Run cars on batteries, not natural gas

By EV World


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
With the dramatic increase in oil prices earlier this year translating into higher prices at the gas pump in the United States, concerns over U.S. dependence on foreign oil are once again part of the national discussion on energy security.

Combined with the growing understanding that carbon emissions from the combustion of fossil fuels are driving global climate change, the debate is now focused on how to restructure the U.S. transport system to solve these two problems. While the idea of running U.S. vehicles on natural gas has lately received a great deal of attention, powering our cars with green electricity is a more sensible option on all fronts — national security, efficiency, climate stabilization, and economics.

Having a fleet of natural gas-powered vehicles (NGVs) would simply replace U.S. dependence on foreign oil with a dependence on natural gas, another fossil fuel. The United States has scarcely 3 percent of the worldÂ’s proved natural gas reserves, yet even without the increased demand that would result from an NGV fleet, the country already consumes nearly a quarter of the worldÂ’s natural gas.

At current rates of consumption, U.S. proved reserves would only meet national demand for another nine years.

U.S. natural gas production has remained relatively constant over the last two decades and is unlikely to increase over the long run, despite growing consumption. Consequently, any rise in demand is likely to be met by increasing imports. Since the late 1980s, U.S. net imports of natural gas — primarily from Canada — have tripled. The U.S. Department of Energy projects that by 2016 the majority of U.S. natural gas imports will come from outside North America.

With Russia and Iran topping the list of countries with the largest proved reserves of natural gas, a growing reliance on imports would increase the strategic vulnerability of the United States. These two nations — which along with 14 others collectively control nearly three fourths of the world’s natural gas reserves — are members of a Gas Exporting Countries Forum that was established in 2001.

While there is no direct evidence that these countries are seeking to form a natural gas cartel, at the ForumÂ’s 2005 annual meeting they discussed how to maintain a satisfactorily high natural gas price.

Just like oil, natural gas is a finite, nonrenewable resource. This means that switching to a fleet of NGVs would be at best a short-term fix. As natural gas becomes more difficult to obtain and more costly, a fleet of NGVs and the 20,000 or so natural gas refueling stations that would be required to support them would simply be abandoned.

A better investment is one that supports a fleet of plug-in hybrid electric vehicles (PHEVs), such as the Chevy Volt slated for sale in 2010, which can use the existing electric infrastructure. A study by the U.S. Department of EnergyÂ’s Pacific Northwest National Laboratory found that if all U.S. automobiles were PHEVs, the current U.S. infrastructure could provide power for more than 70 percent of the fleet. Battery charging would occur mostly at night, when demand for electricity is low.

In the emerging energy economy — an economy built on domestic wind, solar, and geothermal energy sources — the greening of the grid by replacing fossil fuel-based electrical generation will also be a greening of the transport system. Beyond the grid, distributed power systems — solar cells on rooftops, for example — could also be used to power PHEVs.

With today’s energy mix, PHEVs running on electricity from the grid are nearly three times more efficient than NGVs on a “well-to-wheel” basis — that is, when considering the full life cycle of the energy source, from fuel extraction to combustion to vehicle propulsion. This is because internal combustion engines, such as those used in natural gas vehicles and in today’s gas-powered automobile fleet, are incredibly inefficient. Only 20 percent or so of the energy in the fuel is used to move the vehicle. The other 80 percent is wasted as heat. Thus, choosing electric vehicles over NGVs can sharply reduce energy demand.

This important fact seems to have escaped T. Boone Pickens, the legendary oil tycoon from Texas who is now promoting a plan to replace natural gas in the electric power sector with wind-generated electricity and use the freed up natural gas to power a fleet of NGVs. Burning natural gas in a new combined cycle power plant is three times as efficient as burning natural gas in a car. Even including electrical losses from transmission, distribution, and battery charging, running a car on electricity from a natural gas power plant is more than twice as efficient.

Keeping natural gas in the electric sector to help power a fleet of PHEVs is therefore the logical choice. Wind-generated electricity should replace electricity from coal-fired power plants, the most polluting power source.

Under normal driving conditions, well-to-wheel carbon dioxide emissions for vehicles running on electricity from natural gas-fired power plants are one fourth as high as emissions from cars directly burning natural gas. Since a PHEV operating in electric-only mode has no tailpipe emissions, electrifying transport would move the majority of carbon emissions from millions of vehicles to centralized electricity-generating plants, greatly simplifying the task of controlling emissions.

As fossil-based power generation is replaced with wind and solar power, cumulative carbon emissions from centralized power facilities will be greatly reduced.

Carbon pollution is not the only environmental concern. Over the last decade, the decline in U.S. conventional natural gas production has been offset by turning to more unconventional sources, such as coalbed methane, tight sandstones, and gas shales.

Between 1998 and 2007, this unconventional production increased from 28 to 47 percent of total output. Growing reliance on gas shales in particular is raising concerns about water consumption and contamination. Extracting gas from this source involves hydraulic fracturing, a process that injects water, sand, and chemicals into the shale layer at extremely high pressures.

The process can use millions of gallons of water per extraction well and is known to leak chemicals into surrounding aquifers. The Commissioner of the Department of Environmental Protection for New York City recently wrote to the New York State Department of Environmental Conservation voicing concerns that drilling for natural gas in the Marcellus Shale formation will contaminate New York CityÂ’s watershed, jeopardizing drinking water. Opposition to unconventional production is likely to rise as gas companies attempt to expand operations into increasingly sensitive areas.

On economics, driving with electricity is far cheaper than driving with gasoline or natural gas. The average new U.S. car can travel roughly 30 miles on a gallon of gasoline, which cost $3.91 in July 2008 (the latest date for which comparable price data for natural gas is available). Traveling the same distance with natural gas cost around $2.51, while with electricity, using the existing electrical generation mix, it cost around 73¢.

In addition to being cheaper, electricity is less vulnerable to price shocks than natural gas. Electricity is generated from many different energy sources, so the impact of a quick rise in the price of any one fuel is usually tempered by stable prices for other fuels. In the new renewable energy economy, electricity prices will be insulated against fuel shocks, since energy from the wind and the sun is abundant and free.

While the price of residential electricity in the United States has increased only 30 percent since 1995, the price of natural gas has more than tripled due to rising demand and production costs. With the fast-industrializing economies of China and India expected to compete with the United States for natural gas, prices will likely continue their sharp upward trend.

Choosing natural gas to power our vehicles would send the United States down the same expensive and inefficient path that created our addiction to foreign oil and our dependence on a resource that will ultimately run out. Choosing green electricity can take us in a new direction — one that leads to improved energy security and a stabilizing climate.

Related News

Can California Manage its Solar Boom?

California Duck Curve highlights midday solar oversupply and steep evening peak demand, stressing grid stability. Solutions include battery storage, demand response, diverse renewables like wind, geothermal, nuclear, and regional integration to reduce curtailment.

 

Key Points

A mismatch between midday solar surplus and evening demand spikes, straining the grid without storage and flexibility.

✅ Midday solar oversupply forces curtailment and wasted clean energy.

✅ Evening ramps require fast, fossil peaker plants to stabilize load.

✅ Batteries, demand response, regional trading flatten the curve.

 

California's remarkable success in adopting solar power, including a near-100% renewable milestone, has created a unique challenge: managing the infamous "duck curve." This distinctive curve illustrates a growing mismatch between solar electricity generation and the state's energy demands, creating potential problems for grid stability and ultimately threatening to slow California's progress in the fight against climate change.


The Shape of the Problem

The duck curve arises from a combination of high solar energy production during midday hours and surging energy demand in the late afternoon and evening when solar power declines. During peak solar hours, the grid often has an overabundance of electricity, and curtailments are increasing as a result, while as the sun sets, demand surges when people return home and businesses ramp up operations. California's energy grid operators must scramble to make up this difference, often relying on fast-acting but less environmentally friendly power sources.


The Consequences of the Duck Curve

The increasing severity of the duck curve has several potential consequences for California:

  • Grid Strain: The rapid ramp-up of power sources to meet evening demand puts significant strain on the electrical grid. This can lead to higher operational costs and potentially increase the risk of blackouts during peak demand times.
  • Curtailed Energy: To avoid overloading the grid, operators may sometimes have to curtail excess solar energy during midday, as rising curtailment reports indicate, essentially wasting clean electricity that could have been used to displace fossil fuel generation.
  • Obstacle to More Solar: The duck curve can make it harder to add new solar capacity, as seen in Alberta's solar expansion challenges, for fear of further destabilizing the grid and increasing the need for fossil fuel-based peaking plants.


Addressing the Challenge

California is actively seeking solutions to mitigate the duck curve, aligning with national decarbonization pathways that emphasize practicality. Potential strategies include:

  • Energy Storage: Deploying large-scale battery storage can help soak up excess solar electricity during the day and release it later when demand peaks, smoothing out the duck curve.
  • Demand Flexibility: Encouraging consumers to shift their energy use to off-peak hours through incentives and smart grid technologies can help reduce late-afternoon surges in demand.
  • Diverse Power Sources: While solar is crucial, a balanced mix of energy sources, including geothermal, wind, and nuclear, can improve grid stability and reduce reliance on rapid-response fossil fuel plants.
  • Regional Cooperation: Integrating California's grid with neighboring states can aid in balancing energy supply and demand across a wider geographical area.


The Ongoing Solar Debate

The duck curve has become a central point of debate about the future of California's energy landscape. While acknowledging the challenge, solar advocates argue for continued expansion, backed by measures like a bill to require solar on new buildings, emphasizing the urgent need to transition away from fossil fuels. Grid operators and some utility companies call for a more cautious approach, emphasizing grid reliability and potential costs if the problem isn't effectively managed.


Balancing California's Needs and its Green Ambitions

Finding the right path forward is essential; it will determine whether California can continue to lead the way in solar energy adoption while ensuring a reliable and affordable electricity supply. Successfully navigating the duck curve will require innovation, collaboration, and a strong commitment to building a sustainable energy system, as wildfire smoke impacts on solar continue to challenge generation predictability.

 

Related News

View more

Bitcoin mining uses so much electricity that 1 city could curtail facility's power during heat waves

Medicine Hat Bitcoin Mining Facility drives massive electricity demand and energy use, leveraging natural gas and nearby wind power; Hut 8 touts economic growth, while critics cite carbon emissions, renewables integration, and climate impact.

 

Key Points

A Hut 8 project in Alberta that mines bitcoin at scale, consuming up to 60 MW and impacting energy and emissions.

✅ Consumes more than 60 MW, rivaling citywide electricity use

✅ Sited by natural gas plant; wind turbines nearby

✅ Economic gains vs. carbon emissions and climate risks

 

On the day of the grand opening of the largest bitcoin mining project in the country, the weather was partly cloudy and 15 C. On a Friday afternoon like this one, the new facility uses as much electricity as all of Medicine Hat, Alta., a city of more than 60,000 people and home to several large industrial plants.

The vast amount of electricity needed for bitcoin mining is why the city of Medicine Hat has championed the economic benefits of the project, while environmentalists say they are wary of the significant energy use.

Toronto-based Hut 8 has spent more than $100 million to develop the 4½-hectare site on the northern edge of the city. It has 56 shipping containers, each filled with 180 computer servers that digitally mine for bitcoin around the clock.

The company said it has already mined more than 3,300 bitcoins in Alberta, including at its much smaller site in Drumheller. On average, the Medicine Hat facility mines about 20 bitcoins per day. The value of bitcoin can fluctuate daily, but has sold recently for around $9,000.

The bitcoin mining facility is located right beside the city of Medicine Hat's new natural gas-fired power plant and four wind turbines are a short distance away. The bitcoin plant can consume more than 60 megawatts of power, more than 10 times more electricity used by any other facility in the city, according to the mayor.

That's why, in the event of a summer heat wave, the city has provisions in place to pull the plug on the electricity it provides to Hut 8, mirroring utility pauses on crypto loads seen elsewhere, so there won't be any blackouts for residents, according to the mayor.

Still, some say the bitcoin mining industry wastes far too much energy

"It's a huge magnitude when you talk about the carbon emissions," said Saeed Kaddoura, an analyst with the Pembina Institute, an environmental think-tank. "Moving forward, there needs to be some consideration on what the environmental impact of this is."

Medicine Hat owns its own natural gas and electricity generation and distribution businesses. The city leases the land to Hut 8 and the facility employs 40 full-time workers. Add up the economic benefits and the city of Medicine Hat will receive a significant financial boost from the new project, says Ted Clugston, the city's mayor.

Financial details of the city's deal with Hut 8 are not disclosed.

For more than a century, the city has attracted business by offering low-cost energy, and the mayor said this project is no different.

"They could have gone anywhere in the world and they chose Medicine Hat," said Clugston. "[Hut 8] is not here for renewable energy because it is not reliable. They need gas-fired generation and we have it in spades."

Environmental groups are concerned by the sheer amount of energy consumed by bitcoin mining, with some utilities warning they can't serve new energy-intensive customers right now, especially in places like Medicine Hat where most of the electricity is produced by fossil fuels.

The bitcoin system is designed, so only a limited number of the cryptocurrency can be mined everyday. Over time, as more miners compete for a decreasing number of available bitcoins, facilities will have to use more electricity compared to the amount of the cryptocurrency they collect.

"The way the bitcoin algorithm works is that it's designed to waste as much electricity as possible. And the more popular bitcoin becomes, the more electricity it wastes," said Keith Stewart, a spokesperson for Greenpeace.

Stewart questions whether natural gas should be used to produce a digital product.

"If you live in Alberta, you want to have heat and light, those types of things. I don't think bitcoin is a necessity of life for anyone," he said.

The CEO of Hut 8 completely disagrees, arguing the cryptocurrency is essential.  

"Bitcoin was created during the financial crisis. It has really served a purpose in terms of providing the opportunity for people who don't necessarily trust their government or their central banks," said Andrew Kiguel.

 

Related News

View more

IAEA Reviews Belarus’ Nuclear Power Infrastructure Development

Belarus Nuclear Power Infrastructure Review evaluates IAEA INIR Phase 3 readiness at Ostrovets NPP, VVER-1200 reactors, legal and regulatory framework, commissioning, safety, emergency preparedness, and energy diversification in a low-carbon program.

 

Key Points

An IAEA INIR Phase 3 assessment of Belarus readiness to commission and operate the Ostrovets NPP with VVER-1200 units.

✅ Reviews legal, regulatory, and institutional arrangements

✅ Confirms Phase 3 readiness for safe commissioning and operation

✅ Highlights good practices in peer reviews and emergency planning

 

An International Atomic Energy Agency (IAEA) team of experts today concluded a 12-day mission to Belarus to review its infrastructure development for a nuclear power programme. The Integrated Nuclear Infrastructure Review (INIR) was carried out at the invitation of the Government of Belarus.

Belarus, seeking to diversify its energy production with a reliable low-carbon source, and aware of the benefits of energy storage for grid flexibility, is building its first nuclear power plant (NPP) at the Ostrovets site, about 130 km north-west of the capital Minsk. The country has engaged with the Russian Federation to construct and commission two VVER-1200 pressurised water reactors at this site and expects the first unit to be connected to the grid this year.

The INIR mission reviewed the status of nuclear infrastructure development using the Phase 3 conditions of the IAEA’s Milestones Approach. The Ministry of Energy of Belarus hosted the mission.

The INIR team said Belarus is close to completing the required nuclear power infrastructure for starting the operation of its first NPP. The team made recommendations and suggestions aimed at assisting Belarus in making further progress in its readiness to commission and operate it, including planning for integration with variable renewables, as advances in new wind turbines are being deployed elsewhere to strengthen the overall energy mix.

“This mission marks an important step for Belarus in its preparations for the introduction of nuclear power,” said team leader Milko Kovachev, Head of the IAEA’s Nuclear Infrastructure Development Section. “We met well-prepared, motivated and competent professionals ready to openly discuss all infrastructure issues. The team saw a clear drive to meet the objectives of the programme and deliver benefits to the Belarusian people, such as supporting the country’s economic development, including growth in EV battery manufacturing sectors.”

The team comprised one expert from Algeria and two experts from the United Kingdom, as well as seven IAEA staff. It reviewed the status of 19 nuclear infrastructure issues using the IAEA evaluation methodology for Phase 3 of the Milestones Approach, noting that regional integration via an electricity highway can shape planning assumptions as well. It was the second INIR mission to Belarus, who hosted a mission covering Phases 1 and 2 in 2012.

Prior to the latest mission, Belarus prepared a Self-Evaluation Report covering all infrastructure issues and submitted the report and supporting documents to the IAEA.

The team highlighted areas where further actions would benefit Belarus, including the need to improve institutional arrangements and the legal and regulatory framework, drawing on international examples of streamlined licensing for advanced reactors to ensure a stable and predictable environment for the programme; and to finalize the remaining arrangements needed for sustainable operation of the nuclear power plant.

The team also identified good practices that would benefit other countries developing nuclear power in the areas of programme and project coordination, the use of independent peer reviews, cooperation with regulators from other countries, engagement with international stakeholders and emergency preparedness, and awareness of regional initiatives such as new electricity interconnectors that can enhance system resilience.

Mikhail Chudakov, IAEA Deputy Director General and Head of the Department of Nuclear Energy attended the Mission’s closing meeting. “Developing the infrastructure required for a nuclear power programme requires significant financial and human resources, and long lead times for preparation and the approval of major transmission projects that support clean power flows, and the construction activities,” he said. “Belarus has made commendable progress since the decision to launch a nuclear power programme 10 years ago.”

“Hosting the INIR mission, Belarus demonstrated its transparency and genuine interest to receive an objective professional assessment of the readiness of its nuclear power infrastructure for the commissioning of the country’s first nuclear power plant,” said Mikhail Mikhadyuk, Deputy Minister of Energy of the Republic of Belarus. ”The recommendations and suggestions we received will be an important guidance for our continuous efforts aimed at ensuring the highest level of safety and reliability of the Belarusian NPP."
 

 

Related News

View more

Cape Town to Build Own Power Plants, Buy Additional Electricity

Cape Town Renewable Energy Plan targets 450+ MW via solar, wind, and battery storage, cutting Eskom reliance, lowering greenhouse gas emissions, stabilizing electricity prices, and boosting grid resilience through municipal procurement, PPAs, and city-owned plants.

 

Key Points

A municipal plan to procure over 450 MW, cut Eskom reliance, stabilize prices, and reduce Cape Town emissions.

✅ Up to 150 MW from private plants within the city

✅ 300 MW to be purchased from outside Cape Town later

✅ City financing 100-200 MW of its own generation

 

Cape Town is seeking to secure more than 450 megawatts of power from renewable sources to cut reliance on state power utility Eskom Holdings SOC Ltd., where wind procurement cuts were considered during lockdown, and reduce greenhouse gas emissions.

South Africa’s second-biggest city is looking at a range of options, including geothermal exploration in comparable markets, and expects the bulk of the electricity to be generated from solar plants, Kadri Nassiep, the city’s executive director of energy and climate change, said in an interview.

On July 14 the city of 4.6 million people released a request for information to seek funding to build its own plants. This month or next it will seek proposals for the provision of as much as 150 megawatts from privately owned plants, largely solar additions, to be built and operated within the city, he said. As much as 300 megawatts may also be purchased at a later stage from plants outside of Cape Town, according to Nassiep.

The city could secure finance to build 100 to 200 megawatts of its own generation capacity, Nassiep said. “We realized that it is important for the city to be more in control around the pricing of the power,” he added.

Power Outages

Cape Town’s foray into the securing of power from sources other than Eskom comes after more than a decade of intermittent electricity outages, while elsewhere in Africa coal projects face scrutiny from lenders, because the utility can’t meet national demand. The government last year said municipalities could find alternative suppliers.

Earlier this month Ethekwini, the municipal area that includes the city of Durban, issued a request for information for the provision of 400 megawatts of power, similar to BC Hydro’s call for power driven by EV uptake.

The City of Johannesburg will in September seek information and proposals for the construction of a 150-megawatt solar plant, reflecting moves like Ontario’s new wind and solar procurements to tackle supply gaps, 50 megawatts of rooftop solar panels and the refurbishment of an idle gas-fired plant that could generate 20 megawatts, it said in June. It will also seek information for the installation of 100 megawatts of battery storage.

Cape Town, which uses a peak of 1,800 megawatts of electricity in winter, hopes to start generating some of its own power next year, aligning with SaskPower’s 2030 renewables plan seen in Canada, according to a statement that accompanied its request for financing proposals.
 

 

Related News

View more

Norway Considers Curbing Electricity Exports to Avoid Shortages

Norway Electricity Export Limits weigh hydro reservoirs, energy security, EU-UK interconnectors, and record power prices amid Russia gas cuts; Statnett grid constraints and subsidies debate intensify as reservoir levels fall, threatening winter supply.

 

Key Points

Rules to curb Norway's power exports when reservoirs are very low, protecting supply security and easing extreme prices.

✅ Triggered by low hydro levels and record day-ahead prices

✅ Considers EU/UK cables, Statnett operations, seasonal thresholds

✅ Aims to secure winter supply and expand subsidies

 

Norway, one of Europe’s biggest electricity exporters, is considering measures to limit power shipments to prevent domestic shortages amid surging prices, according to local media reports.

The government may propose a rule to limit exports if the water level for Norway’s hydro reservoirs drops to “very low” levels, to ensure security of supply, said Energy Minister Terje Aasland, according NTB newswire. The limit would take account of seasonality and would differ across the about 1,800 hydro reservoirs, he said. 

Russia’s gas supply cuts in retaliation for European sanctions over the war in Ukraine have triggered the continent’s worst energy crisis in decades, with demand surging for cheap Norwegian hydro electricity. Yet the government faces increasing calls from the public and opposition to limit flows abroad. Prices are near record levels in some parts of the Nordic nation as hydro-reservoir levels have plunged in the south after a drier-than-normal spring. 

The government has been under pressure to do something about exports since before April. Flows on the cables are regulated by deals with both the European Union and the UK energy market and Norway can’t simply cut flows. It’s the latest test of European solidarity and a wake-up call for Europe when it comes to energy supplies. Hungary is trying to ban energy exports after it declared an energy emergency.

Back in May, grid operator Statnett SF warned that Norway could face a strained power situation after less snowfall than usual during the winter. At the end of last week, the level of filling in Norwegian hydro reservoirs was 66.5%, compared with a median 74.9% for the corresponding time in 2002-2021, regulator NVE said. Day-ahead electricity prices in southwest Norway soared to a record 423 euros per megawatt-hour late last month, partly due to bottlenecks in the grid limiting supply from the northern regions.

The grid operator has been asked to present by Oct. 1 possible measures that need to be taken to secure supply and infrastructure security ahead of the winter. Statnett operates cables to the UK and Germany aimed at selling surplus electricity and would likely take a financial hit if curbs were introduced. “Operations of these will always follow current laws and regulations,” Irene Meldal, a company spokeswoman, said Friday by email. 

Premier Jonas Gahr Store signaled his minority government will file proposals that also include more subsidies to families and companies and align with Europe’s emergency price measures during August, according to an interview with TV2 on Thursday. Meanwhile, opposition politicians plan to hold an extraordinary parliament meeting to discuss boosting the subsidies.

Aasland will summon the parties’ representatives to a meeting on Monday on the electricity crisis, the Aftenposten newspaper reported on Friday, without citing anyone. He intends to inform the parties about the ongoing work and aims to “avoid rushed decisions” by the parliamentary majority.

Norway Faces Pressure to Curb Power Exports as Prices Surge (1)

The nation gets almost all of its electricity from its vast hydro resources. Historically, it has been able to export a hefty surplus and still have among the lowest prices in Europe. 
 

 

Related News

View more

Romania enhances safety at Cernavoda, IAEA reports

IAEA OSART Cernavoda highlights strengthened operational safety at Romania’s Cernavoda NPP, citing improved maintenance practices, simulator training, and deficiency reporting, with ongoing actions on spare parts procurement, procedure updates, and chemical control for nuclear compliance.

 

Key Points

An IAEA follow-up mission confirming improved operational safety at Cernavoda NPP, with remaining actions tracked.

✅ Enhanced simulator training and crew performance

✅ Improved field deficiency identification and reporting

✅ Ongoing upgrades to procedures, spares, and chemical control

 

The International Atomic Energy Agency (IAEA) said yesterday that the operator of Romania’s Cernavoda nuclear power plant had demonstrated "strengthened operational safety" by addressing the findings of an initial IAEA review in 2016. The Operational Safety Review Team (OSART) concluded a five-day follow-up mission on 8 March to the Cernavoda plant, which is on the Danube-Black Sea Canal, about 160 km from Bucharest.

The plant's two 706 MWe CANDU pressurised heavy water reactors, reflecting Canadian nuclear projects, came online in 1996 and 2007, respectively.

The OSART team was led by Fuming Jiang, a senior nuclear safety officer at the IAEA, which recently commended China's nuclear security in separate assessments.

"We saw improvements in key areas, such as the procurement of important spare parts, the identification and reporting of some deficiencies, and some maintenance work practices, as evidenced by relevant performance indicators," Jiang said, noting milestones at nuclear projects worldwide this year.

The team observed that several findings from the 2016 review had been fully addressed, including: enhanced operator crew performance during simulator training; better identification and reporting of deficiencies in the field; and improvement in maintenance work practices.

More time is required, it said, to fully implement some actions, including: further improvements in the procurement of important spare parts with relevance to safety; further enhancement in the revision and update of some operating procedures, drawing on lessons from Pickering NGS life extensions undertaken in Ontario; and control and labelling of some plant chemicals.

Dan Bigu, site vice president of Cernavoda NPP, said the 2016 mission had "proven to be very beneficial", adding that the current follow-up mission would "provide further catalyst support to our journey to nuclear excellence".

The team provided a draft report of the mission to the plant's management and a final report will be submitted to the Romanian government, which recently moved to terminate talks with a Chinese partner on a separate nuclear project, within three months.

OSART missions aim to improve operational safety by objectively assessing safety performance, even as the agency reports mines at Ukraine's Zaporizhzhia plant amid ongoing risks, using the IAEA's safety standards and proposing recommendations and suggestions for improvement where appropriate. The follow-up missions are standard components of the OSART programme and, as the IAEA has warned of risks from attacks on Ukraine's power grids, are typically conducted within two years of the initial mission.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.