Zero-emission electricity in Canada by 2035 is practical and profitable


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Canada 100% Renewable Power by 2035 envisions a decentralized grid built on wind, solar, energy storage, and efficiency, delivering zero-emission, resilient, low-cost electricity while phasing out nuclear and gas to meet net-zero targets.

 

Key Points

Zero-emission, decentralized grid using wind, solar, and storage, plus efficiency, to retire fossil and nuclear by 2035.

✅ Scale wind and solar 18x with storage for reliability.

✅ Phase out nuclear and gas; no CCS or offsets needed.

✅ Modernize grids and codes; boost efficiency, jobs, and affordability.

 

A powerful derecho that left nearly a million people without power in Ontario and Quebec on May 21 was a reminder of the critical importance of electricity in our daily lives.

Canada’s electrical infrastructure could be more resilient to such events, while being carbon-emission free and provide low-cost electricity with a decentralized grid powered by 100 per cent renewable energy, according to a new study from the David Suzuki Foundation (DSF), a vision of an electric, connected and clean future if the country chooses.

This could be accomplished by 2035 by building a lot more solar and wind, despite indications that demand for solar electricity has lagged in Canada, adding energy storage, while increasing the energy efficiency in buildings, and modernizing provincial energy grids. As this happens, nuclear energy and gas power would be phased out. There would also be no need for carbon capture and storage nor carbon offsets, the modeling study concluded.

“Solar and wind are the cheapest sources of electricity generation in history,” said study co-author Stephen Thomas, a mechanical engineer and climate solutions policy analyst at the DSF.

“There are no technical barriers to reaching 100 per cent zero-emission electricity by 2035 nationwide,” Thomas told The Weather Network (TWN). However, there are considerable institutional and political barriers to be overcome, he said.

Other countries face similar barriers and many have found ways to reduce their emissions; for example, the U.S. grid's slow path to 100% renewables illustrates these challenges. There are enormous benefits including improved air quality and health, up to 75,000 new jobs annually, and lower electricity costs. Carbon emissions would be reduced by 200 million tons a year by 2050, just over one quarter of the reductions needed for Canada to meet its overall net zero target, the study stated.

Building a net-zero carbon electricity system by 2035 is a key part of Canada’s 2030 Emissions Reduction Plan. Currently over 80 per cent of the nation’s electricity comes from non-carbon sources including a 15 per cent contribution from nuclear, with solar capacity nearing a 5 GW milestone nationally. How the final 20 per cent will be emission-free is currently under discussion.

The Shifting Power study envisions an 18-fold increase in wind and solar energy, with the Prairie provinces expected to lead growth, along with a big increase in Canada’s electrical generation capacity to bridge the 20 per cent gap as well as replacing existing nuclear power.

The report does not see a future role for nuclear power due to the high costs of refurbishing existing plants, including the challenges with disposal of radioactive wastes and decommissioning plants at their end of life. As for the oft-proposed small modular nuclear reactors, their costs will likely “be much more costly than renewables,” according to the report.

There are no technical barriers to building a bigger, cleaner, and smarter electricity system, agrees Caroline Lee, co-author of the Canadian Climate Institute’s study on net-zero electricity, “The Big Switch” released in May. However, as Lee previously told TWN, there are substantial institutional and political barriers.

In many respects, the Shifting Power study is similar to Lee’s study except it phases out nuclear power, forecasts a reduction in hydro power generation, and does not require any carbon capture and storage, she told TWN. Those are replaced with a lot more wind generation and more storage capacity.

“There are strengths and weaknesses to both approaches. We can do either but need a wide debate on what kind of electricity system we want,” Lee said.

That debate has to happen immediately because there is an enormous amount of work to do. When it comes to energy infrastructure, nearly everything “we put in the ground has to be wind, solar, or storage” to meet the 2035 deadline, she said.

There is no path to net zero by 2050 without a zero-emissions electricity system well before that date. Here are some of the necessary steps the report provided:

Create a range of skills training programs for renewable energy construction and installation as well as building retrofits.

Prioritize energy efficiency and conservation across all sectors through regulations such as building codes.

Ensure communities and individuals are fully informed and can decide if they wish to benefit from hosting energy generation infrastructure.

Create a national energy poverty strategy to ensure affordable access.

Strong and clear federal and provincial rules for utilities that mandate zero-emission electricity by 2035.

For Indigenous communities, make sure ownership opportunities are available along with decision-making power.

