Solar Is Now 33% Cheaper Than Gas Power in US, Guggenheim Says


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

US Renewable Energy Cost Advantage signals cheaper utility-scale solar and onshore wind versus natural gas, with LCOE declines, tax credits, and climate policy cutting electricity costs for utilities and grids across the United States.

 

Key Points

Cheaper solar and wind than natural gas, driven by LCOE drops, tax credits, and policy, lowering US electricity costs.

✅ Utility-scale solar is about one-third cheaper than gas

✅ Onshore wind costs roughly 44 percent less than natural gas

✅ Policy and tax credits accelerate renewables and cut power prices

 

Natural gas’s dominance as power-plant fuel in the US is fading fast as the cost of electricity generated by US wind and solar projects tumbles and as wind and solar surpass coal in the generation mix, according to Guggenheim Securities.

Utility-scale solar is now about a third cheaper than gas-fired power, while onshore wind is about 44% less expensive, Guggenheim analysts led by Shahriar Pourreza said Monday in a note to clients, a dynamic consistent with falling wholesale power prices in several markets today. 

“Solar and wind now present a deflationary opportunity for electric supply costs,” the analysts said, which “supports the case for economic deployment of renewables across the US,” as the country moves toward 30% wind and solar and one-fourth of total generation in the near term.

Gas prices have surged amid a global supply crunch after Russia’s invasion of Ukraine, while tax-credit extensions and sweeping US climate legislation have brought down the cost of wind and solar, even as renewables surpassed coal in 2022 nationwide. Renewables-heavy utilities like NextEra Energy Inc. and Allete Inc. stand to benefit, and companies that can boost spending on wind and solar, as wind, solar and batteries dominate the 2023 pipeline, will also see faster growth, Guggenheim said.
 

Related News

CO2 output from making an electric car battery isn't equal to driving a gasoline car for 8 years

EV Battery Manufacturing Emissions debunk viral claims with lifecycle analysis, showing lithium-ion production CO2 depends on grid mix and is offset by zero tailpipe emissions and renewable-energy charging over typical vehicle miles.

 

Key Points

EV lithium-ion pack production varies by grid mix; ~1-2 years of driving, then offset by zero tailpipe emissions.

✅ Battery CO2 depends on electricity mix and factory efficiency.

✅ 75 kWh pack ~4.5-7.5 t CO2; not equal to 8 years of driving.

✅ Lifecycle analysis: EVs cut GHG vs gas, especially with renewables.

 

Electric vehicles are touted as an environmentally friendly alternative to gasoline powered cars, but one Facebook post claims that the benefits are overblown, despite fact-checks of charging math to the contrary, and the vehicles are much more harmful to the planet than people assume.

A cartoon posted to Facebook on April 29, amid signs the EV era is arriving in many markets, shows a car in one panel with "diesel" written on the side and the driver thinking "I feel so dirty." In another panel, a car has "electric" written on its side with the driver thinking "I feel so clean."

However, the electric vehicle is shown connected to what appears to be a factory that’s blowing dark smoke into the air.

Below the cartoon is a caption that claims "manufacturing the battery for one electric car produces the same amount of CO2 as running a petrol car for eight years."

This isn’t a new line of criticism against electric vehicles, and reflects ongoing opinion on the EV revolution in the media. Similar Facebook posts have taken aim at the carbon dioxide produced in the manufacturing of electric cars — specifically the batteries — to make the case that zero emissions vehicles aren’t necessarily clean.

Full electric vehicles require a large lithium-ion battery to store energy and power the motor that propels the car, according to Insider. The lithium-ion battery packs in an electric car are chemically similar to the ones found in cell phones and laptops.

Because they require a mix of metals that need to be extracted and refined, lithium-ion batteries take more energy to produce than the common lead-acid batteries used in gasoline cars to help start the engine.

How much CO2 is emitted in the production depends on where the lithium-ion battery is made — or specifically, how the electricity powering the factory is generated, and national electricity profiles such as Canada's 2019 mix help illustrate regional differences — according to Zeke Hausfather, a climate scientist and director of climate and energy at the Breakthrough Institute, an environmental research think tank.

Producing a 75 kilowatt-hour battery for a Tesla Model 3, considered on the larger end of batteries for electric vehicles, would result in the emission of 4,500 kilograms of CO2 if it was made at Tesla's battery factory in Nevada. That’s the emissions equivalent to driving a gas-powered sedan for 1.4 years, at a yearly average distance of 12,000 miles, Hausfather said.

If the battery were made in Asia, manufacturing it would produce 7,500 kg of carbon dioxide, or the equivalent of driving a gasoline-powered sedan for 2.4 years — but still nowhere near the eight years claimed in the Facebook post. Hausfather said the larger emission amount in Asia can be attributed to its "higher carbon electricity mix." The continent relies more on coal for energy production, while Tesla’s Nevada factory uses some solar energy. 

"More than half the emissions associated with manufacturing the battery are associated with electricity use," Hausfather said in an email to PolitiFact. "So, as the electricity grid decarbonizes, emissions associated with battery production will decline. The same is not true for sedan tailpipe emissions."

The Facebook post does not mention the electricity needs and CO2 impact of factories that build gasoline or diesel cars and their components. 

Another thing the Facebook post omits is that the CO2 emitted in the production of the battery can be offset over a short time in an electric car by the lack of tailpipe emissions when it’s in operation. 

The Union of Concerned Scientists found in a 2015 report that taking into account electricity sources for charging, which have become greener in all states since then, an electric vehicle ends up reducing greenhouse gas emissions by about 50% compared with a similar size gas-powered car.

A midsize vehicle completely negates the carbon dioxide its production emits by the time it travels 4,900 miles, according to the report. For full size cars, it takes 19,000 miles of driving.

The U.S. Energy Department’s Office of Energy Efficiency and Renewable Energy also looked at the life cycle of electric vehicles — which includes a car’s production, use and disposal — and concluded they produce less greenhouse gases and smog than gasoline-powered vehicles, a conclusion consistent with independent analyses from consumer and energy groups.

The agency also found drivers could further lower CO2 emissions by charging with power generated by a renewable energy source, and drivers can also save money in the long run with EV ownership. 

Our ruling
A cartoon shared on Facebook claims the carbon dioxide emitted from the production of one electric car battery is the equivalent to driving a gas-powered vehicle for eight years.

The production of lithium-ion batteries for electric cars emits a significant amount of carbon dioxide, but nowhere near the level claimed in the cartoon. The emissions from battery production are equivalent to driving a gasoline car for one or two years, depending on where it’s produced, and those emissions are effectively offset over time by the lack of tailpipe emissions when the car is on the road. 

We rate this claim Mostly False.    

 

Related News

View more

Electric-ready ferry for Kootenay Lake to begin operations in 2023

Kootenay Lake Electric-Ready Ferry advances clean technology in BC, debuting as a hybrid diesel-electric vessel with shore power conversion planned, capacity and terminal upgrades to cut emissions, reduce wait times, and modernize inland ferry service.

 

Key Points

Hybrid diesel-electric ferry replacing MV Balfour, boosting capacity, and aiming for full electric conversion by 2030.

✅ Doubles vehicle capacity; runs with MV Osprey 2000 in summer

✅ Hybrid-ready systems installed; shore power to enable full electric

✅ Terminal upgrades at Balfour and Kootenay Bay improve reliability

 

An electric-ready ferry for Kootenay Lake is scheduled to begin operations in 2023, aligning with first electric passenger flights planned by Harbour Air, the province announced in a Sept. 3 press release.

Construction of the $62.9-million project will begin later this year, which will be carried out by Western Pacific Marine Ltd., reflecting broader CIB-supported ferry investments in B.C. underway.

“With construction beginning here in Canada on the new electric-ready ferry for Kootenay Lake, we are building toward a greener future with made-in-Canada clean technology,” said Catherine McKenna, the federal minister of infrastructure and communities.

The new ferry — which is designed to provide passengers with a cleaner vessel informed by advances in electric ships and more accessibility — will replace and more than double the capacity of the MV Balfour, which will be retired from service.

“This is an exciting milestone for a project that will significantly benefit the Kootenay region as a whole,” said Michelle Mungall, MLA for Nelson-Creston. “The new, cleaner ferry will move more people more efficiently, improving community connections and local economies.”

Up to 55 vehicles can be accommodated on the new ship, and will run in tandem with the larger MV Osprey 2000 to help reduce wait times, a strategy also seen with Washington State Ferries hybrid-electric upgrades, during the summer months.

“The vessel will be fully converted to electric propulsion by 2030, once shore power is installed and reliability of the technology advances for use on a daily basis, as demonstrated by Harbour Air's electric aircraft testing on B.C.'s coast,” said the province.

They noted that they are working to electrify their inland ferry fleet by 2040, as part of their CleanBC initiative.

“The new vessel will be configured as a hybrid diesel-electric with all the systems, equipment and components for electric propulsion,” they said.

Other planned projects include upgrades to the Balfour and Kootenay Bay terminals, and minor dredging has been completed in the West Arm.

 

Related News

View more

Renewables became the second-most prevalent U.S. electricity source in 2020

2020 U.S. Renewable Electricity Generation set a record as wind, solar, hydro, biomass, and geothermal produced 834 billion kWh, surpassing coal and nuclear, second only to natural gas in nationwide power output.

 

Key Points

The record year when renewables made 834 billion kWh, topping coal and nuclear in U.S. electricity.

✅ Renewables supplied 21% of U.S. electricity in 2020

✅ Coal output fell 20% y/y; nuclear slipped 2% on retirements

✅ EIA forecasts renewables rise in 2021-2022; coal rebounds

 

In 2020, renewable energy sources (including wind, hydroelectric, solar, biomass, and geothermal energy) generated a record 834 billion kilowatthours (kWh) of electricity, or about 21% of all the electricity generated in the United States. Only natural gas (1,617 billion kWh) produced more electricity than renewables in the United States in 2020. Renewables surpassed both nuclear (790 billion kWh) and coal (774 billion kWh) for the first time on record. This outcome in 2020 was due mostly to significantly less coal use in U.S. electricity generation and steadily increased use of wind and solar generation over time, amid declining consumption trends nationwide.

In 2020, U.S. electricity generation from coal in all sectors declined 20% from 2019, while renewables, including small-scale solar, increased 9%. Wind, currently the most prevalent source of renewable electricity in the United States, grew 14% in 2020 from 2019, and the EIA expects solar and wind to be larger sources in summer 2022, reflecting continued growth. Utility-scale solar generation (from projects greater than 1 megawatt) increased 26%, and small-scale solar, such as grid-connected rooftop solar panels, increased 19%, while early 2021 January power generation jumped year over year.

Coal-fired electricity generation in the United States peaked at 2,016 billion kWh in 2007 and much of that capacity has been replaced by or converted to natural gas-fired generation since then. Coal was the largest source of electricity in the United States until 2016, and 2020 was the first year that more electricity was generated by renewables and by nuclear power than by coal (according to our data series that dates back to 1949). Nuclear electric power declined 2% from 2019 to 2020 because several nuclear power plants retired and other nuclear plants experienced slightly more maintenance-related outages.

We expect coal-fired generation to increase in the United States during 2021 as natural gas prices continue to rise and as coal becomes more economically competitive. Based on forecasts in our Short-Term Energy Outlook (STEO), we expect coal-fired electricity generation in all sectors in 2021 to increase 18% from 2020 levels before falling 2% in 2022. We expect U.S. renewable generation across all sectors to increase 7% in 2021 and 10% in 2022, and in 2021, non-fossil fuel sources accounted for about 40% of U.S. electricity. As a result, we forecast coal will be the second-most prevalent electricity source in 2021, and renewables will be the second-most prevalent source in 2022. We expect nuclear electric power to decline 2% in 2021 and 3% in 2022 as operators retire several generators.

 

Related News

View more

Toronto to start trial run of 'driverless' electric vehicle shuttles

Toronto Olli 2.0 Self-Driving Shuttle connects West Rouge to Rouge Hill GO with autonomous micro-transit. Electric shuttle pilot by Local Motors and Pacific Western Transportation, funded by Transport Canada, features accessibility, TTC and Metrolinx support.

 

Key Points

An autonomous micro-transit pilot linking West Rouge to Rouge Hill GO, with accessibility and onboard staff.

✅ Last-mile link: West Rouge to Rouge Hill GO

✅ Accessible: ramp, wheelchair securement, A/V announcements

✅ Operated with attendants; funded by Transport Canada

 

The city of Toronto, which recently opened an EV education centre to support adoption, has approved the use of a small, self-driving electric shuttle vehicle that will connect its West Rouge neighbourhood to the Rouge Hill GO station, a short span of a few kilometres.

It’s called the Olli 2.0, and it’s a micro-shuttle with service provided by Local Motors, in partnership with Pacific Western Transportation, as the province makes it easier to build EV charging stations to support growing demand.

The vehicle is designed to hold only eight people, and has an accessibility ramp, a wheelchair securement system, audio and visual announcements, and other features for providing rider information, aligning with transit safety policies such as the TTC’s winter lithium-ion device restrictions across the system.

“We are continuing to move our city forward on many fronts including micro-transit as we manage the effects of COVID-19,” said Mayor John Tory. “This innovative project will provide valuable insight, while embracing innovation that could help us build a better, more sustainable and equitable transportation network.”

At the provincial level, the public EV charging network has faced delays, underscoring infrastructure challenges.


Although the vehicle is “self-driving,” it will still require two people onboard for every trip during the six- to 12-month trial; those people will be a certified operator from Pacific Western Transportation, and either a TTC ambassador from an agency introducing battery electric buses across its fleet, or a Metrolinx customer service ambassador.

Funding for the program comes from Transport Canada, as part of a ten-year pilot program to test automated vehicles on Ontario’s roads that was approved in 2016, and it complements lessons from the TTC’s largest battery-electric bus fleet as well as emerging vehicle-to-grid programs that engage EV owners.

 

Related News

View more

'Consumer Reports' finds electric cars really do save money in the long run

Electric Vehicle Ownership Costs include lower maintenance, repair, and fuel expenses; Consumer Reports shows BEV and PHEV TCO beats ICE over 200,000 miles, with per-mile savings compounding through electricity prices and reduced service.

 

Key Points

Lifetime EV expenses, typically lower than ICE, due to cheaper electricity, reduced maintenance, and fewer repairs.

✅ BEV: $0.012/mi to 50k; $0.028/mi after; vs ICE up to $0.06/mi

✅ PHEV: $0.021/mi to 50k; $0.031/mi after; still below ICE

✅ Savings increase over 200k miles from fuel and service reductions

 

Electric vehicles are a relatively new technology, and the EV age is arriving ahead of schedule today. Even though we technically saw the first battery-powered vehicles more than 100 years ago, they haven’t really become viable transportation in the modern world until recently, and they are greener than ever in all 50 states as the grid improves.

As viable as they may now be, however, it still seems they’re unarguably more expensive than their conventional internal-combustion counterparts, prompting many to ask whether it’s time to buy an electric car today. Well, until now.

Lower maintenence costs and the lower price of electricity versus gasoline (see the typical cost to charge an electric vehicle in most regions) actually make electric cars much cheaper in the long run, despite their often higher purchase price, according to a new survey by Consumer Reports. The information was collected using annual reliability surveys conducted by CR in 2019 and 2020.

In the first 50,000 miles (80,500 km), battery electric vehicles cost just US$0.012 per mile for maintenence and repairs, while plug-in hybrid models bump that number up to USD$0.021. Compare these numbers to the typical USD$0.028 cost for internal combustion vehicles, and it becomes clear the more you drive, the more you will save, and across the U.S. plug-ins logged 19 billion electric miles in 2021 to prove the point. After 50,000 miles, the costs for BEV and PHEV vehicles is US$0.028 and US$0.031 respectively, while ICE vehicles jump to US$0.06 per mile.

To put it more practically, if you chose to buy a Model 3 instead of a BMW 330i, you’d see a total US$17,600 in savings over the lifetime of the vehicle, aligning with evidence that EVs are better for the planet and your budget as well, based on average driving. In the SUV sector, buying a Tesla Model Y instead of a Lexus crossover would save US$13,400 (provided the former’s roof doesn’t fly off) and buying a Nissan Leaf over a Honda Civic would save US$6,000 over the lifetime of the vehicles.

CR defines the vehicle’s “lifetime” as 200,000 miles (320,000 km). Ergo the final caveat: while it sounds like driving electric means big savings, you might only see those returns after quite a long period of ownership, though some forecasts suggest that within a decade adoption will be nearly universal for many drivers.

 

Related News

View more

4 European nations to build North Sea wind farms

North Sea Offshore Wind Farms will deliver 150 GW by 2050 as EU partners scale renewable energy, offshore turbines, grid interconnectors, and REPowerEU goals to cut emissions, boost energy security, and reduce Russian fossil dependence.

 

Key Points

A joint EU initiative to build 150 GW of offshore wind by 2050, advancing REPowerEU, decarbonization, and energy security.

✅ Targets at least 150 GW of offshore wind by 2050

✅ Backed by Belgium, Netherlands, Germany, and Denmark

✅ Aligns with REPowerEU, grid integration, and emissions cuts

 

Four European Union countries plan to build North Sea wind farms capable of producing at least 150 gigawatts of energy by 2050 to help cut carbon emissions that cause climate change, with EU wind and solar surpassing gas last year, Danish media have reported.

Under the plan, wind turbines would be raised off the coasts of Belgium, the Netherlands, Germany and Denmark, where a recent green power record highlighted strong winds, daily Danish newspaper Jyllands-Posten said.

The project would mean a tenfold increase in the EU's current offshore wind capacity, underscoring how renewables are crowding out gas across Europe today.

“The North Sea can do a lot," Danish Prime Minister Frederiksen told the newspaper, adding the close cooperation between the four EU nations "must start now.”

European Commission President Ursula von der Leyen, German Chancellor Olaf Scholz, Dutch Prime Minister Mark Rutte and Belgian Prime Minister Alexander De Croo are scheduled to attend a North Sea Summit on Wednesday in Esbjerg, 260 kilometers (162 miles) west of Copenhagen.

In Brussels, the European Commission moved Wednesday to jump-start plans for the whole 27-nation EU to abandon Russian energy amid the Kremlin’s war in Ukraine. The commission proposed a nearly 300 billion-euro ($315 billion) package that includes more efficient use of fuels and a faster rollout of renewable power, even as stunted hydro and nuclear output may hobble recovery efforts.

The investment initiative by the EU's executive arm is meant to help the bloc start weaning themselves off Russian fossil fuels this year, even as Europe is losing nuclear power during the transition. The goal is to deprive Russia, the EU’s main supplier of oil, natural gas and coal, of tens of billions in revenue and strengthen EU climate policies.

“We are taking our ambition to yet another level to make sure that we become independent from Russian fossil fuels as quickly as possible,” von der Leyen said in Brussels when announcing the package, dubbed REPowerEU.

The EU has pledged to reduce carbon dioxide emissions by 55% compared with 1990 levels by 2030, and to get to net zero emissions by 2050, with a recent German renewables milestone underscoring the pace of change.

The European Commission has set an overall target of generating 300 gigawatts of offshore energy of by 2050, though grid expansion challenges in Germany highlight hurdles.

Along with climate change, the war in Ukraine has made EU nations eager to reduce their dependency on Russian natural gas and oil. In 2021, the EU imported roughly 40% of its gas and 25% of its oil from Russia.

At a March 11 summit, EU leaders agreed in principle to phase out Russian gas, oil and coal imports by 2027.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.