydrogen, and EV charging networks

✅ Support local manufacturing and circular economy supply chains

 

THE “green recovery” joins the growing list of Covid-era political maxims, while green energy investment could drive recovery, suggesting a bright and environmentally sustainable post-pandemic future lies ahead.

The Prime Minister once again alluded to it recently when he expressed his ambition to see the UK become the “world leader in clean wind energy”. In his typically bombastic style, Boris Johnson declared that everything from our kettles to electric vehicles, with offshore wind energy central to that vision, will be powered by “breezes that blow around these islands” by the next decade.

These comments create a misleading impression about how we can achieve a green recovery, particularly as Covid-19 hit renewables and exposed systemic challenges. While wind turbines have a key role to play, they are just one part of a comprehensive solution requiring a far more in-depth focus on how and why we use energy. We must concentrate our efforts and resources on reducing our overall consumption and increasing energy capture.

This includes making significant energy efficiency improvements to the buildings where we live and work and grasping the lessons of lockdown, including proposals for a fossil fuel lockdown to accelerate climate action, to ensure we operate in a more effective and less environmentally-damaging fashion. Do we really want to return to a world where people commute daily half way across the country for work or fly to New York for a two-hour meeting?

Businesses will need to adapt to new ways of operating outwith the traditional nine-to-five working week to reduce congestion and pollution levels. To make this possible requires Government investment in critical areas such as public transport and digital infrastructure, alongside more pylons to strengthen the grid, across all parts of Scotland to decentralise the economy and enable more people to live and work outside the main cities.

A Government-supported green recovery must rest on making it financially viable for businesses to manufacture here to reduce our reliance on imported goods. This includes processing recycleable materials here rather than shipping them abroad. It also means using locally generated energy to support local jobs and industry. We miss a trick if Scotland simply becomes a power generator for the rest of the UK.

MOVING transport from fossil fuels to renewable fuels will require a step-change that also requires support across all levels. The increased use of electric vehicles and hydrogen fuel cells are all encouraging developments, but these will rely on investment in infrastructure throughout the country if we’re to achieve significant benefits to our environment and our economy.

This brings us to the role of onshore wind power; still the cheapest form of renewable energy, and a sector marked by wind growth despite Covid-19 around the world today. Repowering existing sites with newer and more efficient turbines will certainly increase capacity rapidly, but we must also invest into development projects that will further enhance the capacity and efficiency of existing equipment. This includes improving on the current practice of the National Grid paying operators to switch off wind turbines when excess electricity is produced and instead developing new and innovative means to capture this energy. Government-primed investment into battery storage could help ensure we achieve and further reduce our reliance on traditional, non-sustainable sources.

We need a level playing field so that all forms of energy are judged on their lifetime cost in terms of emissions as well as construction and decommissioning costs to ensure fiscal incentives are applied on a fairer basis.

Turning the maxim of a green recovery into reality will require more than extra wind turbines, and the UK's wind lessons underscore the importance of policy and scale. We need a significant investment and commitment from business and government to limit existing emissions and ensure we capture and use energy more efficiently.

Andy Drane is projects partner and head of renewables at law firm Davidson Chalmers Stewart.

 

Related News

View more

"Remarkable" New Contract Award Adds 10 GW of Renewables to UK Grid

UK Renewable Energy Auction secures 10 GW for the grid at record-low costs, led by offshore wind, floating wind, solar, and onshore wind, with inflation-indexed CfDs delivering £37/MWh strike prices and enhanced energy security.

 

Key Points

Government CfDs add 10 GW of low-cost renewables to the UK grid via offshore wind, floating wind, and solar.

✅ 10 GW capacity: 7 GW offshore wind, 2.2 GW solar, 0.9 GW onshore wind

✅ Record-low £37/MWh offshore; floating wind at £87/MWh CfD strikes

✅ 15-year indexed contracts cut exposure to volatile gas prices

 

The United Kingdom will add 10 gigawatts (GW) of renewable energy capacity to its power grid at one-quarter the cost of fossil gas after concluding its biggest-ever renewable energy auction for new renewable supplies.

The “remarkable new UK renewable auction” will meet one-eighth of the country’s current electricity demand at record low prices of just £37 per megawatt-hour for offshore wind and £87 for floating offshore systems (a dynamic echoed as wind power gains in Canada across other markets), tweeted Carbon Brief Deputy Editor Simon Evans.

“The government is increasing its reliance on a local supply of renewables amid soaring UK power prices driven by a surge in the cost of natural gas following Russia’s invasion of Ukraine,” Bloomberg Green reports. Offshore wind energy “will add about seven gigawatts of clean power capacity to the nation’s fleet from 2026, bringing Britain closer to its target of installing 50 gigawatts by the end of the decade.”

The awards also include 2.2 gigawatts (that’s 2.2 billion watts) of solar and 900 megawatts of onshore wind, even as the UK faces a renewables backlog on some projects, Bloomberg says.

“Eye-watering gas prices are hitting consumers across Europe,” said UK Business and Energy Secretary Kwasi Kwarteng. “The more cheap, clean power we generate within our own borders, the better protected we will be from volatile gas prices that are pushing up bills.”

Citing government figures, Bloomberg says wind generation costs came in 5.8% lower than the previous auction in 2019, reflecting momentum in a sector set to become a trillion-dollar business this decade. Some of the winning bidders included Ørsted, Iberdrola’s Scottish Power unit, Vattenfall, and a consortium of AB Ignitis Grupe, EDP Renovaveis, and Engie.

Offshore wind power costs have fallen dramatically in recent years as the UK supported the industry to scale up and industrialize production of larger, more efficient turbines,” the news story states. Now, “the decline in price developers are willing to accept comes even after the cost of wind turbines rose in recent months as prices increased for key metals like steel and supply chain disruptions created expensive delays.”

The 15-year, fixed-price contracts will be adjusted for inflation when the turbines are ready to start delivering electricity, offering lessons for the U.S. wind sector on contract design.

 

Related News

View more

France's new EV incentive rules toughen market for Chinese cars

France EV Incentive Rules prioritize EU-made electric vehicles, tying subsidies to manufacturing emissions and carbon footprint, making Stellantis, Renault, and Tesla Model Y eligible while excluding many China-built models under a new eligibility list.

 

Key Points

Links EV subsidies to manufacturing emissions, favoring EU-made models and restricting many China-built cars.

✅ Subsidies tied to lifecycle manufacturing emissions.

✅ EU production favored; many China-built EVs excluded.

✅ Eligible: Stellantis, Renault, Tesla Model Y; not Model 3.

 

France's revamped new EV rules on consumer cash incentives for electric car purchases favour vehicles made in France and Europe over models manufactured in China, a government list of eligible car types published recently has showed.

Some 65% of electric cars sold in France will be eligible for the scheme, which from Friday will include new criteria covering the amount of carbon emitted in the manufacturing of an electric vehicle (EV).

The list of eligible models includes 24 produced by Franco-Italian group Stellantis (STLAM.MI) and five by French carmaker Renault (RENA.PA). Elon Musk's Tesla (TSLA.O) Model Y will be eligible but not its Model 3.

Electric vehicle brand MG Motors, owned by China's SAIC, said it expects the new rules to weigh on the French EV market, despite the global surge in EV sales seen in recent years.

"There are cars that will entirely lose their competitiveness", an MG spokesperson told Reuters, adding that the brand had decided not to apply for the bonus scheme for its MG4 model because it was "designed to exclude us".

French Finance Minister Bruno Le Maire hailed what he called the new rules' incentive for automakers to reduce their carbon footprint.

"We will no longer be subsidising car production that emits too much CO2," he said in a statement.

President Emmanuel Macron's government has wanted to make French and European-made EVs more affordable for domestic consumers relative to cheaper vehicles produced in China, amid a record EV market share in the country.

The average retail price of an EV in Europe, even as the EU EV share grew during lockdown months, was more than 65,000 euros ($71,000) in the first half of 2023, compared with just over 31,000 euros in China, according to research by Jato Dynamics.

The French government already offered buyers a cash incentive of between 5,000 and 7,000 euros to get more electric cars on the road, at a total cost of 1 billion euros ($1.1 billion) per year.

However, in the absence of cheap European-made EVs, a third of all incentives are going to consumers buying EVs made in China, French finance ministry officials say. The trend has helped spur a surge in imports and a growing competitive gap with domestic producers.

China's auto industry relies heavily on coal-generated electricity, meaning many Chinese-made EVs will henceforth not qualify.