Canada should move as fast as possible to 100 per cent renewable energy to gain the benefits of lower energy costs, less pollution, and reduced carbon emissions, says Stanford University engineer and energy expert Mark Jacobson.

“Canada has so many clean, renewable energy resources that it is one of the easier countries [that can] transition away from fossil fuels,” Jacobson told TWN.

For the past decade, Jacobson has been producing studies and technical reports on 100 per cent renewable energy, including a new one for Canada, even as Canada is often seen as a solar power laggard today. The Stanford report, A Solution to Global Warming, Air Pollution, and Energy Insecurity for Canada, says a 100 per cent transition by 2035 timeline is ideal. Where it differs from DSF’s Shifting Power report is that it envisions offshore wind and rooftop solar panels which the latter did not.

“Our report is very conservative. Much more is possible,” agrees Thomas.

“We’re lagging behind. Canadians really want to get going on building solutions and getting the benefits of a zero emissions electricity system.”

 

Related News

Related News

More Polar Vortex 2021 Fallout (and Texas Two-Step): Monitor For ERCOT Identifies Improper Payments For Ancillary Services

ERCOT Ancillary Services Clawback and VOLL Pricing summarize PUCT and IMM actions on load shed, real-time pricing adders, clawbacks, and settlement corrections after the 2021 winter storm in the Texas power grid market.

 

Key Points

Policies addressing clawbacks for unprovided AS and correcting VOLL-based price adders after load shed ended in ERCOT.

✅ PUCT ordered clawbacks for ancillary services not delivered.

✅ IMM urged price correction after firm load shed ceased.

✅ ERCOT's VOLL adder raised costs by $16B during 32 hours.

 

Potomac Economics, the Independent Market Monitor (IMM) for the Electric Reliability Council of Texas (ERCOT), filed a report with the Public Utility Commission of Texas (PUCT) that certain payments were made by ERCOT for Ancillary Services (AS) that were not provided, even as ERCOT later issued a winter reliability RFP to procure capacity during subsequent seasons.

According to the IMM (emphasis added):

There were a number of instances during the operating days outlined above in which AS was not provided in real time because of forced outages or derations. For market participants that are not able to meet their AS responsibility, typically the ERCOT operator marks the short amount in the software. This causes the AS responsibility to be effectively removed and the day-ahead AS payment to be clawed back in settlement. However, the ERCOT operators did not complete this task during the winter event, echoing issues like the Ontario IESO phantom demand that cost customers millions, and therefore the "failure to provide" settlements were not invoked in real time.

Removing the operator intervention step and automating the "failure to provide" settlement was contemplated in NPRR947: Clarification to Ancillary Service Supply Responsibility Definition and Improvements to Determining and Charging for Ancillary Service Failed Quantities; however, the NPRR was withdrawn in August 2020 amid ongoing market reform discussions because of the system cost, some complexities related to AS trades, and the implementation of real-time co-optimization.

Invoking the "failure to provide" settlement for all AS that market participants failed to provide during the operating days outlined above will produce market outcomes and settlements consistent with underlying market principles. In this case, the principle is that market participants should not be paid for services that they do not provide, even as a separate ruling found power plants exempt from providing electricity in emergencies under Texas law, underscoring the distinction between obligations and settlements. Whether ERCOT marked the short amount in real-time or not should not affect the settlement of these ancillary services.

On March 3, 2021, the PUCT ordered (a related press release is here) that:

ERCOT shall claw back all payments for ancillary service that were made to an entity that did not provide its required ancillary service during real time on ERCOT operating days starting February 14, 2021 and ending on February 19,2021.

On March 4, 2021, the IMM filed another report and recommended that:

the [PUCT] direct ERCOT to correct the real-time prices from 0:00 February 18,2021, to 09:00 February 19, 2021, to remove the inappropriate pricing intervention that occurred during that time period.

The IMM approvingly noted the PUCT's February 15, 2021 order, which mandated that real-time energy prices reflect firm load shed by setting prices at the value of lost load (VOLL).1

According to the IMM (emphasis added):

This is essential in an energy-only market, like ERCOT's, where the Texas power grid faces recurring crisis risks, because it provides efficient economic signals to increase the electric generation needed to restore the load and service it reliably over the long term.

Conversely, it is equally important that prices not reflect VOLL when the system is not in shortage and load is being served, and experiences in capacity markets show auction payouts can fall sharply under different conditions. The Commission recognized this principle in its Order, expressly stating it is only ERCOT's out-of-market shedding firm load that is required to be reflected in prices. Unfortunately, ERCOT exceeded the mandate of the Commission by continuing to set process at VOLL long after it ceased the firm load shed.

ERCOT recalled the last of the firm load shed instructions at 23:55 on February 17, 2021. Therefore, in order to comply with the Commission Order, the pricing intervention that raised prices to VOLL should have ended immediately at that time. However, ERCOT continued to hold prices at VOLL by inflating the Real-Time On-Line Reliability Deployment Price Adder for an additional 32 hours through the morning of February 19. This decision resulted in $16 billion in additional costs to ERCOT's market, prompting legislative bailout proposals in Austin, of which roughly $1.5 billion was uplifted to load-serving entities to provide make-whole payments to generators for energy that was not needed or produced.

However, at its March 5, 2021, open meeting (related discussion begins around minute 20), although the PUCT acknowledged the "good points" raised by the IMM, the PUCT was not willing to retrospectively adjust its real-time pricing for this period out of concerns that some related transactions (ICE futures and others) may have already settled and for unintended consequences of such retroactive adjustments.  

 

Related News

View more

As California enters a brave new energy world, can it keep the lights on?

California Grid Transition drives decarbonization with renewable energy, EV charging, microgrids, and energy storage, while tackling wildfire risk, aging infrastructure, and cybersecurity threats to build grid resilience and reliability across a rapidly electrifying economy.

 

Key Points

California Grid Transition is the statewide shift to renewables, storage, EVs, and resilient, secure infrastructure.

✅ Integrates solar, wind, storage, and demand response at scale

✅ Expands microgrids and DERs to enhance reliability and resilience

✅ Addresses wildfire, aging assets, and cybersecurity risks

 

Gretchen Bakke thinks a lot about power—the kind that sizzles through a complex grid of electrical stations, poles, lines and transformers, keeping the lights on for tens of millions of Californians who mostly take it for granted.

They shouldn’t, says Bakke, who grew up in a rural California town regularly darkened by outages. A cultural anthropologist who studies the consequences of institutional failures, she says it’s unclear whether the state’s aging electricity network and its managers can handle what’s about to hit it, as U.S. blackout risks continue to mount.

California is casting off fossil fuels to become something that doesn’t yet exist: a fully electrified state of 40 million people. Policies are in place requiring a rush of energy from renewable sources such as the sun and wind and calling for millions of electric cars that will need charging—changes that will tax a system already fragile, unstable and increasingly vulnerable to outside forces.

“There is so much happening, so fast—the grid and nearly everything about energy is in real transition, and there’s so much at stake,” said Bakke, who explores these issues in a book titled simply, “The Grid.”

The state’s task grew more complicated with this week’s announcement that Pacific Gas and Electric, which provides electricity for more than 5 million customer accounts, intends to file for bankruptcy in the face of potentially crippling liabilities from wildfires. But the reshaping of California’s energy future goes far beyond the woes of a single company.

The 19th-century model of one-way power delivery from utility companies to customers is being reimagined. Major utilities—and the grid itself—are being disrupted by rooftops paved with solar panels and the rise of self-sufficient neighborhood mini-grids. Whole cities and counties are abandoning big utilities and buying power from wholesalers and others of their choosing.

With California at the forefront of a new energy landscape, officials are racing to design a future that will not just reshape power production and delivery but also dictate how we get around and how our goods are made. They’re debating how to manage grid defectors, weighing the feasibility of an energy network that would expand to connect and serve much of the West and pondering how to appropriately regulate small power producers.

“We are in the depths of the conversation,” said Michael Picker, president of the state Public Utilities Commission, who cautions that even as the system is being rebooted, like repairing a car while driving in practice, there’s no real plan for making it all work.

Such transformation is exceedingly risky and potentially costly. California still bears the scars of having dropped its regulatory reins some 20 years ago, leaving power companies to bilk the state of billions of dollars it has yet to completely recover. And utility companies will undoubtedly pass on to their customers the costs of grid upgrades to defend against natural and man-made threats.

Some weaknesses are well known—rodents and tree limbs, for example, are common culprits in power outages, even as longer, more frequent outages afflict other parts of the U.S. A gnawing squirrel squeezed into a transformer on Thanksgiving Day three years ago, shutting off power to parts of Los Angeles International Airport. The airport plans to spend $120 million to upgrade its power plant.

But the harsh effects of climate change expose new vulnerabilities. Rising seas imperil coastal power plants. Electricity infrastructure is both threatened by and implicated in wildfires. Picker estimates that utility operations are related to one in 10 wildland fires in California, which can be sparked by aging equipment and winds that send tree branches crashing into power lines, showering flammable landscapes with sparks.

California utilities have been ordered to make their lines and equipment more fire-resistant as they’re increasingly held accountable for blazes they cause. Pacific Gas and Electric reported problems with some of its equipment at a starting point of California’s deadliest wildfire, which killed at least 86 people in November in the town of Paradise. The cause of the fire is under investigation.

New and complex cyber threats are more difficult to anticipate and even more dangerous. Computer hackers, operating a world away, can—and have—shut down electricity systems, toggling power on and off at will, and even hijacked the computers of special teams dispatched to restore control.

Thomas Fanning, CEO of Southern Co., one of the country’s largest utilities, recently disclosed that his teams have fended off multiple attempts to hack a nuclear power plant the firm operates. He called grid hacking “the most important under-reported war in American history.”

However, if you’ve got what seems like an insoluble problem requiring a to-the-studs teardown and innovative rebuild, California is a good place to start. After all, the first electricity grid was built in San Francisco in 1879, three years before Thomas Edison’s power station in New York City. (Edison’s plant burned to the ground a decade later.)

California’s energy-efficiency regulations have helped reduce statewide energy use, which peaked a decade ago and is on the decline, somewhat easing pressure on the grid. The major utilities are ahead of schedule in meeting their obligation to obtain power from renewable sources.

California’s universities are teaming with national research labs to develop cutting-edge solutions for storing energy produced by clean sources. California is fortunate in the diversity of its energy choices: hydroelectric dams in the north, large-scale solar operations in the Mojave Desert to the east, sprawling windmill farms in mountain passes and heat bubbling in the Geysers, the world’s largest geothermal field north of San Francisco. A single nuclear-power plant clings to the coast near San Luis Obispo, but it will be shuttered in 2025.

But more renewable energy, accessible at the whims of weather, can throw the grid off balance. Renewables lack the characteristic that power planners most prize: dispatchability, ready when called on and turned off when not immediately needed. Wind and sun don’t behave that way; their power is often available in great hunks—or not at all, as when clouds cover solar panels or winds drop.

In the case of solar power, it is plentiful in the middle of the day, at a time of low demand. There’s so much in California that most days the state pays its neighbors to siphon some off,  lest the excess impede the grid’s constant need for balance—for a supply that consistently equals demand.

So getting to California’s new goals of operating on 100 percent clean energy by 2045 and having 5 million electric vehicles within 12 years will require a shift in how power is acquired and managed. Consumers will rely more heavily on battery storage, whose efficiency must improve to meet that demand.

 

Related News

View more

New York State to investigate sites for offshore wind projects

NYSERDA Offshore Wind Data initiative funds geophysical and geotechnical surveys, seabed and soil studies on New York's shelf to accelerate siting, optimize foundation design, reduce costs, and advance clean energy deployment.

 

Key Points

State funding to support surveys and soil studies guiding offshore wind siting, design, and cost reduction.

✅ Up to $5.5M for geophysical and geotechnical data collection

✅ Focus on seabed soils, shelf geology, and foundation design inputs

✅ Accelerates siting, reduces risk, and lowers offshore wind costs

 

The New York State Energy Research and Development Authority (NYSERDA) is investing up to $5.5 million for the collection of geophysical and geotechnical data to determine future offshore wind development sites.

The funding is to look at seabed soil and geological data for the preliminary design and installation requirements for future offshore wind projects. Its part of N.Y. Gov. Andrew Cuomos plan to develop 9,000 megawatts of offshore wind energy by 2035.

Todays announcement is another step in Governor Cuomos steadfast march to achieving 9,000 megawatts of offshore wind by 2035, putting New York in a clear national leadership position when it comes to advancing this new industry through large-scale energy projects across the state. The surveys NYSERDA will be funding under this solicitation will expand the offshore wind industrys access to geophysical and geotechnical data that will provide the foundation for future offshore wind development in these areas, and accelerate project development while driving down costs, NYSERDA President and CEO Alicia Barton said.

NYSERDA will select one or more contractors to do the investigations, while recent DOE wind energy awards support complementary research, and develop a model for describing geophysical and geotechnical conditions. NYSERDA will also select a contractor to support project management and host the data that is collected. The submission deadline is Jan. 21, 2020.

Todays announcement builds on the data collected in a Geotechnical and Geophysical Desktop Study also released today, which includes information on the middle continental shelf off the shore of New York and New Jersey, where BOEM lease requests are shaping activity, creating a regional overview of the seafloor and sub-seafloor environment as it relates to offshore wind development.

Strong knowledge of environmental conditions and factors, including seabed soil conditions, are essential for the installation of offshore projects, such as Long Island proposals, but only a limited amount of soil sampling and testing has been undertaken to date.

The collection of geophysical and geotechnical data from areas off of New Yorks Atlantic coast is yet another demonstration of New Yorks leadership promoting the responsible development of offshore wind. The data generated by this initiative will ultimately lead to better projects, lower cost, and enhanced safety. New York is leading the way to a clean energy future, as the state finalizes renewable project contracts that expand capacity, and relying on data collection and sound science to get us there, New York Offshore Wind Alliance Director Joe Martens said.

 

Related News

View more

$550 Million in Clean Energy Funding to Benefit More than 250 Million Americans

EECBG Program Funding empowers states, Tribes, and local governments with DOE grants to deploy clean energy, energy efficiency, EV infrastructure, and community solar, cutting emissions, lowering utility bills, and advancing net-zero decarbonization.

 

Key Points

EECBG Program Funding is a $550M DOE grant for states, Tribes, and governments to deploy clean energy and efficiency.

✅ Supports EV infrastructure and community solar deployment

✅ Cuts emissions and lowers utility costs via efficiency

✅ Prioritizes Justice40 benefits for underserved communities

 

The Biden-Harris Administration, through the U.S. Department of Energy (DOE), today released a Notice of Intent announcing $550 million to support community-based clean energy in state, Tribal, and local governments — serving more than 250 million Americans. This investment in American communities, through the Energy Efficiency and Conservation Block Grant (EECBG) Program, will support communities across the country to develop local programming and deploy clean energy technologies to cut emissions, advance a 90% carbon-free electricity goal nationwide, and reduce consumers’ energy costs, and help meet President Biden’s goal of a net-zero economy by 2050. 

“This funding is a streamlined and flexible tool for local governments to build their electricity future with clean energy,” said U.S. Secretary of Energy Jennifer M. Granholm. “State, local, and Tribal communities nationwide will be able to leverage this funding to drive greater energy efficiency and conservation practices to lower utility bills and create healthier environments for American families.”   

The EECBG Program will fund 50 states, five U.S. territories, the District of Columbia, 774 Tribes, and 1,878 local governments in a variety of capacity-building, planning, and infrastructure efforts to reduce carbon emissions and energy use and improve energy efficiency in the transportation, building, and other related sectors. For example, communities with this funding can build out electric vehicle infrastructure and deploy community solar to serve areas that otherwise do not have access to electric vehicles or clean energy, particularly through a rural energy security program where appropriate.  

The $550 million made available through the Bipartisan Infrastructure Law (BIL) represents the second time that the EECBG Program has been funded, the first of which was through the American Recovery and Reinvestment Act of 2009. With this most recent funding, communities can build on prior investments and leverage additional clean energy funding from DOE, other federal agencies, and the private sector to achieve sustained impacts, supported by a Clean Electricity Standard where applicable, that can put their communities on a pathway to decarbonization. 

Through the EECBG Program and the Office of State and Community Energy Programs (SCEP), DOE will support the many diverse state, local, and tribal communities across the U.S., including efforts to revitalize coal communities through clean energy, as they implement this funding and other clean energy projects. To ensure no communities are left behind, the program aligns with President’s Justice40 initiative and efforts toward equity in electricity regulation to help ensure that 40% of the overall benefits of clean energy investments go to underserved and overburdened communities. 

 

Related News

View more

SaskPower to buy more electricity from Manitoba Hydro

SaskPower-Manitoba Hydro Power Sale outlines up to 215 MW of clean hydroelectric baseload for Saskatchewan, supporting renewable energy targets, lower greenhouse gas emissions, and interprovincial transmission line capacity starting 2022 under a 30-year agreement.

 

Key Points

A long-term deal supplying up to 215 MW of hydroelectric baseload from Manitoba to Saskatchewan to cut emissions.

✅ Up to 215 MW delivered starting 2022 via new intertie

✅ Supports 40% GHG reduction target by 2030

✅ 30-year term; complements wind and solar integration

 

Saskatchewan's Crown-owned electric utility has made an agreement to buy more hydroelectricty from Manitoba.

A term sheet providing for a new long--term power sale has been signed between Manitoba Hydro and SaskPower which will see up to 215 megawatts flow from Manitoba to Saskatchewan, as new turbine investments advance in Manitoba, beginning in 2022.

SaskPower has two existing power purchase agreements with Manitoba Hydro that were made in 2015 and 2016, but the newest one announced Monday is the largest, as financial pressures at Manitoba Hydro continue.

SaskPower President and CEO Mike Marsh says in a news release that the clean, hydroelectric power represents a significant step forward when it comes to reaching the utility's goal of reducing greenhouse gas emissions by 40 per cent by 2030, aligning with progress on renewable electricity by 2030 initiatives.

Marsh says it's also reliable baseload electricity, which SaskPower will need as it adds more intermittent generation options like wind and solar.

SaskPower says a final legal contract for the sale is expected to be concluded by mid-2019 and be in effect by 2022, and the purchase agreement would last up to 30 years.

"Manitoba Hydro has been a valued neighbour and business partner over the years and this is a demonstration of that relationship," Marsh said in the news release.

The financial terms of the agreement are not being released, though SaskPower's latest annual report offers context on its finances.

Both parties say the sale will partially rely on the capacity provided by a new transmission line planned for construction between Tantallon, Sask. and Birtle, Man. that was previously announced in 2015 and is expected to be in service by 2021.

"Revenues from this sale will assist in keeping electricity rates affordable for our Manitoba customers, while helping SaskPower expand and diversify its renewable energy supply," Manitoba Hydro president and CEO Kelvin Shepherd said in the utility's own news release.

In 2015, SaskPower signed a 25 megawatt agreement with Manitoba Hydro that lasts until 2022. A 20-year agreement for 100 megawatts was signed in 2016 and comes into effect in 2020, and SaskPower is also exploring a purchase from Flying Dust First Nation to further diversify supply.

The deals are part of a memorandum of understanding signed in 2013 involving up to 500 megawatts.
 

 

Related News

View more

New Electricity Auctions Will Drive Down Costs for Ontario's Consumers

IESO Capacity Auctions will competitively procure resources for Ontario electricity needs, boosting reliability and resource adequacy through market-based bidding, enabling demand response, energy storage, and flexible supply to meet changing load and regional grid conditions.

 

Key Points

A competitive, technology-neutral auction buys capacity at lowest cost to keep Ontario's grid reliable and flexible.

✅ Market-based procurement reduces system costs.

✅ Enables demand response, storage, and hybrid resources.

✅ Increases flexibility and regional reliability in Ontario.

 

The Independent Electricity System Operator (IESO) is introducing changes to Ontario's electricity system that will help save Ontarians about $3.4 billion over a 10-year period. The changes include holding annual capacity auctions to acquire electricity resources at lowest cost that can be called upon when and where they are needed to meet Ontario electricity needs. 

Today's announcement marks the release of a high level design for future auctions, with changes for electricity consumers expected as the first is set to be held in late 2022.

"These auctions will specify how much electricity we need, and introduce a competitive process to determine who can meet that need. It's a competition among all eligible resources, and it's the Ontario consumer, including industrial electricity ratepayers, who benefits through lower costs and a more flexible system better able to respond to changing demand and supply conditions," says IESO President and CEO Peter Gregg.

In the past decade, electricity supply was typically acquired through very prescriptive means with defined targets for specific types of resources such as wind and solar, and secured through 20-year contracts.  While these long-term commitments helped Ontario transform its generation fleet over the last decade, electricity cost allocation also played a role, but longer term contracts provide limited flexibility in dealing with unexpected changes in the power system. 

"Imagine signing a 20-year contract for your cable TV service. In five years' time, electricity rates could be lower, new competitors may have entered the market, or entirely new and innovative platforms and services like Netflix may have emerged. You miss out on opportunities for improvement by being locked-in," says Gregg.

Provincial electricity demand has traditionally fluctuated over time due to factors like economic growth, conservation and the introduction of generating resources on local distribution systems, with occasional issues such as phantom demand affecting customers' costs as well. Technological changes are adding another layer of uncertainty to future demand as electric vehicles, energy storage and low-cost solar panels become more common.

"Our planners do their best to forecast electricity demand, but the truth is there's no such thing as certainty in electricity planning. That's why flexibility is so important. We don't want Ontarians to have to pay more on the typical Ontario electricity bill for electricity resources than are needed to ensure a reliable power system that can continue to meet Ontario's needs," says IESO Vice President and COO Leonard Kula.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified