Solar Is Now 33% Cheaper Than Gas Power in US, Guggenheim Says


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

US Renewable Energy Cost Advantage signals cheaper utility-scale solar and onshore wind versus natural gas, with LCOE declines, tax credits, and climate policy cutting electricity costs for utilities and grids across the United States.

 

Key Points

Cheaper solar and wind than natural gas, driven by LCOE drops, tax credits, and policy, lowering US electricity costs.

✅ Utility-scale solar is about one-third cheaper than gas

✅ Onshore wind costs roughly 44 percent less than natural gas

✅ Policy and tax credits accelerate renewables and cut power prices

 

Natural gas’s dominance as power-plant fuel in the US is fading fast as the cost of electricity generated by US wind and solar projects tumbles and as wind and solar surpass coal in the generation mix, according to Guggenheim Securities.

Utility-scale solar is now about a third cheaper than gas-fired power, while onshore wind is about 44% less expensive, Guggenheim analysts led by Shahriar Pourreza said Monday in a note to clients, a dynamic consistent with falling wholesale power prices in several markets today. 

“Solar and wind now present a deflationary opportunity for electric supply costs,” the analysts said, which “supports the case for economic deployment of renewables across the US,” as the country moves toward 30% wind and solar and one-fourth of total generation in the near term.

Gas prices have surged amid a global supply crunch after Russia’s invasion of Ukraine, while tax-credit extensions and sweeping US climate legislation have brought down the cost of wind and solar, even as renewables surpassed coal in 2022 nationwide. Renewables-heavy utilities like NextEra Energy Inc. and Allete Inc. stand to benefit, and companies that can boost spending on wind and solar, as wind, solar and batteries dominate the 2023 pipeline, will also see faster growth, Guggenheim said.
 

Related News

SEA To Convert 10,000 US School Buses To Electricity

SEA Electric school bus conversions bring EV electrification to Type A and Type C fleets, adding V2G, smart charging, battery packs, and zero-emissions performance while extending service life with cost-effective retrofits across US school districts.

 

Key Points

Retrofit EV drivetrains for Type A and C buses, adding V2G and smart charging to cut emissions and costs.

✅ Converts 10,000 Type A and C school buses over five years

✅ Adds V2G, smart charging, and fleet battery management

✅ Cuts diesel fumes, maintenance, and total cost of ownership

 

Converting a Porsche 356C to electric power is a challenge. There’s precious little room for batteries, converters, and such. But converting a school bus? That’s as easy as falling off a log, even if adoption challenges persist in the sector today. A bus has acres of space for batteries and the electronics need to power an electric motor.

One of the dumbest ideas human beings ever came up with was sealing school children inside a diesel powered bus for the trip to and from school. Check out our recent article on the impact of fossil fuel pollution on the human body. Among other things, fine particulates in the exhaust gases of an internal combustion engine have been shown to lower cognitive function. Whose bright idea was it to make school kids walk through a cloud of diesel fumes twice a day when those same fumes make it harder for them to learn?

Help may be on the way, as lessons from the largest e-bus fleet offer guidance for scaling. SEA Electric, a provider of electric commercial vehicles originally from Australia and now based in Los Angeles has stuck a deal with Midwest Transit Equipment to convert 10,000 existing school buses to electric vehicles over the next five years. Midwest will provide the buses to be converted to the SEA Drive propulsion system. SEA Electric will complete the conversions using its “extensive network of up-fitting partners,” Nick Casas, vice president of sales and marketing for SEA Electric, says in a press release.

After the conversions are completed, the electric buses will have vehicle to grid (V2G) capability that will allow them to help balance the local electrical grid, where state power grids face new demands, and “smart charge” when electricity prices are lowest. The school buses to be converted are of the US school bus class Type A  or Type C. Type A is the smallest US school bus with a length of 6 to 7.5 metres and is based on a van chassis. The traditional Type C school buses are built on truck architectures.

SEA Electric says that the conversion will extend the life of the buses by more than ten years, with early deployments like B.C. electric school buses demonstrating real-world performance, and that two to three converted buses can be had for the price of one new electric bus. Mike Menyhart, chief strategy officer at SEA Electric says, “The secondary use of school buses fitted with all-electric drivetrains makes a lot of sense. It keeps costs down, opens up considerable availability, creates green jobs right here in the US, all while making a difference in the environment and the health of the communities we serve.”

According to John McKinney, CEO of Midwest Transport Equipment, the partnership with SEA Electric will ensure that it can respond more quickly to customers’ needs as policies like California's 2035 school-bus mandate accelerate demand in key markets. “As the industry moves towards zero emissions we are positioned well with our SEA Electric partnership to be a leader of the electrification movement.”

According to Nick Casas, SEA Electric will plans to expand it operations to the UK soon, and intends to do business in six countries in Europe, including Germany, in the years to come. SEA says it will have delivered more than 500 electric commercial vehicles in 2021 and plans to put more than 15,000 electric vehicles on the road by the end of 2023. Just a few weeks ago, SEA Electric announced an order for 1,150 electric trucks based on the Toyota Hino cargo van for the GATR company of California, highlighting truck fleet power needs that utilities must plan for today.

Electric school buses make so much sense. No fumes to fog young brains, lower maintenance costs, and lower fuel costs are all pluses, especially as bus depot charging hubs scale across markets, adding resilience. Extending the service life of an existing bus by a decade will obviously pay big dividends for school bus fleet operators like MTE. It’s a win/win/win situation for all concerned, with the possible exception of diesel mechanics. But the upside there is they can be retrained in how to maintain electric vehicles, a skill that will be in increasing demand as the EV revolution picks up speed.

 

Related News

View more

Massachusetts Issues Energy Storage Solicitation Offering $10M

Massachusetts Energy Storage Solicitation offers grants and matching funds via MassCEC and DOER for grid-connected, behind-the-meter projects, utility partners, and innovative business models, targeting 600 MW, clean energy leadership, and ratepayer savings.

 

Key Points

MassCEC and DOER matching-fund program for grid-connected storage pilots, advancing innovation and ratepayer savings.

✅ $100k-$1.25M matching funds; 50% cost share required

✅ Grid-connected, utility-partnered and behind-the-meter eligible

✅ 10-15 awards; proposals due June 9; install within 18 months

 

Massachusetts released a much-awaited energy storage solicitation on Thursday offering up to $10 million for new projects.

Issued by the Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER), the solicitation makes available $100,000 to $1.25 million in matching funds for each chosen project.

The solicitation springs from a state report issued last year that found Massachusetts could save electricity ratepayers $800 million by incorporating 600 MW of energy storage projects. The state plans to set a specific energy storage goal, now the subject of a separate proceeding before the DOER.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state plans to allot about half of the money from the energy storage solicitation to projects that include utility partners. Both distribution scale and behind-the-meter projects, including net-zero buildings among others, will be considered, but must be grid connected.

The solicitation seeks innovative business models that showcase the commercial value of energy storage in light of the specific local energy challenges and opportunities in Massachusetts.

Projects also should demonstrate multiple benefits/value streams to ratepayers, the local utility, or wholesale market.

And finally, projects should help uncover market and regulatory issues as well as monetization and financing barriers.

The state anticipates teams forming to apply for the grants. Teams may include public and private entities and are are encouraged to include the local utility.

Proposals are due June 9. The state expects to notify winners September 8, with contracts issued within the following month. Projects must be installed within 18 months of receiving contracts.

 

 

Related News

View more

Canada and British Columbia invest in green energy solutions

British Columbia Green Infrastructure Funding expands CleanBC Communities Fund projects, from EV charging stations to sewage heat recovery, delivering low-carbon heat in Vancouver and supporting Indigenous communities and COVID-19 recovery through the Green Infrastructure Stream.

 

Key Points

A joint federal-provincial program backing CleanBC to fund EV chargers, sewage heat recovery, and low-carbon heat.

✅ Funds EV charging across Vancouver Island and northern B.C.

✅ Expands sewage heat recovery via Vancouver's NEU

✅ Joint federal, provincial, local, and Indigenous partners

 

The governments of Canada and British Columbia are investing in infrastructure to get projects under way that meet people's needs, address the effects of the COVID-19 pandemic, and help communities restart their economies.  

Strategic investments in green infrastructure are key to creating clean healthy communities, making life more affordable, and building a clean electricity future for Canada.

Today, the Honourable Jonathan Wilkinson, Minister of Environment and Climate Change and Member of Parliament for North Vancouver, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities, and the Honourable George Heyman, B.C. Minister of Environment and Climate Change Strategy, announced funding for 11 projects, alongside initiatives like the province's hydrogen project, to help B.C. communities save energy and reduce pollution.  

In Vancouver, the Sewage Heat Recovery Expansion Project will increase the capacity of the Neighbourhood Energy Utility (NEU) to provide buildings in the False Creek area with low-carbon heat and hot water. The NEU recycles waste heat and uses a mix of renewable and conventional natural gas to reduce harmful emissions.

Funding is also going towards expanding the network of Level-2 electric vehicle (EV) charging stations across the province. More than 80 new stations will be installed in communities across mid-Vancouver Island, as well as northern and central B.C., making clean transportation options, supported by incentives for zero-emission vehicles, more viable for more people.

These, along with the other projects announced today, will create jobs and strengthen local economies now while promoting sustainable growth and residents' long-term health and well-being.

The Government of Canada is investing more than $28.5 million in these projects through the Green Infrastructure Stream (GIS) of the Investing in Canada plan, and local and Indigenous communities are contributing more than $13 million. The Government of British Columbia is contributing nearly $18 million through the CleanBC Communities Fund, part of the federal Investing in Canada plan's Green Infrastructure Stream, which also supports rebates for home and workplace charging initiatives.

Quotes

"Expanding electric vehicle charging stations across Vancouver Island will make clean transportation more viable for more people. Encouraging green energy solutions like this is essential to building strong resilient communities. Canada's Infrastructure plan invests in thousands of projects, creates jobs across the country, and builds stronger communities."

The Honourable Jonathan Wilkinson, Minister of Environment and Climate Change and Member of Parliament for North Vancouver, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities

"This investment through the Green Infrastructure Stream is a great example of how federal partnerships with all levels of government can ensure a sustainable future for generations. Amidst COVID-19, we can rebuild better with a green recovery."

Hedy Fry, Member of Parliament for Vancouver Centre

"People deserve access to clean air, clean energy and clean economic opportunities and by investing in new clean infrastructure projects, we will reduce pollution, build better buildings, improve transportation options with EV charger rebates and make life more affordable for people. By working together with the City of Vancouver and other B.C. communities, along with the federal government, we're helping build back a stronger, better B.C. for everyone following the impacts of COVID-19 through our CleanBC plan."

The Honourable George Heyman, Minister of Environment and Climate Change Strategy Government

"This is an important investment when it comes to addressing the climate emergency our city is facing. Nearly 60 per cent of carbon pollution created in Vancouver comes from burning natural gas to heat our buildings and provide hot water. This investment from our provincial and federal partners will help us greatly expand the Neighbourhood Energy Utility to reduce our carbon footprint even further."

His Worship, Kennedy Stewart, Mayor of Vancouver

Quick facts

Through the Investing in Canada Plan, the Government of Canada is investing more than $180 billion over 12 years in public transit projects, green infrastructure, social infrastructure, trade and transportation routes, and Canada's rural and northern communities.
The Government of Canada has invested $4.2 billion in 525 infrastructure projects across British Columbia under the Investing in Canada plan.
To support Canadians and communities during the COVID-19 pandemic, a new stream has been added to the over $33-billion Investing in Canada Infrastructure Program to help fund pandemic-resilient infrastructure. Existing program streams have also been adapted to include more eligible project categories.
The new Canada Healthy Communities Initiative will provide up to $31 million in existing federal funding to support communities as they deploy innovative ways to adapt spaces and services to respond to immediate and ongoing needs arising from COVID-19 over the next two years.
The 11 projects are part of the first intake of the CleanBC Communities Fund, which committed more than $63 million in joint federal-provincial funding. Additional projects from the first intake will be announced soon.
The second intake for the CleanBC Communities Fund is now open for applications from local governments, Indigenous groups, not-for-profits and for-profit organizations in B.C.

 

Related News

View more

Invenergy and GE Renewable Energy complete largest wind project constructed in North America

North Central Energy Facilities deliver 1,484 MW of renewable power in Oklahoma, uniting Invenergy, GE Renewable Energy, and AEP with the Traverse, Maverick, and Sundance wind farms, 531 turbines, grid-scale clean energy, and regional decarbonization.

 

Key Points

A 1,484 MW trio of Oklahoma wind farms by Invenergy with GE turbines, owned by AEP to supply regional customers.

✅ 1,484 MW capacity from 531 GE 2 MW platform turbines

✅ Largest single-phase wind farm: 998 MW Traverse

✅ Owned by AEP subsidiaries SWEPCO and PSO

 

Invenergy, the largest privately held global developer, owner and operator of sustainable energy solutions and GE Renewable Energy, today announced commercial operations for the 998-megawatt Traverse Wind Energy Center, the largest wind farm constructed in a single phase in North America, reflecting broader growth such as Enel's 450 MW project announced recently.

Located in north central Oklahoma, Traverse joins the operational 199-megawatt Sundance Wind Energy Center and the 287-megawatt Maverick Wind Energy Center, as the last of three projects developed by Invenergy for American Electric Power (AEP) to reach commercial operation, amid investor activity like WEC Energy's Illinois stake in wind assets this year. These projects make up the North Central Energy Facilities and have 531 GE turbines with a combined capacity of 1,484 megawatts, making them collectively among the largest wind energy facilities globally, even as new capacity comes online such as TransAlta's 119 MW addition in the US.

"This is a moment that Invenergy and our valued partners at AEP, GE Renewable Energy, and the gracious members of our home communities in Oklahoma have been looking forward to," said Jim Shield, Senior Executive Vice President and Development Business Leader at Invenergy, reflecting broader momentum as projects like Building Energy project begin operations nationwide. "With the completion of Traverse and with it the North Central Energy Facilities, we're proud to further our commitment to responsible, clean energy development and to advance our mission to build a sustainable world."

The North Central Energy Facilities represent a $2 billion capital investment in north central Oklahoma, mirroring Iowa wind investments that spur growth, directly investing in the local economy through new tax revenues and lease payments to participating landowners and will generate enough electricity to power 440,000 American homes.

"GE was honored to work with Invenergy on this milestone wind project, continuing our long-standing partnership," said Steve Swift, Global Commercial Leader for GE's Onshore Wind business, a view reinforced by projects like North Carolina's first wind farm coming online. "Wind power is a key element of driving decarbonization, and a dependable and affordable energy option here in the US and around the world. GE's 2 MW platform turbines are ideally suited to bring reliable and sustainable renewable energy to the region for many years to come."

AEP's subsidiaries Southwestern Electric Power Company (SWEPCO) and Public Service Company of Oklahoma (PSO) assumed ownership of the three wind farms upon start of commercial operations, alongside emerging interstate delivery efforts like Wyoming-to-California wind plans, to serve their customers in Arkansas, Louisiana and Oklahoma.

 

Related News

View more

Vancouver seaplane airline completes first point-to-point flight with prototype electric aircraft

Harbour Air Electric Seaplane completes a point-to-point test flight, showcasing electric aircraft innovation, zero-emission short-haul travel, H55 battery technology, and magniX propulsion between Vancouver and Victoria, advancing sustainable aviation and urban air mobility.

 

Key Points

Retrofitted DHC-2 Beaver testing zero-emission short-haul flights with H55 batteries and magniX propulsion.

✅ 74 km in 24 minutes, Vancouver to Victoria test route

✅ H55 battery pack and magniX electric motor integration

✅ Aims to certify short-haul, zero-emission commercial service

 

A seaplane airline in Vancouver says it has achieved a new goal in its development of an electric aircraft.

Harbour Air Seaplanes said in a release about its first electric passenger flights timeline that it completed its first direct point-to-point test flight on Wednesday by flying 74 kilometres in 24 minutes from a terminal on the Fraser River near Vancouver International Airport to a bay near Victoria International Airport.

"We're really excited about this project and what it means for us and what it means for the electric aviation revolution to be able to keep pushing that forward," said Erika Holtz, who leads the project for the company.

Harbour Air, founded in 1982, uses small propeller planes to fly commercial flights between the Lower Mainland, Seattle, Vancouver Island, the Gulf Islands and Whistler.

In the last few years it has turned its attention to becoming a leader in green urban mobility, as seen with electric ships on the B.C. coast, which would do away with the need to burn fossil fuels, a major contributor to climate change, for air travel.

In December 2019, a pilot flew one of Harbour Air's planes — a more than 60-year-old DHC-2 de Havilland Beaver floatplane that had been outfitted with a Seattle-based company's electric propulsion system, magniX — for three minutes over Richmond.

Since then, the company has continued to fine-tune the plane and conduct test flights in order to meet federally regulated criteria for Canada's first commercial electric flight, showing it can safely fly with passengers.

Harbour Air's new fully electric seaplane flew over the Fraser River for three minutes today in its debut test flight.
Holtz said flying point-to-point this week was a significant step forward.

"Having this electric aircraft be able to prove that it can do scheduled flights, it moves us that step closer to being able to completely convert our entire fleet to electric," she said.

All the test flights so far have been made with only a pilot on board.

Vancouver seaplane company to resume test flights with electric commercial airplane
The ePlane will stay in Victoria for the weekend as part of an open house put on by the B.C. Aviation Museum before returning to Richmond.

A yellow seaplane flies over a body of water with the Vancouver skyline visible in the background.
A prototype all-electric floatplane made by B.C.'s Harbour Air Seaplanes on a test flight in Vancouver in 2021. (Harbour Air Seaplanes)
Early in Harbour Air's undertaking to develop an all-electric airplane, experts who study the aviation sector said Harbour Air would have to find a way to make the plane light enough to carry heavy lithium batteries and passengers, without exceeding weight limits for the plane.

Werner Antweiler, a professor of economics at UBC's Sauder School of Business who studies the commercialization of novel technologies around mobility, said in 2021 that Harbour Air's challenge would be proving to regulators that the plane was safe to fly and the batteries powerful enough to complete short-haul flights with power to spare.

In April 2021 Harbour Air partnered with Swiss company H55 to incorporate its battery technology, reflecting ongoing research investment to limit weight and improve the distance the plane could fly.

Shawn Braiden, a vice-president with Harbour Air, said the company is trying to get as much power as possible from the lightest possible batteries, a challenge shared by BC Ferries' hybrid ships as well. 

"It's a balancing act," he said.

In December, Harbour Air announced it had begun work on converting a second de Havilland Beaver to an all-electric airplane, copying the original prototype.

The plan is to retrofit version two of the ePlane with room for a pilot plus three passengers. If certified for commercial use, it could become one of the first all-electric commercial passenger planes operating in the world.

Seth Wynes, a post-doctoral fellow at Concordia University who has studied how to de-carbonize the aviation industry, said Harbour Air's progress on its eplane project won't solve the pollution problem of long-haul flights, but could inspire other short-haul airlines to follow suit, alongside initiatives like electric ferries in B.C. that expand low-carbon transportation. 

"It's also just really helpful to pilot these technologies and get them going where they can be scaled up and used in a bunch of different places around the world," he said. "So that's why Harbour Air making progress on this front is exciting."

 

Related News

View more

Green energy in 2023: Clean grids, Alberta, batteries areas to watch

Canada 2023 Clean Energy Outlook highlights decarbonization, renewables, a net-zero grid by 2035, hydrogen, energy storage, EV mandates, carbon pricing, and critical minerals, aligning with IRA incentives and provincial policies to accelerate the transition.

 

Key Points

A concise overview of Canada's 2023 path to net-zero: renewables, clean grids, storage, EVs, and hydrogen.

✅ Net-zero electricity regulations target 2035

✅ Alberta leads PPAs and renewables via deregulated markets

✅ Tax credits boost storage, hydrogen, EVs, and critical minerals

 

The year 2022 may go down as the most successful one yet for climate action. It was marked by monumental shifts in energy policy from governments, two COP meetings and heightened awareness of the private sector's duty to act.

In the U.S., the Inflation Reduction Act (IRA) was the largest federal legislation to tackle climate change, injecting $369 billion of tax credits and incentives for clean energy, Biden's EV agenda and carbon capture, energy storage, energy efficiency and research.

The European Union accelerated its green policies to transition away from fossil fuels and overhauled its carbon market. China and India made strides on clean energy and strengthened climate policies. The International Energy Agency made its largest revision yet as renewables continued to proliferate.

The U.S. ratified the Kigali Amendment, one of the strongest global climate policies to date.

Canada was no different. The 2022 Fall Economic Statement was announced to respond to the IRA, offering an investment tax credit for renewables, clean technology and green hydrogen alongside the Canada Growth Fund. The federal government also proposed a 2035 deadline for clean electrical grids and a federal zero-emissions vehicle (ZEV) sales mandate for light-duty vehicles.

With the momentum set, more action is promised in 2023: Canadian governments are expected to unveil firmer details for the decarbonization of electricity grids to meet 2035 deadlines; Alberta is poised to be an unlikely leader in clean energy.

Greater attention will be put on energy storage and critical minerals. Even an expected economic downturn is unlikely to stop the ball that is rolling.

Shane Doig, the head of energy and natural resources at KPMG in Canada, said events in 2022 demonstrated the complexity of the energy transformation and opened “a more balanced conversation around how Canada can transition to a lower carbon footprint, whilst balancing the need for affordable, readily available electricity.”


Expect further developments on clean electricity
2023 shapes up as a crucial year for Canada’s clean electricity grid.

The federal government announced it will pursue a net-zero electricity grid by 2035 under the Clean Electricity Regulations (CER) framework.

It requires mass renewable and clean energy adoption, phasing out fossil fuel electricity generation, rapid electrification and upgrading transmission and storage while accommodating growth in electricity demand.

The first regulations for consultation are expected early in 2023. The plans will lay out pollution regulations and costs for generating assets to accelerate clean energy adoption, according to Evan Pivnick, the clean energy program manager of Clean Energy Canada.

The Independent Energy System Operator of Ontario (IESO) recently published a three-part report suggesting a net-zero conversion for Ontario could cost $400 billion over 25 years, even as the province weighs an electricity market reshuffle to keep up with increasing electricity demand.

Power Utility released research by The Atmospheric Fund that suggests Ontario could reach a net-zero grid by 2035 across various scenarios, despite ongoing debates about Ontario's hydro plan and rate design.

Dale Beguin, executive vice president at the Canadian Climate Institute, said in 2023 he hopes to see more provincial regulators and governments send “strong signals to the utilities” that a pathway to net-zero is realistic.

He recounted increasing talk from investors in facilities such as automotive plants and steel mills who want clean electricity guarantees before making investments. “Clean energy is a comparative advantage,” he said, which puts the imperative on organizations like the IESO to lay out plans for bigger, cleaner and flexible grids.

Beguin and Pivnick said they are watching British Columbia closely because of a government mandate letter setting a climate-aligned energy framework and a new mandate for the British Columbia Utilities Commission. Pivnick said there may be lessons to be drawn for other jurisdictions.

 

Alberta’s unlikely rise as a clean energy leader
Though Alberta sits at the heart of Canada’s oil and gas industry and at the core of political resistance to climate policy, it has emerged as a front runner in renewables adoption.

Billion of dollars for wind and solar projects have flowed into Alberta, as the province charts a path to clean electricity with large-scale projects.

Pivnick said an “underappreciated story” is how Alberta leaned into renewables through its “unique market.” Alberta leads in renewables and power purchase agreements because of its deregulated electricity market.

Unlike most provinces, Alberta enables companies to go directly to solar and wind developers to strike deals, a model reinforced under Kenney's electricity policies in recent years, rather than through utilities. It incentivizes private investment, lowers costs and helps meet increasing demand, which Nagwan Al-Guneid, the director of the Business Renewables Centre - Canada at the Pembina Institute, said is “is the No. 1 reason we see this boom in renewables in Alberta.”

Beguin noted Alberta’s innovative ‘reverse auctions,’ where the province sets a competitive bidding process to provide electricity. It ended up making electricity “way cheaper” due to the economic competitiveness of renewables, while Alberta profited and added clean energy to its grid.

In 2019, the Business Renewables Centre-Canada established a target of 2 GW of renewable energy deals by 2025. The target was exceeded in 2022, which led to a revised goal for 10 GW of renewables by 2030.

Al-Guneid wants to see other jurisdictions help more companies buy renewables. She does not universally prescribe deregulation, however, as other mechanisms such as sleeving exist.

Alberta will update its industrial carbon pricing in 2023, requiring large emitters to pay $65 per tonne of carbon dioxide. The fee climbs $15 per tonne each year until it reaches $175 per tonne in 2030. Al-Guneid said as the tax increases, demand for renewable energy certificates will also increase in Alberta.

Pivnick noted Alberta will have an election in 2023, which could have ramifications for energy policy.

 

Batteries and EV leadership
Manufacturing clean energy equipment, batteries and storage requires enormous quantities of minerals. With the 2022 Fall Economic Statement and the Critical Minerals Strategy, Canada is taking important steps to lead on this front.

Pivnick pointed to battery supply chain investments in Ontario and Quebec as part of Canada’s shift from “a fuel-based (economy) to a materials-based economy” to provide materials necessary for wind turbines and solar panels. The Strategy showed an understanding Canada has a major role to meet its allies’ needs for critical minerals, whether it’s the resources or supply chains.

There is also an opportunity for Canada to forge ahead on energy storage. The Fall Economic Statement proposes a 30 per cent tax credit for investments into energy storage. Pivnick suggested Canada invest further into research and development to explore innovations like green hydrogen and pump storage.

Doig believes Canada is “well poised” for batteries, both in terms of the technology and sustainable mining of minerals like cobalt, lithium and copper. He is bullish for Canada’s electrification based on its clean energy use and increased spending on renewables and energy storage.

He said the federal ZEV mandate will drive increased demand for the power, utilities, and oil and gas industries to respond.

The majority of gas stations, which are owned by the nation’s energy industry, will need to be converted into EV charging stations.

 

Offsetting a recession 
One challenge will be a poor economic forecast in the near term. A short "technical recession" is expected in 2023.

Inflation remains stubbornly high, which has forced the Bank of Canada to hike interest rates. The conditions will not leave any industry unscathed, but Doig said Canada's decarbonization is unlikely to be halted.

“Whilst a recession would slow things down, the concern around energy security definitely helps offset that concern,” he said.

Amid rising trade frictions and tariff threats, energy security is top of mind for governments and private organizations, accelerating the shift to renewables.

Doig said there is a general feeling a recession would be short-lived, meaning it would be unlikely to impact long-term projects in hydrogen, liquified natural gas, carbon capture and wind and solar.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified