Yukon Energy seeks first retail rate increase in 13 years

By Yukon Energy


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Yukon Energy Corporation has filed an application with the Yukon Utilities Board for its first retail rate increase since 1999.

The corporation has asked for a 6.4 percent increase for all customer classes residential, commercial, industrial and government in 2012 and an additional 6.5 percent raise in 2013. The increases would impact both Yukon Energy and Yukon Electrical customers.

"Over the last 13 years weÂ’ve done everything possible to keep electricity costs low. In fact we were even able to secure a 2.47 percent rate decrease for our customers when the Minto mine came on-line," Yukon Energy President David Morrison said. "However the cost of keeping aging infrastructure efficient, up-to-date and safe for Yukoners has increased faster than electricity rates, making our current path unsustainable."

Increased energy consumption in all sectors has strained Yukon Energy's power grid, and has depleted the corporation's surplus hydro. While Yukon Energy's new hydro assets Mayo B and the Aishihik third turbine have helped address this problem, expensive diesel generation is still needed to supply an increasing share of the new demand.

"Thirteen years is a long time to go without a rate increase," Morrison added. “The last time we raised rates, Gretzky was playing for the Rangers and gas was 60 cents a liter. Meanwhile, salaries have gone up and the cost of our materials keeps climbing."

"Given these factors, seeking rate increases is the responsible thing to do," said Morrison. "However even with higher rates there are many steps Yukoners can take to keep their bills affordable. We will work with customers to provide them with the tools and information they need to have more control over their electricity bills."

Related News

France’s first offshore wind turbine produces electricity

Floatgen Floating Offshore Wind Turbine exports first kWh to France's grid from SEM-REV off Le Croisic, showcasing Ideol's concrete floating foundation by Bouygues and advancing marine renewable energy leadership ambitions.

 

Key Points

A grid-connected demo turbine off Le Croisic, proving Ideol's floating foundation at SEM-REV.

✅ First power exported to French grid from SEM-REV site

✅ Ideol concrete floating base built by Bouygues

✅ Demonstrator can supply up to 5,000 inhabitants

 

Floating offshore wind turbine Floatgen, the first offshore wind turbine installed off the French coast, exported its first KWh to the electricity grid, echoing the offshore wind power milestone experienced by U.S. customers recently.

The connection of the electricity export cable, similar in ambition to the UK's 2 GW substation program, and a final series of tests carried out in recent days enabled the Floatgen wind turbine, which is installed 22 km off Le Croisic (Loire-Atlantique), to become fully operational on Tuesday 18 September.

This announcement is a highly symbolic step for the partners involved in this project. This wind turbine is the first operational unit of the floating foundation concept patented by Ideol and built in concrete by Bouygues Travaux Publics. A second unit of the Ideol foundation will soon be operational off Japan. For Centrale Nantes, this is the first production tool and the first injection of electricity into its export cable at its SEM-REV test site dedicated to marine renewable energies, alongside projects such as the Scotland-England subsea power link that expand transmission capacity (third installation after tests on acoustic sensors and cable weights).

This announcement is also symbolic for France since Floatgen lays the foundation for an industrial offshore wind energy sector and represents a unique opportunity to become the global leader in floating wind, as major clean energy corridors like the Canadian hydropower line to New York illustrate growing demand.

With its connection to the grid, SEM-REV will enable the wind turbine to supply electricity to 5000 inhabitants, and similar integrated microgrid initiatives show how local reliability can be enhanced.

 

Related News

View more

Hydroelectricity Under Pumped Storage Capacity

Pumped Storage Hydroelectricity balances renewable energy, stabilizes the grid, and provides large-scale energy storage using reservoirs and reversible turbines, delivering flexible peak power, frequency control, and rapid response to variable wind and solar generation.

 

Key Points

A reversible hydro system that stores energy by pumping water uphill, then generates flexible peak power.

✅ Balances variable wind and solar with rapid ramping

✅ Stores off-peak electricity in upper reservoirs

✅ Enhances grid stability, frequency control, and reserves

 

The expense of hydroelectricity is moderately low, making it a serious wellspring of sustainable power. The hydro station burns-through no water, dissimilar to coal or gas plants. The commonplace expense of power from a hydro station bigger than 10 megawatts is 3 to 5 US pennies for every kilowatt hour, and Niagara Falls powerhouse upgrade projects show how modernization can further improve efficiency and reliability. With a dam and supply it is likewise an adaptable wellspring of power, since the sum delivered by the station can be shifted up or down quickly (as meager as a couple of moments) to adjust to changing energy requests.

When a hydroelectric complex is developed, the task creates no immediate waste, and it for the most part has an extensively lower yield level of ozone harming substances than photovoltaic force plants and positively petroleum product fueled energy plants, with calls to invest in hydropower highlighting these benefits. In open-circle frameworks, unadulterated pumped storage plants store water in an upper repository with no normal inflows, while pump back plants use a blend of pumped storage and regular hydroelectric plants with an upper supply that is renewed to a limited extent by common inflows from a stream or waterway.

Plants that don't utilize pumped capacity are alluded to as ordinary hydroelectric plants, and initiatives focused on repowering existing dams continue to expand clean generation; regular hydroelectric plants that have critical capacity limit might have the option to assume a comparable function in the electrical lattice as pumped capacity by conceding yield until required.

The main use for pumped capacity has customarily been to adjust baseload powerplants, however may likewise be utilized to decrease the fluctuating yield of discontinuous fuel sources, while emerging gravity energy storage concepts broaden long-duration options. Pumped capacity gives a heap now and again of high power yield and low power interest, empowering extra framework top limit.

In specific wards, power costs might be near zero or once in a while negative on events that there is more electrical age accessible than there is load accessible to retain it; despite the fact that at present this is infrequently because of wind or sunlight based force alone, expanded breeze and sun oriented age will improve the probability of such events.

All things considered, pumped capacity will turn out to be particularly significant as an equilibrium for exceptionally huge scope photovoltaic age. Increased long-distance bandwidth, including hydropower imports from Canada, joined with huge measures of energy stockpiling will be a critical piece of directing any enormous scope sending of irregular inexhaustible force sources. The high non-firm inexhaustible power entrance in certain districts supplies 40% of yearly yield, however 60% might be reached before extra capaciy is fundamental.

Pumped capacity plants can work with seawater, despite the fact that there are extra difficulties contrasted with utilizing new water. Initiated in 1966, the 240 MW Rance flowing force station in France can incompletely function as a pumped storage station. At the point when elevated tides happen at off-top hours, the turbines can be utilized to pump more seawater into the repository than the elevated tide would have normally gotten. It is the main enormous scope power plant of its sort.

Alongside energy mechanism, pumped capacity frameworks help control electrical organization recurrence and give save age. Warm plants are substantially less ready to react to abrupt changes in electrical interest, and can see higher thermal PLF during periods of reduced hydro generation, conceivably causing recurrence and voltage precariousness.

Pumped storage plants, as other hydroelectric plants, including new BC generating stations, can react to stack changes in practically no time. Pumped capacity hydroelectricity permits energy from discontinuous sources, (for example, sunlight based, wind) and different renewables, or abundance power from consistent base-load sources, (for example, coal or atomic) to be put something aside for times of more popularity.

The repositories utilized with siphoned capacity are tiny when contrasted with ordinary hydroelectric dams of comparable force limit, and creating periods are regularly not exactly a large portion of a day. This technique produces power to gracefully high top requests by moving water between repositories at various heights.

Now and again of low electrical interest, the abundance age limit is utilized to pump water into the higher store. At the point when the interest gets more noteworthy, water is delivered once more into the lower repository through a turbine. Pumped capacity plans at present give the most monetarily significant methods for enormous scope matrix energy stockpiling and improve the every day limit factor of the age framework. Pumped capacity isn't a fuel source, and shows up as a negative number in postings.

 

Related News

View more

New Mexico Governor to Sign 100% Clean Electricity Bill ‘As Quickly As Possible’

New Mexico Energy Transition Act advances zero-carbon electricity, mandating public utilities deliver carbon-free electricity by 2045, with renewable targets of 50 percent by 2030 and 80 percent by 2040 to accelerate grid decarbonization.

 

Key Points

A state law requiring utilities to deliver carbon-free electricity by 2045, with 2030 and 2040 renewable targets.

✅ 100 percent carbon-free power from utilities by 2045

✅ Interim renewable targets: 50 percent by 2030, 80 percent by 2040

✅ Aligns with clean energy commitments in HI, CA, and DC

 

The New Mexico House of Representatives passed the Energy Transition Act Tuesday afternoon, sending the carbon-free electricity bill, a move aligned with proposals for a Clean Electricity Standard at the federal level, to Gov. Michelle Lujan Grisham.

Her opinions on it are known: she campaigned on raising the share of renewable energy, a priority echoed in many state renewable ambitions nationwide, and endorsed the ETA in a recent column.

"The governor will sign the bill as quickly as possible — we're hoping it is enrolled and engrossed and sent to her desk by Friday," spokesperson Tripp Stelnicki said in an email Tuesday afternoon.

Once signed, the legislation will commit the state to achieving zero-carbon electricity from public utilities by 2045. The bill also imposes interim renewable energy targets of 50 percent by 2030 and 80 percent by 2040, similar to Minnesota's 2040 carbon-free bill in its timeline.

The Senate passed the bill last week, 32-9. The House passed it 43-22.

The legislation would enter New Mexico into the company of Hawaii, California, where climate risks to grid reliability are shaping policy, and Washington, D.C., which have committed to eliminating carbon emissions from their grids. A dozen other states have proposed similar goals. Meanwhile, the Green New Deal resolution has prompted Congress to discuss the bigger task of decarbonizing the nation overall.

Though grid decarbonization has surged in the news cycle in recent months, even as some states consider moves in the opposite direction, such as a Wyoming bill restricting clean energy that would limit utility choices, New Mexico's bill arose from a years-long effort to rally stakeholders within the state's close-knit political community.

 

Related News

View more

A tidal project in Scottish waters just generated enough electricity to power nearly 4,000 homes

MeyGen Tidal Stream Project delivers record 13.8 GWh to Scotland's grid, showcasing renewable ocean energy. Simec Atlantis Energy's 6 MW array of tidal turbines advances EU power goals and plans an ocean-powered data center.

 

Key Points

A Scottish tidal energy array exporting record power, using four 1.5 MW turbines and driving renewable innovation.

✅ Delivered 13.8 GWh to the grid in 2019, a project record.

✅ Four 1.5 MW turbines in Phase 1A, 6 MW installed.

✅ Plans include an ocean-powered data center near site.

 

A tidal power project in waters off the north coast of Scotland, where Scotland’s wind farms also deliver significant output, sent more than 13.8 gigawatt hours (GWh) of electricity to the grid last year, according to an operational update issued Monday. This figure – a record – almost doubled the previous high of 7.4 GWh in 2018.

In total, the MeyGen tidal stream array has now exported more than 25.5 GWh of electricity to the grid since the start of 2017, according to owners Simec Atlantis Energy. Phase 1A of the project is made up of four 1.5 megawatt (MW) turbines.

The 13.8 GWh of electricity exported in 2019 equates to the average yearly electricity consumption of roughly 3,800 “typical” homes in the U.K., where wind power records have been set recently, according to the company, with revenue generation amounting to £3.9 million ($5.09 million).

Onshore maintenance is now set to be carried out on the AR1500 turbine used by the scheme, with Atlantis aiming to redeploy the technology in spring.

In addition to the production of electricity, Atlantis is also planning to develop an “ocean-powered data centre” near the MeyGen project.

The European Commission has described “ocean energy” as being both abundant and renewable, and milestones like the biggest offshore windfarm starting U.K. supply underscore wider momentum, too. It’s estimated that ocean energy could potentially contribute roughly 10% of the European Union’s power demand by the year 2050, according to the Commission.

While tidal power has been around for decades — EDF’s 240 MW La Rance Tidal Power Plant in France was built as far back as 1966, and the country’s first offshore wind turbine has begun producing electricity — recent years have seen a number of new projects take shape.

In December last year, Scottish tidal energy business Nova Innovation was issued with a permit to develop a project in Nova Scotia, Canada, aiming to harness the Bay of Fundy tides in the region further.

In an announcement at the time, the firm said a total of 15 tidal stream turbines would be installed by the year 2023. The project, according to the firm, will produce enough electricity to power 600 homes, as companies like Sustainable Marine begin delivering tidal energy to the Nova Scotia grid.

Elsewhere, a business called Orbital Marine Power is developing what it describes as the world’s most powerful tidal turbine, with grid-supplied output already demonstrated.

The company says the turbine will have a swept area of more than 600 square meters and be able to generate “over 2 MW from tidal stream resources.” It will use a 72-meter-long “floating superstructure” to support two 1 MW turbines.

 

Related News

View more

The Banker Trying to Fix the UK's Electricity Grid

UK power grid bottleneck is stalling renewable energy, with connection queues, planning delays, and transmission infrastructure gaps raising costs, slowing decarbonization, and deterring investment as government considers reforms led by a new chief adviser.

 

Key Points

Delays and capacity gaps that hinder connecting new generation and demand, raising costs and slowing decarbonization.

✅ Connection queues delay projects for years

✅ Planning and NIMBY barriers stall transmission builds

✅ Investment costs on bills risk political pushback

 

During his three decades at investment bank Morgan Stanley, Franck Petitgas developed a reputation for solving problems that vexed others. Fixing the UK’s creaking power grid could be his most challenging task yet.

Earlier this year, Prime Minister Rishi Sunak appointed Petitgas as his chief business adviser, and the former financier has been pushing to tackle the gridlock that’s left projects waiting endlessly for a connection, an issue he sees as one of the biggest problems for industry.

But there are no easy solutions to tackle the years-long queue to get on the grid or the drawn-out planning process for building clean power generation, with the energy transition stalled by supply delays compounding the problem. And sluggish progress in expanding and improving the electricity network is preventing the construction of new housing developments and offices, as well as slowing the transition to greener power.

That transition has already taken a knock after Sunak last week controversially watered down some of the UK’s climate ambitions, citing in part the cost to consumers. He also acknowledged the issues surrounding the grid and promised the “most transformative plans” in response, drawing on lessons from Europe’s power crisis where applicable. Those are due to be unveiled within weeks. 

Shortly after his appointment, Petitgas offered reassurances to business leaders at a meeting in Downing Street that solutions were being worked on, according to people familiar with the matter. But there’s a lack of confidence across business that enough will be done.

Cost is a big factor in the expansion of the electricity grid, and some argue a state-owned generation model could ease bills over time. Improving the onshore network alone could require investment of between £100 billion and £240 billion ($122-$293 billion) by 2050, according to a government analysis last year. 

With network expansion funded through power bills, that’s a big ask, particularly with Sunak trailing in polls ahead of an election expected next year.

“It’s very difficult for politicians to say more money should be on bills,” said Emma Pinchbeck, chief executive of Energy UK, a trade body. “So you get to a situation where no one wants to pay for the infrastructure investment until it’s really sticky, and that’s where we’ve got to with the grid.”

There are huge competitive and economic implications if the UK falls further behind. With US President Joe Biden spending an estimated $370 billion on climate measures through his Inflation Reduction Act, and China already a world leader in electric vehicles, Britain’s grid inaction is holding it back in the global race to decarbonize, said Jess Ralston, an analyst at the Energy and Climate Intelligence Unit think tank.

“The UK is dithering and delaying, and not making any strategic decisions,” she said. “You can see companies just saying ‘I’m going to the US, or I’m going to China’.” 

In a statement, the government said it’s a “priority to speed up the time taken to connect new power generators and power consumers to the grid.” It added that it’s taking “significant steps to accelerate grid infrastructure,” including support for new Channel interconnectors announced this year.

The government expects demand for electricity to double by 2035 and that will mean more generation that needs to be linked up to the network by cables and pylons. Local grids will also have to expand to accommodate more connection points for electric vehicles and homes, and invest in large-scale energy storage capacity to balance supply.

But so far, the rapid rise in renewable energy investment has not been accompanied by matching spend on the power network, according to BloombergNEF, a pattern seen in Germany’s grid expansion woes as well.

“The pace and scale of what we now have to deliver is significantly different from the last few decades,” said Carl Trowell, president of UK strategic infrastructure at National Grid. “It’s a national endeavor.”

In June, Electricity Networks Commissioner Nick Winser sent the government recommendations for how to accelerate construction of more transmission infrastructure. He said efforts to decarbonize the power sector will be “wasted if we cannot get the power to homes and businesses.”

“We need a seriously stronger sense of urgency,” said Kevin O’Donovan, country manager for Statkraft UK, which is holding off investment in four wind farms and two solar projects due to grid connection delays.

In addition to cost, the other major stumbling block is planning. Politicians in the governing Conservative Party are wary of angering voters with new infrastructure in rural areas that typically vote Tory. Across the country, “Not In My Back Yard” campaigners – NIMBYs — pose a major challenge to projects.

Petitgas, 62, retired from Morgan Stanley last year after nearly 30 years at the bank, where he led its international division from London. The issues over connections and planning have been repeatedly pointed out to Petitgas by investors and trade groups over a series of meetings this year, according to people familiar with the matter, requesting anonymity discussing private talks.

Yet with a general election looming and the issue plagued by political headaches, many are skeptical that Sunak can find the solutions needed.

One business chief said Downing Street considers the issue too tricky and expensive to tackle in the short-term. Others are concerned that while Petitgas has license from Sunak, he doesn’t have influence across the relevant departments to get grids to the top of the agenda.

 

Wind Farms

Multiple parts of the UK’s climate plans are under pressure. Earlier this month, an auction for contracts to build new wind farms received zero bids from developers, even as wind leads the power mix in many regions, marking yet another green setback. 

The UK is already behind on its target of having 50 gigawatts of offshore wind built by 2030, up from 14 GW today. The challenge is accelerating development without railroading local communities.

Within Sunak’s Conservative Party, some lawmakers are pushing back on new infrastructure in their local areas. A group including Environment Secretary Therese Coffey and former Home Secretary Priti Patel is campaigning against building new pylons across a stretch of eastern England.

According to Adam Bell, director of policy at consultancy Stonehaven, backbench pressure means Sunak is unlikely to take major action on the grid in the near term. He doesn’t see the prime minister accepting Winser’s recommendations, least of all accelerating planning decisions.

“Over the last year, Sunak has favored party management over things that will benefit the country,” Bell said. 

 

Related News

View more

Iran Says Deals to Rehabilitate, Develop Iraq Power Grid Finalized

Iran-Iraq Power Grid Deals reinforce electricity and natural gas ties, upgrading transmission in Karbala and Najaf, repairing transformers, easing sanctions bottlenecks, and weighing GCC interconnection to diversify supply and reduce distribution losses across Iraq.

 

Key Points

Agreements to rehabilitate Iraq's grid, cut losses, and secure power via Iranian gas, electricity, and upgrades.

✅ Reduce distribution losses in Karbala and Najaf

✅ Repair and replace damaged distribution transformers

✅ Coordinate payments to TAVANIR amid US sanctions

 

Iran and Iraq have finalized two deals to rehabilitate and develop the power grid of Iraq, while Iran is upgrading thermal plants to combined cycle at home to save energy, IRNA cited the Iranian Energy Minister Reza Ardakanian.

Ardakanian met his Iraqi counterpart Majid Mahdi Hantoush in Tehran on Tuesday evening for talks on further energy cooperation on the sidelines of Prime Minister Mustafa al-Kadhimi’s trip to the Islamic Republic on his first foreign visit.

“It was decided that the contracts related to reducing losses on the electricity distribution network in the provinces of Karbala and Najaf, as well as the contract for repairing Iraq’s distribution transformers would be finalized and signed,” the Iranian minister said.

Iraq relies on Iran for natural gas that generates as much as 45 percent of its electricity, with Iran supplying 40% of Iraq’s power according to sector reports. Iran transmits another 1,200 MW directly, and has regional power hub plans as well, making itself an indispensable energy source for its Arab neighbor, but the United States is trying to pry Baghdad away from Tehran’s orbit.

The US has been enlisting its companies and allies such as Saudi Arabia to replace Iran as Iraq’s source of energy.

Iran’s money from exports of gas and electricity has accumulated in bank accounts in Iraq, because US sanctions are preventing Tehran from repatriating it.

In January, an official said the sanctions were giving Iran a run for five billion dollars, “sedimenting” at the Central Bank of Iraq, because Tehran could not access it.

Ardakanian said the issue was brought up in the discussions on Tuesday and it was agreed that “the payment of part of TAVANIR (Iran Power Generation and Transmission Company)’s claims will start from the end of July”.

The US administration is pushing for a deal between Washington, Baghdad and six Persian Gulf states to connect Iraq’s nationwide power grid to that of the Persian Gulf Cooperation Council, while Uzbekistan looks to export power to Afghanistan as regional linkages expand.

The US State Department said in a statement last Thursday that the six countries that make up the (Persian) Gulf Cooperation Council Interconnection Authority (GCCIA) — Saudi Arabia, Kuwait, Bahrain, Qatar, Oman and the UAE — had affirmed their shared support for the project to supply electricity to Iraq.

Iraq needs more than 23,000 MW of electricity to meet its domestic demand, and is exploring nuclear power plans to tackle shortages, but years of war following the 2003 US invasion have left its power infrastructure in tatters and a deficit of some 7,000 MW.

In the past, officials in Baghdad have said there is no easy substitute to imports from Iran because it will take years to adequately build up Iraq’s energy infrastructure, and meeting summer electricity needs remains a persistent challenge.

They have said American demand acknowledges neither Iraq’s energy needs nor the complex relations between Baghdad and Tehran.

In addition to natural gas and electricity, Iraq imports a wide range of goods from Iran including food, agricultural products, home appliances, and air conditioners.

On Tuesday, the Iraqi prime minister said during a joint news conference with Iranian President Hassan Rouhani that the purpose of his trip to Tehran was to strengthen historical ties between the two countries, especially in light of the challenges they faced as a result of the coronavirus outbreak and the fall of oil prices.

“In the face of such challenges, we need coordination between the two countries in a way that serves the interests of Iran and Iraq.”

Both Iran and Iraq, Kadhimi said, suffer from economic problems, adding the two countries need comprehensive and inclusive cooperation to overcome them.

Kadhimi said Iran-Iraq relations are not merely due to the geographical location of the two countries and their 1,450-km border, adding the ties are based on religion and culture and rooted in history.

“I am reiterating to my brothers in the Islamic Republic of Iran that the Iraqi nation is eager to have excellent relations with the Islamic Republic of Iran based on the principle of non-interference in the internal affairs of the two countries.”

Kadhimi said Iran and Iraq fought against terrorism and Takfiri groups together, and the Islamic Republic of Iran was one of the first countries to stand by Iraq.

“We will not forget this. That is why Iraq has stood with Iran to help it overcome economic challenges and turned to a big market for trade with Iran,” he said.

“We seek stability in Iraq and our philosophy and view of Iran is that we consider Iran a stable, strong, prosperous and progressive country, and this fact is in the interest of Iraq and the territorial integrity of the region,” he added.

According to Kadhimi, the two sides discussed implementing agreements between them, including connecting their railway through Khorramshahr in Iran and Basra in Iraq, adding he was very confident the agreements would be implemented soon.

Iraq’s delegation included the ministers of foreign affairs, finance, health, and planning, as well as Kadhimi’s national security adviser, some of whom also met their Iranian counterparts.

Last year, Iran’s exports to Iraq amounted to nearly $9 billion, IRNA reported. It said the two nations will discuss increasing that amount to $20 billion.

“The two governments’ will is to expand bilateral trade to $20 billion,” Rouhani said after an hour-long meeting with the Iraqi prime minister.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.