The Ademe agency overseeing the process studied the eligibility of almost 500 EV models and their variants to include in the scheme.

Dacia, the low-cost Renault brand, saw its Spring model imported from China excluded from the list.

Tesla's Model 3 is made in China. The Model Y, which is larger and more expensive, is made mainly in Berlin and was the top selling EV in France over the first 11 months of the year, amid forecasts that EVs could dominate within a decade in many markets.

 

Related News

View more

Nevada to Power Clean Vehicles with Clean Electricity

Nevada EV Charging Plan will invest $100 million in highway, urban, and public charging, bus depots, and Lake Tahoe sites, advancing NV Energy's SB 448 goals for clean energy, air quality, equity, and tourism recovery.

 

Key Points

Program invests $100M in EV infrastructure under SB 448, led by NV Energy, expanding clean charging across Nevada.

✅ $100M for statewide charging over 3 years

✅ 50% invested in overburdened communities

✅ Supports SB 448, climate and air quality goals

 

The Public Utilities Commission of Nevada approved a $100 million program that will deploy charging stations for electric vehicles (EVs) along highways, in urban areas, at public buildings, in school and transit bus depots, and at Red Rocks and Lake Tahoe, as charging networks compete to expand access. Combined with the state's clean vehicle standards and its aggressive renewable energy requirements, this means cars, trucks, buses, and boats in Nevada will be powered by increasingly clean electricity, reflecting how electricity is changing across the country.

The “Economic Recovery Transportation Electrification Plan” proposed by NV Energy, aligning with utilities' bullish plans for EV charging, was required by Senate Bill (SB) 448 (Brooks). Nevada’s tourism-centric economy was hit hard by the pandemic, and, as an American EV boom accelerates nationwide, the $100 million investment in charging infrastructure for light, medium, and heavy-duty EVs over the next three years was designed to provide much needed economic stimulus without straining the state’s budget.

Half of those investments will be made in communities that have borne a disproportionate share of transportation pollution and have suffered most from COVID-19—a disease that is made more deadly by exposure to local air pollution—and, amid evolving state grid challenges that planners are addressing, ensuring equitable deployment will help protect reliability and health.

SB 448 also requires NV Energy to propose subsequent “Transportation Electrification Plans” to keep the state on track to meet its climate, air quality, and equity goals, recognizing that a much bigger grid may be needed as adoption grows. A  report from MJ Bradley & Associates commissioned by NRDC, Southwest Energy Efficiency Project, and Western Resource Advocates demonstrates Nevada could realize $21 billion in avoided expenditures on gasoline and maintenance, reduced utility bills, and environmental benefits, with parallels to New Mexico's projected benefits highlighted in recent analyses, by 2050 if more drivers make the switch to EVs.

 

Related News

View more

California looks to electric vehicles for grid stability

California EV V2G explores bi-directional charging, smart charging, and demand response to enhance grid reliability. CPUC, PG&E, and automakers test incentives aligning charging with solar and wind, helping prevent blackouts and curtailment.

 

Key Points

California EV V2G uses two-way charging and smart incentives to support grid reliability during peak demand.

✅ CPUC studies feasibility, timelines, and cost barriers to V2G

✅ Incentives shift charging to align with solar, wind, off-peak hours

✅ High-cost bidirectional chargers and warranties remain hurdles

 

California energy regulators are eyeing the power stored in electric vehicles as they hunt for ways to avoid blackouts caused by extreme weather.

While few EV and their charging ports are equipped to deliver electricity back into the grid during emergencies, the California Public Utilities Commission wants more data on it as the agency rules on steps utilities must take to ensure they have enough power for this summer and next year. A draft CPUC decision due to be discussed this week asks about the feasibility of reversing the charge when needed (Energywire, March 8).

“Very few [EVs], maybe a couple of thousand at the most, can give power to the grid, and even fewer are connected into a charger that can do it,” said Gil Tal, director of the Plug-in Hybrid & Electric Vehicle Research Center at the University of California, Davis. EVs that feature the ability “have it at a more experimental level.”

The issue arises as California, where about half of all U.S. EVs are purchased, examines what role the vehicles can play in keeping lights on and refrigerators running and how a much bigger grid will support them in the long term. Even if grid operators can’t pull from EV batteries en masse, experts say cash and other incentives can prompt drivers to shift charging times, boosting grid stability.

“What we can do is not charge the electric cars at times of high demand” such as during heat waves, Tal said.

The EV focus comes after California’s grid manager last summer imposed rolling blackouts when power supplies ran short during a record-shattering heat wave. State energy regulators across the U.S., as EVs challenge state grids, are also looking at their disaster preparedness as Texas recovers from a winter storm last month that cut off electricity for more than 4 million homes and businesses there.

California’s EV efforts can help other states as they add more renewable power to their grids, said Adam Langton, energy services manager at BMW of North America.

That automaker ran a pilot program with San Francisco-based utility Pacific Gas & Electric Co. (PG&E) looking at whether money and other incentives could prompt EV drivers to charge their cars at different times. The payments successfully shifted charging to the middle of the night, when wind power often is plentiful. It also moved some repowering to mornings and early afternoons, when there’s abundant solar energy.

“That can be a tool that the utilities can use to deal with supply issues,” Langton said. “What our research has shown is that vehicles can contribute to [conservation] needs and emergency supply by shifting their charging time.”

Such measures can also help states avoid having to curtail solar production on days when there’s more generation than needed. On many bright days, California has more solar power than it can use.

“As more states add more renewable energy, we think that they’re going to find that EVs complement that really well with smart charging, because grid coordination can get that charging to align with the renewable energy,” Langton said. “It allows to add more and more renewable energy.”

High-cost equipment a hurdle
The CPUC at a future workshop plans to collect information on leveraging EVs to head off power shortages at key times.

But Tal said it will probably take a decade to get enough EVs capable of exporting electricity back to utilities “in high numbers that can make an impact on the grid.”

Barriers to reaching such “vehicle to grid” integration are technical and economic, he said. EVs export direct current and need a device on the other side that can convert it to alternating current, similar to a solar power inverter for rooftop panels.

However, the equipment known as a V2G capable charger is costly. It ranges from $4,500 to $5,500, according to a 2017 National Renewable Energy Laboratory report.

PG&E and Los Angeles-based Southern California Edison already have “expressed doubt that short-term measures could be developed in time to expand EV participation by summer 2021” in V2G programs, the draft CPUC proposal said. The utilities suggested instead that the agency encourage EV owners to participate in initiatives where they’d get paid for reducing power consumption or sell electricity back to the grid when needed, known as demand response programs.

Still, almost all major EV automakers are looking at two-directional charging, Tal said.

“The incentive is you can get more value for the car,” he said. “The disincentive is you add more miles in a way on the car,” because an owner would be discharging to the grid and re-charging, and “the battery has limited life.”

And right now, discharging a vehicle to the grid would violate many warranties, he said. Car manufacturers would need to agree to change that and could call for compensation in return.

Meanwhile, San Diego Gas & Electric Co., a Sempra Energy subsidy, plans to launch a pilot looking at delivering power to the grid from electric school buses. The six buses in the pilot transport students in El Cajon, Calif., east of San Diego.

“The buses are perfect because of their big batteries and predictable schedule,” Jessica Packard, SDG&E spokesperson, said in an email. “Ultimately, we hope to scale up and deploy these kinds of innovations throughout our grid in the future.”

She declined to say how much power the buses could deliver because the project isn’t yet operating. It’s set to start later this year.

Mobility needs
While BMW and PG&E did not review vehicle-to-grid power transfers in their own 2017 research ending last year, one study in Delaware did. But it was in a university setting about eight years ago and didn’t look at actual drivers, said Langton with BMW.

In their own findings from the San Francisco Bay Area pilot program, BMW and PG&E found that incentives could quickly change driver behavior in terms of charging.

Technology helps: Most new EVs have timers that allow the driver to control when to charge and when to stop charging. Langton said the pilot program got drivers to have their cars charge from roughly 2 to 6 a.m., when electricity rates typically are lowest.

There can be a lot of solar energy during the day, but in summer, optimum charging times get more complicated in California, he said. People want to run their air conditioners during peak heat hours, so it’s important to be able to get EV drivers to shift to less congested times, he said.

With the right incentives or messaging, Langton said, the pilot persuaded drivers to move charging from 10 a.m. to 2 p.m. or noon to 4 p.m. BMW technology allowed for detailed information on battery charge level, ideal charging times and other EV data to be transmitted electronically after plugging in.

The findings are a good first step toward future vehicle-to-grid integration, Langton added.

“One of the things we really pay attention to when we do smart charging is, ‘How does the driver’s mobility needs figure into shifting their charging?'” he said. “We want to make sure that our customers can always do the driving that they need to do.”

The pilot included safeguards such as an opt-out button if the driver wanted to charge immediately. It also made sure the vehicle had a certain level of minimum charge — 15% to 20% — before the delayed smart charging kicked in.

Vehicle-to-grid technology would need to wrestle with the same concepts in a different way. If a car is getting discharged, the driver would want assurances its battery wouldn’t dip below a level that meets their mobility needs, Langton said.

“If that happened even once to a customer, they would probably not want to participate in these programs in the future,” he said.

One group adding charging stations across the country said it isn’t tweaking pricing based on when drivers charge. That’s to help grow EV purchases, said Robert Barrosa, senior director of sales and marketing at Volkswagen AG subsidiary Electrify America, which operates about 450 charging stations in 45 states.

The company has installed battery storage at more than 100 sites to make sure they can provide power at consistent prices even if California or another state calls for energy conservation.

“It’s very important for vehicle adoption that the customer have that,” Barrosa said.

The company could sell that battery storage back to the grid if there are shortfalls, but some market changes are needed first, particularly in California, he said. That’s because the company buys electricity on the retail side but would be sending it back into the wholesale market.

With that cost differential, Barrosa said, “it doesn’t make sense.”

 

Related News

View more

YVR welcomes government funding for new Electric Vehicle Chargers

YVR EV Charging Infrastructure Funding backs new charging stations at Vancouver International Airport via ZEVIP and CleanBC Go Electric, supporting Net Zero 2030 with Level 2 and DC fast charging across Sea Island.

 

Key Points

A federal and provincial effort to expand EV charging at YVR, accelerating airport electrification toward Net Zero 2030.

✅ Up to 74 new EV charging outlets across Sea Island by 2025

✅ Funded through ZEVIP and CleanBC Go Electric programs

✅ Supports passengers, partners, and YVR fleet electrification

 

Vancouver International Airport (YVR) welcomes today’s announcement from the Government of Canada, which confirms new federal funding under Natural Resource Canada’s Zero Emission Vehicle Infrastructure Program (ZEVIP) and broader zero-emission vehicle incentives for essential infrastructure at the airport that will further enable YVR to achieve its climate targets.

This federal funding, combined with funding through the Government of British Columbia’s CleanBC Go Electric program, which includes EV charger rebates, will support the installation of up to 74 additional Electric Vehicle (EV) Charging outlets across Sea Island over the next three years. EV charging infrastructure is identified as a key priority in the airport’s Roadmap to Net Zero 2030. It is also an important part of its purpose in being a Gateway to the New Economy.

“We know that our passengers’ needs and expectations are changing as EV adaptation increases across our region and policies like the City’s EV-ready requirements take hold, we are always working hard to anticipate and exceed these expectations and provide world-class amenities at our airport,” said Tamara Vrooman, President & CEO, Vancouver Airport Authority.

This airport initiative is among 26 projects receiving $19 million under ZEVIP, which assists organizations as they adapt to the Government of Canada’s mandatory target for all new light-duty cars and passenger trucks to be zero-emission by 2035, and to provincial momentum such as B.C.'s EV charging expansion across the network.

“We are grateful to have found partners at all levels of government as we take bold action to become the world’s greenest airport. Not only will this critical funding support us as we work to the complete electrification of our airport operations, and as regional innovations like Harbour Air’s electric aircraft demonstrate what’s possible, but it will help us in our role supporting the mutual needs of our business partners related to climate action,” Vrooman continued.

These new EV Charging stations are planned to be installed by 2025, and will provide electricity to the YVR fleet, commercial and business partners’ vehicles, as well as passengers and the public, complementing BC Hydro’s expanding charging network in southern B.C. Currently, YVR provides 12 free electric vehicle charging stalls (Level Two) at its parking facilities, as well as one DC fast-charging stall.

This exciting announcement comes on the heels of the Province of BC’s Integrated Marketplace Initiative (IMI) pilot program in November 2022, a partnership between YVR and the Province of British Columbia to invest up to 11.5 million to develop made-in-BC clean-tech solutions for use at the airport, and related programs offering home and workplace charging rebates are accelerating adoption.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified