Run cars on batteries, not natural gas

By EV World


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
With the dramatic increase in oil prices earlier this year translating into higher prices at the gas pump in the United States, concerns over U.S. dependence on foreign oil are once again part of the national discussion on energy security.

Combined with the growing understanding that carbon emissions from the combustion of fossil fuels are driving global climate change, the debate is now focused on how to restructure the U.S. transport system to solve these two problems. While the idea of running U.S. vehicles on natural gas has lately received a great deal of attention, powering our cars with green electricity is a more sensible option on all fronts — national security, efficiency, climate stabilization, and economics.

Having a fleet of natural gas-powered vehicles (NGVs) would simply replace U.S. dependence on foreign oil with a dependence on natural gas, another fossil fuel. The United States has scarcely 3 percent of the worldÂ’s proved natural gas reserves, yet even without the increased demand that would result from an NGV fleet, the country already consumes nearly a quarter of the worldÂ’s natural gas.

At current rates of consumption, U.S. proved reserves would only meet national demand for another nine years.

U.S. natural gas production has remained relatively constant over the last two decades and is unlikely to increase over the long run, despite growing consumption. Consequently, any rise in demand is likely to be met by increasing imports. Since the late 1980s, U.S. net imports of natural gas — primarily from Canada — have tripled. The U.S. Department of Energy projects that by 2016 the majority of U.S. natural gas imports will come from outside North America.

With Russia and Iran topping the list of countries with the largest proved reserves of natural gas, a growing reliance on imports would increase the strategic vulnerability of the United States. These two nations — which along with 14 others collectively control nearly three fourths of the world’s natural gas reserves — are members of a Gas Exporting Countries Forum that was established in 2001.

While there is no direct evidence that these countries are seeking to form a natural gas cartel, at the ForumÂ’s 2005 annual meeting they discussed how to maintain a satisfactorily high natural gas price.

Just like oil, natural gas is a finite, nonrenewable resource. This means that switching to a fleet of NGVs would be at best a short-term fix. As natural gas becomes more difficult to obtain and more costly, a fleet of NGVs and the 20,000 or so natural gas refueling stations that would be required to support them would simply be abandoned.

A better investment is one that supports a fleet of plug-in hybrid electric vehicles (PHEVs), such as the Chevy Volt slated for sale in 2010, which can use the existing electric infrastructure. A study by the U.S. Department of EnergyÂ’s Pacific Northwest National Laboratory found that if all U.S. automobiles were PHEVs, the current U.S. infrastructure could provide power for more than 70 percent of the fleet. Battery charging would occur mostly at night, when demand for electricity is low.

In the emerging energy economy — an economy built on domestic wind, solar, and geothermal energy sources — the greening of the grid by replacing fossil fuel-based electrical generation will also be a greening of the transport system. Beyond the grid, distributed power systems — solar cells on rooftops, for example — could also be used to power PHEVs.

With today’s energy mix, PHEVs running on electricity from the grid are nearly three times more efficient than NGVs on a “well-to-wheel” basis — that is, when considering the full life cycle of the energy source, from fuel extraction to combustion to vehicle propulsion. This is because internal combustion engines, such as those used in natural gas vehicles and in today’s gas-powered automobile fleet, are incredibly inefficient. Only 20 percent or so of the energy in the fuel is used to move the vehicle. The other 80 percent is wasted as heat. Thus, choosing electric vehicles over NGVs can sharply reduce energy demand.

This important fact seems to have escaped T. Boone Pickens, the legendary oil tycoon from Texas who is now promoting a plan to replace natural gas in the electric power sector with wind-generated electricity and use the freed up natural gas to power a fleet of NGVs. Burning natural gas in a new combined cycle power plant is three times as efficient as burning natural gas in a car. Even including electrical losses from transmission, distribution, and battery charging, running a car on electricity from a natural gas power plant is more than twice as efficient.

Keeping natural gas in the electric sector to help power a fleet of PHEVs is therefore the logical choice. Wind-generated electricity should replace electricity from coal-fired power plants, the most polluting power source.

Under normal driving conditions, well-to-wheel carbon dioxide emissions for vehicles running on electricity from natural gas-fired power plants are one fourth as high as emissions from cars directly burning natural gas. Since a PHEV operating in electric-only mode has no tailpipe emissions, electrifying transport would move the majority of carbon emissions from millions of vehicles to centralized electricity-generating plants, greatly simplifying the task of controlling emissions.

As fossil-based power generation is replaced with wind and solar power, cumulative carbon emissions from centralized power facilities will be greatly reduced.

Carbon pollution is not the only environmental concern. Over the last decade, the decline in U.S. conventional natural gas production has been offset by turning to more unconventional sources, such as coalbed methane, tight sandstones, and gas shales.

Between 1998 and 2007, this unconventional production increased from 28 to 47 percent of total output. Growing reliance on gas shales in particular is raising concerns about water consumption and contamination. Extracting gas from this source involves hydraulic fracturing, a process that injects water, sand, and chemicals into the shale layer at extremely high pressures.

The process can use millions of gallons of water per extraction well and is known to leak chemicals into surrounding aquifers. The Commissioner of the Department of Environmental Protection for New York City recently wrote to the New York State Department of Environmental Conservation voicing concerns that drilling for natural gas in the Marcellus Shale formation will contaminate New York CityÂ’s watershed, jeopardizing drinking water. Opposition to unconventional production is likely to rise as gas companies attempt to expand operations into increasingly sensitive areas.

On economics, driving with electricity is far cheaper than driving with gasoline or natural gas. The average new U.S. car can travel roughly 30 miles on a gallon of gasoline, which cost $3.91 in July 2008 (the latest date for which comparable price data for natural gas is available). Traveling the same distance with natural gas cost around $2.51, while with electricity, using the existing electrical generation mix, it cost around 73¢.

In addition to being cheaper, electricity is less vulnerable to price shocks than natural gas. Electricity is generated from many different energy sources, so the impact of a quick rise in the price of any one fuel is usually tempered by stable prices for other fuels. In the new renewable energy economy, electricity prices will be insulated against fuel shocks, since energy from the wind and the sun is abundant and free.

While the price of residential electricity in the United States has increased only 30 percent since 1995, the price of natural gas has more than tripled due to rising demand and production costs. With the fast-industrializing economies of China and India expected to compete with the United States for natural gas, prices will likely continue their sharp upward trend.

Choosing natural gas to power our vehicles would send the United States down the same expensive and inefficient path that created our addiction to foreign oil and our dependence on a resource that will ultimately run out. Choosing green electricity can take us in a new direction — one that leads to improved energy security and a stabilizing climate.

Related News

B.C. residents and businesses get break on electricity bills for three months

BC Hydro COVID-19 Bill Relief offers pandemic support with bill credits, rate cuts, and deferred payments for residential, small business, and industrial customers across B.C., easing utilities costs during COVID-19 economic hardship.

 

Key Points

COVID-19 bill credits, a rate cut, and deferred payments for eligible B.C. homes, small businesses, and industrial customers.

✅ Non-repayable credits equal to 3 months of average bills.

✅ Small businesses closed can skip bills for three months.

✅ Large industry may defer 50% of electricity costs.

 

B.C. residents who have lost their jobs or had their wages cut will get a three-month break on BC Hydro bills, while small businesses, amid commercial consumption plummets during COVID-19, are also eligible to apply for similar relief.

Premier John Horgan said Wednesday the credit for residential customers will be three times a household’s average monthly bill over the past year and does not have to be repaid as part of the government’s support package during the COVID-19 pandemic, as BC Hydro demand down 10% highlights the wider market pressures.

He said small businesses that are closed will not have to pay their power bills for three months, and in Ontario an Ontario COVID-19 hydro rebate complemented similar relief, and large industrial customers, including those operating mines and pulp mills, can opt to have 50 per cent of their electricity costs deferred, though a deferred costs report warned of long-term liabilities.

BC Hydro rates will be cut for all customers by one per cent as of April 1, a move similar to Ontario 2021 rate reductions that manufacturers supported lower rates at the time, after the B.C. Utilities Commission provided interim approval of an application the utility submitted last August.

Eligible residential customers can apply for bill relief starting next week and small business applications will be accepted as of April 14, while staying alert to BC Hydro scam attempts during this period, with the deadline for both categories set at June 30.

 

Related News

View more

How Bitcoin's vast energy use could burst its bubble

Bitcoin Energy Consumption drives debate on blockchain mining, proof-of-work, carbon footprint, and emissions, with CCAF estimates in terawatt hours highlighting electricity demand, fossil fuel reliance, and sustainability concerns for data centers and cryptocurrency networks.

 

Key Points

Electricity used by Bitcoin proof-of-work mining, often fossil-fueled, estimated by CCAF in terawatt hours.

✅ CCAF: 40-445 TWh, central estimate ~130 TWh

✅ ~66% of mining electricity sourced from fossil fuels

✅ Proof-of-work increases hash rate, energy, and emissions

 

The University of Cambridge Centre for Alternative Finance (CCAF) studies the burgeoning business of cryptocurrencies.

It calculates that Bitcoin's total energy consumption is somewhere between 40 and 445 annualised terawatt hours (TWh), with a central estimate of about 130 terawatt hours.

The UK's electricity consumption is a little over 300 TWh a year, while Argentina uses around the same amount of power as the CCAF's best guess for Bitcoin, as countries like New Zealand's electricity future are debated to balance demand.

And the electricity the Bitcoin miners use overwhelmingly comes from polluting sources, with the U.S. grid not 100% renewable underscoring broader energy mix challenges worldwide.

The CCAF team surveys the people who manage the Bitcoin network around the world on their energy use and found that about two-thirds of it is from fossil fuels, and some regions are weighing curbs like Russia's proposed mining ban amid electricity deficits.

Huge computing power - and therefore energy use - is built into the way the blockchain technology that underpins the cryptocurrency has been designed.

It relies on a vast decentralised network of computers.

These are the so-called Bitcoin "miners" who enable new Bitcoins to be created, but also independently verify and record every transaction made in the currency.

In fact, the Bitcoins are the reward miners get for maintaining this record accurately.

It works like a lottery that runs every 10 minutes, explains Gina Pieters, an economics professor at the University of Chicago and a research fellow with the CCAF team.

Data processing centres around the world, including hotspots such as Iceland's mining strain, race to compile and submit this record of transactions in a way that is acceptable to the system.

They also have to guess a random number.

The first to submit the record and the correct number wins the prize - this becomes the next block in the blockchain.

Estimates for bitcoin's electricity consumption
At the moment, they are rewarded with six-and-a-quarter Bitcoins, valued at about $50,000 each.

As soon as one lottery is over, a new number is generated, and the whole process starts again.

The higher the price, says Prof Pieters, the more miners want to get into the game, and utilities like BC Hydro suspending new crypto connections highlight grid pressures.

"They want to get that revenue," she tells me, "and that's what's going to encourage them to introduce more and more powerful machines in order to guess this random number, and therefore you will see an increase in energy consumption," she says.

And there is another factor that drives Bitcoin's increasing energy consumption.

The software ensures it always takes 10 minutes for the puzzle to be solved, so if the number of miners is increasing, the puzzle gets harder and the more computing power needs to be thrown at it.

Bitcoin is therefore actually designed to encourage increased computing effort.

The idea is that the more computers that compete to maintain the blockchain, the safer it becomes, because anyone who might want to try and undermine the currency must control and operate at least as much computing power as the rest of the miners put together.

What this means is that, as Bitcoin gets more valuable, the computing effort expended on creating and maintaining it - and therefore the energy consumed - inevitably increases.

We can track how much effort miners are making to create the currency.

They are currently reckoned to be making 160 quintillion calculations every second - that's 160,000,000,000,000,000,000, in case you were wondering.

And this vast computational effort is the cryptocurrency's Achilles heel, says Alex de Vries, the founder of the Digiconomist website and an expert on Bitcoin.

All the millions of trillions of calculations it takes to keep the system running aren't really doing any useful work.

"They're computations that serve no other purpose," says de Vries, "they're just immediately discarded again. Right now we're using a whole lot of energy to produce those calculations, but also the majority of that is sourced from fossil energy, and clean energy's 'dirty secret' complicates substitution."

The vast effort it requires also makes Bitcoin inherently difficult to scale, he argues.

"If Bitcoin were to be adopted as a global reserve currency," he speculates, "the Bitcoin price will probably be in the millions, and those miners will have more money than the entire [US] Federal budget to spend on electricity."

"We'd have to double our global energy production," he says with a laugh, even as some argue cheap abundant electricity is getting closer to reality today. "For Bitcoin."

He says it also limits the number of transactions the system can process to about five per second.

This doesn't make for a useful currency, he argues.

Rising price of bitcoin graphic
And that view is echoed by many eminent figures in finance and economics.

The two essential features of a successful currency are that it is an effective form of exchange and a stable store of value, says Ken Rogoff, a professor of economics at Harvard University in Cambridge, Massachusetts, and a former chief economist at the International Monetary Fund (IMF).

He says Bitcoin is neither.

"The fact is, it's not really used much in the legal economy now. Yes, one rich person sells it to another, but that's not a final use. And without that it really doesn't have a long-term future."

What he is saying is that Bitcoin exists almost exclusively as a vehicle for speculation.

So, I want to know: is the bubble about to burst?

"That's my guess," says Prof Rogoff and pauses.

"But I really couldn't tell you when."

 

Related News

View more

Ottawa won't oppose halt to Site C work pending treaty rights challenge

Site C Dam Injunction signals Ottawa's neutrality while B.C. reviews a hydroelectric dam project on the Peace River, amid First Nations treaty rights claims, federal approval defenses, and scrutiny of environmental assessment and Crown consultation.

 

Key Points

A legal request to pause Site C while courts weigh First Nations treaty rights, environmental review, and approvals.

✅ Ottawa neutral on injunction; still defends federal approvals

✅ First Nations cite treaty rights over Peace River territory

✅ B.C. jurisdiction, environmental assessment and Crown consultation at issue

 

The federal government is not going to argue against halting construction of the controversial Site C hydroelectric dam in British Columbia while a B.C. court decides if the project violates constitutionally protected treaty rights.

 

Work on Site C suspended prior to First Nations lawsuit

However a spokeswoman for Environment Minister Catherine McKenna said Monday the government will continue to defend the federal approval given for the project in December 2014, even though that approval was given using an environmental review process McKenna herself has said is fundamentally flawed.

The Site C project is an 1,100-megawatt dam and generating station on the Peace River in northern B.C. that will flood parts of the traditional territory of the West Moberly and Prophet River First Nations.

#google#

In January, they filed a civil court case against the provincial government, B.C. Hydro and the federal government asking a judge to decide if their rights were being violated by the dam. A few weeks later, West Moberly asked the court for an injunction to halt construction pending the outcome of the rights case, similar to other contested transmission projects like the Maine electricity corridor debate in New England.

On May 11, lawyers for Attorney General Jody Wilson-Raybould filed a notice that Canada would remain neutral on the question of the injunction, meaning Canada won't argue against the idea of postponing construction for months, if not years, while the rights case winds through the court.

Wilson-Raybould has been silent on Site C since being named Canada's minister of justice in 2015, but in 2012, when she was the B.C. regional chief for the Assembly of First Nations, she said the project was "running roughshod" over treaty rights. The Justice Department on Monday directed questions to Environment and Climate Change Canada.

 

Defence of environmental assessment

McKenna's spokeswoman, Caroline Theriault, said the injunction request is just a procedural step regarding construction and that it is B.C. jurisdiction not federal.

However, she said Canada will defend the environmental assessment and Crown consultation processes and the federally issued permits required for construction.

 

B.C. auditor general set to scrutinize Site C dam project

McKenna has legislation before the House of Commons to overhaul the process for environmental assessment of major projects like hydro dams and pipelines, arguing the former government's procedures had skewed too far towards proponents. The overhaul includes requiring traditional Indigenous knowledge be taken into account, a consideration also central to the Columbia River Treaty talks underway on both sides of the border.

However, Theriault said the commitment to overhaul the process also included a promise not to revisit projects that had already been approved, such as Site C.

"The federal environmental assessment process for the Site C project has already been upheld in other court actions," said Theriault.

 

'It feels kind of odd'

West Moberly Chief Roland Wilson said he was both excited and yet concerned by Canada's decision last week not to oppose the injunction.

"It feels kind of odd and makes me wonder what they're up to," Wilson said.

However he said all he has ever wanted was for the project to be stopped until the question of rights can be answered. Wilson said two previous dams on the Peace River already flooded 80 per cent of the functional land within West Moberly's territory and that Site C will flood half of what's left. That land is used for fishing and hunting and there is also concern the dam will allow mercury to leak into Moberly Lake, he said.

 

Retiree undaunted by steep odds against his petition to stop Site C dam

Construction began in 2015 and more than $2.4 billion has already been spent on a project that will at the earliest, not be completed until 2024 and will cost an estimated $10 billion total, with cost overrun risks underscored by the Muskrat Falls ratepayer agreement in Atlantic Canada.

The province continues to argue against the injunction and will also fight the rights case, even as Alberta suspends power purchase talks with B.C. over energy disputes. Premier John Horgan campaigned on a promise to review the Site C approval. A B.C. Utilities Commission report in November found there are alternatives to building it and that it will go over budget. Nevertheless Horgan in December said he had to let construction continue because cancelling the project would be too costly both for the province and its electricity consumers, despite the B.C. rate freeze announced around the same period.

 

Related News

View more

Inside Copenhagen’s race to be the first carbon-neutral city

Hedonistic Sustainability turns Copenhagen's ARC waste-to-energy plant into a public playground, blending ski slope, climbing wall, and trails with carbon-neutral heating, renewables, circular economy design, and green growth for climate action and liveability.

 

Key Points

A design approach fusing public recreation with clean-energy infrastructure to drive carbon-neutral, livable urban growth.

✅ Waste-to-energy plant doubles as recreation hub

✅ Supports carbon-neutral heating and renewables

✅ Stakeholder-driven, scalable urban climate model

 

“We call it hedonistic sustainability,” says Jacob Simonsen of the decision to put an artificial ski slope on the roof of the £485m Amager Resource Centre (Arc), Copenhagen’s cutting-edge new waste-to-energy power plant that feeds the city’s district heating network as well. “It’s not just good for the environment, it’s good for life.”

Skiing is just one of the activities that Simonsen, Arc’s chief executive, and Bjarke Ingels, its lead architect, hope will enhance the latest jewel in Copenhagen’s sustainability crown. The incinerator building also incorporates hiking and running trails, a street fitness gym and the world’s highest outdoor climbing wall, an 85-metre “natural mountain” complete with overhangs that rises the full height of the main structure.

In Copenhagen, green transformation goes hand-in-hand with job creation, a growing economy and a better quality of life

Frank Jensen, lord mayor

It’s all part of Copenhagen’s plan to be net carbon-neutral by 2025. Even now, after a summer that saw wildfires ravagethe Arctic Circle and ice sheets in Greenland suffer near-record levels of melt, the goal seems ambitious. In 2009, when the project was formulated, it was positively revolutionary.

“A green, smart, carbon-neutral city,” declared the cover of the climate action plan, aligning with a broader electric planet vision, before detailing the scale of the challenge: 100 new wind turbines; a 20% reduction in both heat and commercial electricity consumption; 75% of all journeys to be by bike, on foot, or by public transport; the biogas-ification of all organic waste; 60,000 sq metres of new solar panels; and 100% of the city’s heating requirements to be met by renewables.

Radical and far-reaching, the scheme dared to rethink the very infrastructure underpinning the city. There’s still not a climate project anywhere else in the world that comes close, even as leaders elsewhere champion a fully renewable grid by 2030.

And, so far, it’s working. CO2 emissions have been reduced by 42% since 2005, and while challenges around mobility and energy consumption remain (new technologies such as better batteries and carbon capture are being implemented, and global calls for clean electricity investment grow), the city says it is on track to achieve its ultimate goal.

More significant still is that Copenhagen has achieved this while continuing to grow in traditional economic terms. Even as some commentators insist that nothing short of a total rethink of free-market economics and corporate structures is required to stave off global catastrophe, the Danish capital’s carbon transformation has happened alongside a 25% growth in its economy over two decades. Copenhagen’s experience will be a model for other world cities as the global energy transition unfolds.

The sentiment that lies behind Arc’s conception as a multi-use public good – “hedonistic sustainability” – is echoed by Bo Asmus Kjeldgaard, former mayor of Copenhagen for the environment and the man originally tasked, back in 2010, with making the plan a reality.

“We combined life quality with sustainability and called it ‘liveability’,” says Kjeldgaard, now CEO of his own climate adaptation company, Greenovation. “We succeeded in building a good narrative around this, one that everybody could believe in.”

The idea was first floated in the late 1990s, when the newly elected Kjeldgaard had a vision of Copenhagen as the environmental capital of Europe. His enthusiasm ran into political intransigence, however, and despite some success, a lack of budget meant most of his work became “just another branding exercise – it was greenwashing”.

We’re such a rich country – change should be easy for us

Claus Nielsen, furniture maker and designer

But after stints as mayor of family and the labour market, and children and young people, he ended up back at environment in 2010 with renewed determination and, crucially, a broader mandate from the city council. “I said: ‘This time, we have to do it right,’” he recalls, “so we made detailed, concrete plans for every area, set the carbon target, and demanded the money and the manpower to make it a reality.”

He brought on board more than 200 stakeholders, from businesses to academia to citizen representatives, and helped them develop 22 specific business plans and 65 separate projects. So far the plan appears on track: there has been a 15% reduction in heat consumption, 66% of all trips in the city are now by bike, on foot or public transport, and 51% of heat and power comes from renewable electricity sources.

The onus placed on ordinary Copenhageners to walk and cycle more, pay higher taxes (especially on cars) and put up with the inconvenience of infrastructure construction has generally been met with understanding and good grace. And while some people remain critical of the fact that Copenhagen airport is not factored into the CO2 calculations – it lies beyond the city’s boundaries – and grumble about precise definitions and formulae, dissent has been rare.

This relative lack of nimbyism and carping about change can, says Frank Jensen, the city’s lord mayor, be traced to longstanding political traditions.

“Caring for the environment and taking responsibility for society in general has been an integral part of the upbringing of many Danes,” he says. “Moreover, there is a general awareness that climate change now calls for immediate, ambitious and collective action.” A 2018 survey by Concito, a thinktank, found that such action was a top priority for voters.

Jensen is keen to stress the cooperative nature of the plan and says “our visions have to be grounded in the everyday lives of people to be politically feasible”. Indeed, involving so many stakeholders, and allowing them to actively help shape both the ends and the means, has been key to the plan’s success so far and the continued goodwill it enjoys. “It’s so important to note that we [the authorities] cannot do this alone,” says Jørgen Abildgaard, Copenhagen’s executive climate programme director.

Many businesses around the world have typically been reluctant to embrace sustainability when a dip in profits or inconvenience might be the result, but not in Copenhagen. Martin Manthorpe, director of strategy, business development and public affairs at NCC, one of Scandinavia’s largest construction and industrial groups, was brought in early on by Abildgaard to represent industry on the municipality’s climate panel, and to facilitate discussions with the wider business community. He thinks there are several reasons why.

“The Danes have a trading mindset, meaning ‘What will I have to sell tomorrow?’ is just as important as ‘What am I producing today?’” he says. “Also, many big Danish companies are still ultimately family-owned, so the culture leans more towards long-term thinking.”

It is, he says, natural for business to be concerned with issues around sustainability and be willing to endure short-term pain: “To do responsible, long-term business, you need to see yourself as part of the larger puzzle that is called ‘society’.”

Furthermore, in Denmark climate change denial is given extremely short shrift. “We believe in the science,” says Anders Haugaard, a local entrepreneur. “Why wouldn’t you? We’re told sustainability brings only benefits and we’ve got no reason to be suspicious.”

“No one would dare argue against the environment,” says his friend Claus Nielsen, a furniture maker and designer. “We’re such a rich country – change should be easy for us.” Nielsen talks about how enlightened his kids are – “my 11-year-old daughter is now a flexitarian ” – and says that nowadays he mainly buys organic; Haugaard doesn’t see a problem with getting rid of petrol cars (the whole country is aiming to be fossil fuel-free by 2050 as the EU electricity use by 2050 is expected to double).

Above all, there’s a belief that sustainability need not make the city poorer: that innovation and “green growth” can be lucrative in and of themselves. “In Copenhagen, green transformation goes hand-in-hand with job creation, a growing economy and a better quality of life,” says Jensen. “We have also shown that it’s possible to combine this transition with economic growth and market opportunities for businesses, and I think that other countries can learn from our example.”

Besides, as Jensen notes, there is little alternative, and even less time: “National states have failed to take enough responsibility, but cities have the power and will to create concrete solutions. We need to start accelerating their implementation – we need to act now.”

 

Related News

View more

New Mexico Governor to Sign 100% Clean Electricity Bill ‘As Quickly As Possible’

New Mexico Energy Transition Act advances zero-carbon electricity, mandating public utilities deliver carbon-free electricity by 2045, with renewable targets of 50 percent by 2030 and 80 percent by 2040 to accelerate grid decarbonization.

 

Key Points

A state law requiring utilities to deliver carbon-free electricity by 2045, with 2030 and 2040 renewable targets.

✅ 100 percent carbon-free power from utilities by 2045

✅ Interim renewable targets: 50 percent by 2030, 80 percent by 2040

✅ Aligns with clean energy commitments in HI, CA, and DC

 

The New Mexico House of Representatives passed the Energy Transition Act Tuesday afternoon, sending the carbon-free electricity bill, a move aligned with proposals for a Clean Electricity Standard at the federal level, to Gov. Michelle Lujan Grisham.

Her opinions on it are known: she campaigned on raising the share of renewable energy, a priority echoed in many state renewable ambitions nationwide, and endorsed the ETA in a recent column.

"The governor will sign the bill as quickly as possible — we're hoping it is enrolled and engrossed and sent to her desk by Friday," spokesperson Tripp Stelnicki said in an email Tuesday afternoon.

Once signed, the legislation will commit the state to achieving zero-carbon electricity from public utilities by 2045. The bill also imposes interim renewable energy targets of 50 percent by 2030 and 80 percent by 2040, similar to Minnesota's 2040 carbon-free bill in its timeline.

The Senate passed the bill last week, 32-9. The House passed it 43-22.

The legislation would enter New Mexico into the company of Hawaii, California, where climate risks to grid reliability are shaping policy, and Washington, D.C., which have committed to eliminating carbon emissions from their grids. A dozen other states have proposed similar goals. Meanwhile, the Green New Deal resolution has prompted Congress to discuss the bigger task of decarbonizing the nation overall.

Though grid decarbonization has surged in the news cycle in recent months, even as some states consider moves in the opposite direction, such as a Wyoming bill restricting clean energy that would limit utility choices, New Mexico's bill arose from a years-long effort to rally stakeholders within the state's close-knit political community.

 

Related News

View more

Electricity use actually increased during 2018 Earth Hour, BC Hydro

Earth Hour BC highlights BC Hydro data on electricity use, energy savings, and participation in the Lower Mainland and Vancouver Island amid climate change and hydroelectric power dynamics.

 

Key Points

BC observance tracking BC Hydro electricity use and conservation during Earth Hour, amid hydroelectric power dominance.

✅ BC Hydro reports rising electricity use during Earth Hour 2018

✅ Savings fell from 2% in 2008 to near zero province-wide

✅ Hydroelectric grid yields low GHG emissions in BC

 

For the first time since it began tracking electricity use in the province during Earth Hour, BC Hydro said customers used more power during the 60-minute period when lights are expected to dim, mirroring all-time high electricity demand seen recently.

The World Wildlife Fund launched Earth Hour in Sydney, Australia in 2007. Residents and businesses there turned off lights and non-essential power as a symbol to mark the importance of combating climate change.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

#google#

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted, as record-breaking demand in 2021 and beyond changed consumption patterns.

 

Lights on

For Earth Hour this year, which took place 8:30-9:30 p.m. on March 24, BC Hydro says electricity use in the Lower Mainland increased by 0.5 per cent, even as it activated a winter payment plan to help customers manage bills. On Vancouver Island it increased 0.6 per cent.

In the province's southern Interior and northern Interior, power use remained the same during the event.

On Friday, the utility released a report called: "lights out". Why Earth Hour is dimming in BC. which explores the decline of energy savings related to Earth Hour in the province.

The WWF says the way in which hydro companies track electricity savings during Earth Hour is not an accurate measure of participation, and tracking of emerging loads like crypto mining electricity use remains opaque, and noted that more countries than ever are turning off lights for the event.

For 2018, the WWF shifted the focus of Earth Hour to the loss of wildlife across the globe.

BC Hydro says in its report that the symbolism of Earth Hour is still important to British Columbians, but almost all power generation in B.C. is hydroelectric, though recent drought conditions have required operational adjustments, and only accounts for one per cent of greenhouse gas emissions.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.