US: In 2021, Plug-Ins Traveled 19 Billion Miles On Electricity


plug in mileage in 2021

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

US Plug-in EV Miles 2021 highlight BEV and PHEV growth, DOE and Argonne data, 19.1 billion electric miles, 6.1 TWh consumed, gasoline savings, rising market share, and battery capacity deployed across the US light-duty fleet.

 

Key Points

They represent 19.1 billion electric miles by US BEVs and PHEVs in 2021, consuming 6.1 TWh of electricity.

✅ 700 million gallons gasoline avoided in 2021

✅ $1.3 billion fuel cost savings estimated

✅ Cumulative 68 billion EV miles since 2010

 

Plug-in electric cars are gradually increasing their market share in the US (reaching about 4% in 2021), which starts to make an impact even as the U.S. EV market share saw a brief dip in Q1 2024.

The Department of Energy (DOE)’s Vehicle Technologies Office highlights in its latest weekly report that in 2021, plug-ins traveled some 19.1 billion miles (31 billion km) on electricity - all miles traveled in BEVs and the EV mode portion of miles traveled in PHEVs, underscoring grid impacts that could challenge state power grids as adoption grows.

This estimated distance of 19 billion miles is noticeably higher than in 2020 (nearly 13 billion miles), which indicates how quickly the electrification of driving progresses, with U.S. EV sales continuing to soar into 2024. BEVs noted a 57% year-over-year increase in EV miles, while PHEVs by 24% last year (mostly proportionally to sales increase).

According to Argonne National Laboratory's Assessment of Light-Duty Plug-in Electric Vehicles in the United States, 2010–2021, the cumulative distance covered by plug-in electric cars in the US (through December 2021) amounted to 68 billion miles (109 billion miles).

U.S. Department of Transportation, Federal Highway Administration, December 2021 Traffic Volume Trends, 2022.

The report estimates that over 2.1 million plug-in electric cars have been sold in the US through December 2021 (about 1.3 million all-electric and 0.8 million plug-in hybrids), equipped with a total of more than 110 GWh of batteries, even as EV sales remain behind gas cars in overall market share.

It's also estimated that 19.1 billion electric miles traveled in 2021 reduced the national gasoline consumption by 700 million gallons of gasoline or 0.54%.

On the other hand, plug-ins consumed some 6.1 terawatt-hours of electricity (6.1 TWh is 6,100 GWh), which sounds like almost 320 Wh/mile (200 Wh/km), aligning with projections that EVs could drive a rise in U.S. electricity demand over time.

The difference between the fuel cost and energy cost in 2021 is estimated at $1.3 billion, with Consumer Reports findings further supporting the total cost advantages.

Cumulatively, 68 billion electric miles since 2010 is worth about 2.5 billion gallons of gasoline. So, the cumulative savings already is several billion dollars.

Those are pretty amazing numbers and let's just imagine that electric cars are just starting to sell in high volume, a trend that mirrors global market growth seen over the past decade. Every year those numbers will be improving, thus tremendously changing the world that we know today.

 

Related News

Related News

Within A Decade, We Will All Be Driving Electric Cars

Electric Vehicle Price Parity 2027 signals cheaper EV manufacturing as battery costs plunge, widening model lineups, and tighter EU emissions rules; UBS and BloombergNEF foresee parity, with TCO advantages over ICE amid growing fast-charging networks.

 

Key Points

EV cost parity in 2027 when manufacturing undercuts ICE, led by cheaper batteries, wider lineups, and emissions policy.

✅ Battery costs drop 58% next decade, after 88% fall

✅ Manufacturing parity across segments from 2027

✅ TCO favors EVs; charging networks expand globally

 

A Bloomberg/NEF report commissioned by Transport & Environment forecasts 2027 as the year when electric vehicles will start to become cheaper to manufacture than their internal combustion equivalents across all segments, aligning with analyses that the EV age is arriving ahead of schedule for consumers and manufacturers alike, mainly due to a sharp drop in battery prices and the appearance of new models by more manufacturers.

Batteries, which have fallen in price by 88% over the past decade and are expected to plunge by a further 58% over the next 10 years, make up between one-quarter and two-fifths of the total price of a vehicle. The average pre-tax price of a mid-range electric vehicle is around €33,300, and higher upfront prices concern many UK buyers compared to €18,600 for its diesel or gasoline equivalent. In 2026, both are expected to cost around €19,000, while in 2030, the same electric car will cost €16,300 before tax, while its internal combustion equivalent will cost €19,900, and that’s without factoring in government incentives.

Other reports, such as a recent one by UBS, put the date of parity a few years earlier, by 2024, after which they say there will be little reason left to buy a non-electric vehicle, as the market has expanded from near zero to 2 million in just five years.

In Europe, carmakers will become a particular stakeholder in this transition due to heavy fines for exceeding emissions limits calculated on the basis of the total number of vehicles sold. Increasing the percentage of electric vehicles in the annual sales portfolio is seen by the industry as the only way to avoid these fines. In addition to brands such as Bentley or Jaguar Land Rover, which have announced the total abandonment of internal combustion engine technology by 2025, or Volvo, which has set 2030 as the target date, other companies such as Ford, which is postponing this date in its home market, also set 2030 for the European market, which clearly demonstrates the suitability of this type of policy.

Nevertheless internal combustion vehicles will continue to travel on the roads or will be resold in developing countries. In addition to the price factor, which is even more accentuated when estimates are carried out in terms of total cost of ownership calculations due to the lower cost of electric recharging versus fuel and lower maintenance requirements, other factors such as the availability of fast charging networks must be taken into account.

While price parity is approaching, it is worth thinking about the factors that are causing car sales, which are still behind gasoline models in share, to suffer: the chip crisis, which is strongly affecting the automotive industry and will most likely extend until 2022, is creating production problems and the elimination of numerous advanced electronic options in many models, which reduces the incentive to purchase a vehicle at the present time. These types of reasons could lead some consumers to postpone purchasing a vehicle precisely when we may be talking about the final years for internal combustion technology, which would increase the likelihood that, later on and as the price gap closes, they would opt for an electric vehicle.

Finally, in the United States, the ambitious infrastructure plan put in place by the Biden administration also promises to accelerate the transition to electric vehicles by addressing key barriers to mainstream adoption such as charging access, which in turn is fueling the interest of automotive companies to have more electric vehicles in their range. In Europe, meanwhile, more Chinese brands offering electric vehicles are beginning to enter the most advanced markets, such as Norway and the Netherlands, with plans to expand to the rest of the continent with very competitive offers in terms of price.

One way or another, the future of the automotive industry is electric, and the transition will take place during the remainder of this decade. You might want to think about it if you are weighing whether it’s time to buy an electric car this year.

 

Related News

View more

Climate change, not renewables, threaten grid

New Mexico Energy Transition Act advances renewable energy, battery storage, energy efficiency, and demand response to boost grid reliability during climate change-fueled heatwaves, reducing emissions while supporting solar and wind deployment.

 

Key Points

A state policy phasing out power emissions, scaling renewables and storage, bolstering grid reliability in extreme heat.

✅ Replaces coal generation with solar plus battery storage

✅ Enhances grid reliability during climate-driven heatwaves

✅ Promotes energy efficiency and demand response programs

 

While temperatures hit record highs across much of the West in recent weeks and California was forced to curb electricity service amid heat-driven grid strain that week, the power stayed on in New Mexico thanks to proactive energy efficiency and conservation measures.

Public Service Company of New Mexico on Aug. 19 did ask customers to cut back on power use during the peak demand time until 9 p.m., to offset energy supply issues due to the record-breaking heatwave that was one of the most severe to hit the West since 2006. But the Albuquerque Journal's Aug. 28 editorial, "PRC should see the light with record heat and blackouts," confuses the problem with the solution. Record temperatures fueled by climate change – not renewable energy – were to blame for the power challenges last month. And thanks to the Energy Transition Act, New Mexico is reducing climate change-causing pollution and better positioned to prevent the worst impacts of global warming.

During those August days, more than 80 million U.S. residents were under excessive heat warnings. As the Journal's editorial pointed out, California experienced blackouts on Aug. 14 and 15 as wildfires swept across the state and temperatures rose. In fact, a recent report by the University of Chicago's Climate Impact Lab found the world has experienced record heat this summer due to climate change, and heat-related deaths will continue to rise in the future.

As the recent California energy incidents show, climate change is a threat to a reliable electricity system and our health as soaring temperatures and heatwaves strain our grid, as seen in Texas grid challenges this year as well. Demand for electricity rises as people depend more on energy-intensive air conditioning. High temperatures also can decrease transmission line efficiency and cause power plant operators to scale back or even temporarily stop electricity generation.

Lobbyists for the fossil fuel industry may claim that the service interruptions and the conservation requests in New Mexico demonstrate the need for keeping fossil-fueled power generation for electricity reliability, echoing policy blame narratives in California that fault climate policies. But fossil fuel combustion still is subject to the factors that cause blackouts – while also driving climate change and making resulting heatwaves more common. After an investigation, California's own energy agencies found no substance to the claim that renewable energy use was a factor in the situation there, and it's not to blame in New Mexico, either.

New Mexico's Energy Transition Act is a bold, necessary step to limit the damage caused by climate change in the future. It creates a reasonable, cost-saving path to eliminating greenhouse gas emissions associated with generating electricity.

The New Mexico Public Regulation Commission properly applied this law when it recently voted unanimously to replace PNM's coal-fired generation at San Juan Generating Station with carbon-free solar energy and battery storage located in the Four Corners communities, a prudent step given California's looming electricity shortage warnings across the West. The development will create jobs and provide resources for the local school district and help ensure a stronger economy and a healthier future for the region.

As we expand solar and wind energy here in New Mexico, we can help ensure reliable electricity service by building out greater battery storage for renewable energy resources. Expanding regional energy markets that can dispatch the lowest-cost energy from across the region to places where it is needed most would make renewable energy more available and reduce costs, despite concerns over policy exports raised by some observers.

Energy efficiency and demand response are important when we are facing extraordinary conditions, and proven strategies to improve electricity reliability show how demand-side tools complement the grid, so it is unfortunate that the Albuquerque Journal made the unsubstantiated claim that a stray cloud will put out the lights. It was hot, supplies were tight on the electric grid, and in those moments, we should conserve. We should not use those moments to turn our back on progress.

 

Related News

View more

America's Largest Energy Customers Set a Bold New Ambition to Achieve a 90% Carbon-free U.S. Electricity System by 2030 and Accelerate Clean Energy Globally

Clean Energy Buyers Alliance 2030 Goal targets a 90% carbon-free U.S. grid, accelerating power-sector decarbonization via corporate renewable energy procurement, market and policy reforms, and customer demand to enable net-zero electrification across industries.

 

Key Points

The Alliance's plan to reach a 90% carbon-free U.S. electricity system by 2030 via customer-driven markets and policy.

✅ Corporate buyers scale renewable PPAs and aggregation

✅ Market and policy reforms unlock clean power access

✅ Goal aligns with net-zero and widespread electrification

 

The Clean Energy Buyers Association (CEBA) and the Clean Energy Buyers Institute (CEBI), which together make up the Clean Energy Buyers Alliance, have announced a profound new aspiration for impact: a 90% carbon-free U.S. electricity system by 2030 and a global community of energy customers driving the global energy transition forward.

Alongside the two organizations’ bold new vision of the future – customer-driven clean energy for all – the Alliance will super-charge the work of its predecessor organizations, the Renewable Energy Buyers Alliance (REBA) and the REBA Institute, which represent the most iconic global companies with more than $6 trillion dollars in annual revenues and 14 million employees.

“This is the decisive decade for climate action and especially for decarbonization of the power sector,” said Miranda Ballentine, CEO of CEBA and CEBI. “To achieve a net-zero economy worldwide by 2050, the United States must lead. And the power sector must accelerate toward a 2030 timeline as electrification of other industries will be driving up power use.”

In the U.S. alone, more than 60% of electricity is consumed by the commercial and industrial sectors. Institutional energy customers have accelerated the deployment of clean energy solutions over the last 10 years to achieve increasingly ambitious greenhouse gas reduction targets, even as a federal coal plan remains under debate, and further cement the critical role of customers in decarbonizing the energy system. The Clean Energy Buyers Association Deal Tracker shows that 7.9 GW of new corporate renewable energy project announcements in the first three quarters of this year are equivalent to 40% of all new carbon free energy capacity added in the U.S. so far in 2021.

“With our new vision of customer-driven clean energy for all, we are also unveiling new organization brands,” Ballentine continued. “I’m excited to announce that REBA will become CEBA—the Clean Energy Buyers Association—and will focus on activating our community of energy customers and partners to deploy market and policy solutions for a carbon-free energy system. The REBA Institute will become the Clean Energy Buyers Institute (CEBI) and will focus on solving the toughest market and policy barriers to achieving a carbon-free energy system in collaboration with policymakers, leading philanthropies, and energy market stakeholders. Together, CEBA and CEBI will make up the new Clean Energy Buyers Alliance.”

To decarbonize the U.S. electricity system 90% by 2030, a goal aligned with California's 100% carbon-free mandate efforts, and to activate a community of customers driving clean energy around the world, the Clean Energy Buyers Alliance will drive three critical transformations to:

Unlock markets so that energy customers can use their buying power and market-influence, building on a historic U.S. climate deal this year, to accelerate electricity decarbonization.

Catalyze communities of energy customers to actively choose clean energy through Mission Innovation collaborations and to do more together than they could on their own.

Decarbonize the grid for all, since not every energy customer can or will use their buying power to choose clean energy.

“The Clean Energy Buyers Alliance is setting the bar for what energy buyers, utilities and governments should and need to be doing to achieve a carbon-free energy future,” said Michael Terrell, CEBA board chair and Director of Energy at Google. “This ambitious approach is a critical step in tackling climate change. The time for meaningful climate action is now and we must collectively be bolder and more ambitious in our actions in both the public and private sectors – starting today.”

This new vision of customer-driven clean energy for all is an unprecedented opportunity for every member of the Clean Energy Buyers Alliance community – from energy customers to providers to manufacturers – to all parties up and down the energy supply chain to lead the evolution of a new energy economy, which will require incentives to double investment in clean energy to rise to $4 trillion by 2030.

 

Related News

View more

YVR welcomes government funding for new Electric Vehicle Chargers

YVR EV Charging Infrastructure Funding backs new charging stations at Vancouver International Airport via ZEVIP and CleanBC Go Electric, supporting Net Zero 2030 with Level 2 and DC fast charging across Sea Island.

 

Key Points

A federal and provincial effort to expand EV charging at YVR, accelerating airport electrification toward Net Zero 2030.

✅ Up to 74 new EV charging outlets across Sea Island by 2025

✅ Funded through ZEVIP and CleanBC Go Electric programs

✅ Supports passengers, partners, and YVR fleet electrification

 

Vancouver International Airport (YVR) welcomes today’s announcement from the Government of Canada, which confirms new federal funding under Natural Resource Canada’s Zero Emission Vehicle Infrastructure Program (ZEVIP) and broader zero-emission vehicle incentives for essential infrastructure at the airport that will further enable YVR to achieve its climate targets.

This federal funding, combined with funding through the Government of British Columbia’s CleanBC Go Electric program, which includes EV charger rebates, will support the installation of up to 74 additional Electric Vehicle (EV) Charging outlets across Sea Island over the next three years. EV charging infrastructure is identified as a key priority in the airport’s Roadmap to Net Zero 2030. It is also an important part of its purpose in being a Gateway to the New Economy.

“We know that our passengers’ needs and expectations are changing as EV adaptation increases across our region and policies like the City’s EV-ready requirements take hold, we are always working hard to anticipate and exceed these expectations and provide world-class amenities at our airport,” said Tamara Vrooman, President & CEO, Vancouver Airport Authority.

This airport initiative is among 26 projects receiving $19 million under ZEVIP, which assists organizations as they adapt to the Government of Canada’s mandatory target for all new light-duty cars and passenger trucks to be zero-emission by 2035, and to provincial momentum such as B.C.'s EV charging expansion across the network.

“We are grateful to have found partners at all levels of government as we take bold action to become the world’s greenest airport. Not only will this critical funding support us as we work to the complete electrification of our airport operations, and as regional innovations like Harbour Air’s electric aircraft demonstrate what’s possible, but it will help us in our role supporting the mutual needs of our business partners related to climate action,” Vrooman continued.

These new EV Charging stations are planned to be installed by 2025, and will provide electricity to the YVR fleet, commercial and business partners’ vehicles, as well as passengers and the public, complementing BC Hydro’s expanding charging network in southern B.C. Currently, YVR provides 12 free electric vehicle charging stalls (Level Two) at its parking facilities, as well as one DC fast-charging stall.

This exciting announcement comes on the heels of the Province of BC’s Integrated Marketplace Initiative (IMI) pilot program in November 2022, a partnership between YVR and the Province of British Columbia to invest up to 11.5 million to develop made-in-BC clean-tech solutions for use at the airport, and related programs offering home and workplace charging rebates are accelerating adoption.

 

Related News

View more

Ottawa to release promised EV sales regulations

Canada ZEV Availability Standard sets EV sales targets and zero-emission mandates, using compliance credits, early credits, and charging infrastructure investments under CEPA to accelerate affordable ZEV supply and meet 2035 net-zero goals.

 

Key Points

A federal ZEV policy setting 2026-2035 sales targets, using tradable credits and infrastructure incentives under CEPA.

✅ Applies to automakers; compliance via tradable ZEV credits under CEPA.

✅ Targets: 20% by 2026, 60% by 2030, 100% by 2035.

✅ Early credits up to 10% for 2026; charging investments earn credits.

 

Canadian Automobile manufacturers are on the brink of significant changes as Ottawa prepares to introduce its long-awaited electric vehicle regulations. A reliable source within the government says final regulations are aimed at ensuring that all new passenger vehicles sold in Canada by 2035 are zero-emission vehicles, a goal some critics question through analyses of the 2035 EV mandate in Canada.

These regulations, known as the Electric Vehicle Availability Standard, are designed to encourage automakers to produce more affordable zero-emission vehicles to meet the increasing demand. One of the key concerns for Canada is the potential dominance of zero-emission vehicle supply by other countries, particularly the United States, where several states have already implemented sales targets for such vehicles, and new EPA emission limits are expected to boost EV sales nationwide as well.

It's important to note that these regulations will apply primarily to automakers, rather than dealerships. Under this legislation, manufacturers will be required to accumulate sufficient credits to demonstrate their compliance with the established targets.

Automakers will be able to earn credits based on their sales of low- and no-emissions vehicles. The number of credits earned will depend on how close these vehicles come to meeting a zero-emissions standard. Additionally, manufacturers could earn early credits, amounting to a maximum of 10 percent of their total compliance requirements for 2026, by introducing more electric vehicles to the market ahead of schedule, even amid recent EV shortages and wait times reported across Canada.

Automakers can also increase their credit balance by contributing to the development of electric vehicle charging infrastructure, recognizing that fossil fuels still powered part of Canada's grid in 2019 and that charging availability remains a key enabler. In cases where companies exceed or fall short of their compliance targets, they will have the option to buy or sell credits to other manufacturers or use previously accumulated credits.

Further details regarding these regulations, which will be enacted under the Canadian Environmental Protection Act, are set to be unveiled soon and will intersect with provincial approaches such as Quebec's, where experts have questioned the push for EV dominance as policies evolve.

These regulations will become effective starting with the model year 2026, and sales targets will progressively rise each year until 2035. The federal government's ambitious EV goals are to have 20 percent of all vehicles sold in Canada be zero-emission vehicles by 2026, with that figure increasing to 60 percent by 2030 and reaching 100 percent by 2035.

According to a government analysis conducted in 2022, the anticipated total cost to consumers for zero-emission vehicles and chargers over 25 years is estimated at $24.5 billion, though cost remains a primary barrier for many Canadians considering an EV. However, it is projected that Canadians will save approximately $33.9 billion in net energy costs over the same period. Please note that these estimates are part of a draft and may be subject to change upon the government's release of its final analysis.

In terms of environmental impact, these regulations are expected to prevent the release of an estimated 430 million tonnes of greenhouse gas emissions, according to regulatory analysis. Environmental Defence, a Canadian environmental think-tank, has estimated that the policy would also result in a substantial reduction in gasoline consumption, equivalent to filling approximately 73,000 Olympic-sized swimming pools with gasoline.

Nate Wallace, the program manager for clean transportation at Environmental Defence, emphasized the significance of these regulations, stating, "2035 really needs to be the last year that we are selling gasoline cars in Canada brand new if we're going to have any chance of actually, by 2050, reaching net-zero carbon emissions."

 

Related News

View more

Opinion | Why Electric Mail Trucks Are the Way of the Future

USPS Electric Mail Trucks promise zero-emission delivery, lower lifecycle and maintenance costs, and cleaner air. Congressional funding in Build Back Better would modernize the EV fleet and expand charging infrastructure, improving public health nationwide.

 

Key Points

USPS Electric Mail Trucks are zero-emission delivery vehicles that cut costs, reduce pollution, and improve health.

✅ Lower lifetime fuel and maintenance costs vs gas trucks

✅ Cuts greenhouse gas and NOx emissions in communities

✅ Expands charging infrastructure via federal investments

 

The U.S. Postal Service faces serious challenges, with billions of dollars in annual losses and total mail volume continuing to decline. Meanwhile, Congress is constantly hamstringing the agency.

But now lawmakers have an opportunity to invest in the Postal Service in a way that would pay dividends for years to come: By electrifying the postal fleet.

Tucked inside the massive social spending and climate package lumbering through the Senate is money for new, cleaner postal delivery trucks. There’s a lot to like about electric postal trucks. They’d significantly improve Americans’ health while also slowing climate change. And it just makes sense for taxpayers over the long term; the Postal Service’s private sector competitors have already made similar investments, as EV adoption reaches an EV inflection point in the market. As Democrats weigh potential areas to cut in President Joe Biden’s Build Back Better plan, this is one provision that should escape the knife.

To call the U.S. Postal Service’s current vehicles “clunkers” would be an understatement. These often decades-old trucks are famous for having no airbags, no air conditioning and a nasty habit of catching fire. So the Postal Service’s recent decision to buy 165,000 replacement trucks is basically a no-brainer. But the main question is whether they will run on electricity or gasoline.

Electric vehicles are newer to the market and still carry a higher sticker price, as seen with electric bus adoption in many cities. But that higher price buys concrete benefits, like lower lifetime fuel and maintenance costs and huge reductions in pollution. Government demand for electric trucks will also push private markets to create better, cheaper vehicles, directly benefiting consumers. So while buying electric postal trucks may be somewhat more costly at first, over the long term, failing to do so could be far costlier.

At some level, this is a straightforward business decision that the Postal Service’s competitors have already made. For instance, Amazon has already deployed some of the 100,000 electric vans it recently ordered, and FedEx has promised a fully electric ground fleet by 2040, while nonprofit investment in electric trucks is accelerating electrification at major ports. In a couple of decades, the Postal Service could be the only carrier still driving dirty gas guzzlers, buying expensive fuel and paying the higher maintenance costs that combustion engines routinely require. Consumers could flock to greener competitors.

Beyond these business advantages, zero-emission vehicles carry other big benefits for the public. The Postal Service recently calculated some of these benefits by estimating the climate harms that going all-electric would avoid, benefits that persist even where electricity generation still includes fossil-generated electricity in nearby grids. Its findings were telling: A fully electric fleet would prevent millions or tens of millions of dollars’ worth of climate-change-related harms to property and human health each year of the trucks’ lifetimes (and this is probably a considerable underestimate). The world leaders that recently gathered at the global climate summit in Glasgow encouraged exactly this type of transition toward low-carbon technologies.

A cleaner postal fleet would benefit Americans in many other important ways. In addition to warming the planet, tailpipe pollutants can have dire health consequences for the people who breathe in the fumes. Mail trucks traverse virtually every neighborhood in the country and often must idle in residential areas, so we all benefit when they stop emitting. And these localized harms are not distributed equally. Some parts of the country — too often, low-income communities of color — already have poor air quality. Removing pollution from dirty mail trucks will especially help these overburdened and underserved populations.

The government’s purchasing power also routinely inspires companies to devise better and cheaper ways to do business. Investments in aerospace technologies, for instance, have spilled over into consumer innovations, giving us GPS technologies and faster, more fuel-efficient passenger jets. Bulk demand for cleaner trucks could inspire similar innovations as companies clamor for government contracts, meaning we all could get cheaper and better green products like car batteries, and the American EV boom could further accelerate those gains.

Additionally, because postal trucks are virtually everywhere in the country, if they go electric, that would mean more charging stations and grid updates everywhere too, and better utility planning for truck fleets to ensure reliable service. Suddenly, that long road trip that discourages many would-be electric car buyers may be simpler, which could boost electric vehicle adoption.

White House climate adviser Gina McCarthy talks with EVgo CEO Cathy Zoi before the start of an event near an EVgo electric car charging station.
ENERGY

The case for electrifying the postal fleet is strong from both a business and a social standpoint. Indeed, even Postmaster General Louis DeJoy, who was appointed during the Trump administration, supports it. But getting there is not so simple. Most private businesses could just borrow the money they need for this investment and pay it back with the long-term savings they would enjoy. But not the Postal Service. Thanks to its byzantine funding structure, it cannot afford electric trucks’ upfront costs unless Congress either provides the money or lets it borrow more. This is the primary reason it has not committed to making more than 10 percent of its fleet electric.

And that returns us to the Build Back Better legislation. The version passed by the House sets aside $7 billion to help the Postal Service buy electric mail trucks — enough to electrify the vast majority of its fleet by the end of the decade.

Biden has made expanding the use of electric vehicles a top priority, setting an ambitious goal of 100 percent zero-emission federal vehicle acquisitions by 2035, and new EPA emission limits aim to accelerate EV adoption. But Sen. Joe Manchin has expressed resistance to some of the climate-related subsidies in the legislation and is also eager to keep costs down. This provision, however, is worthy of the West Virginia Democrat’s support.

Most Americans would see — and benefit from — these trucks on a daily basis. And for an operation that got its start under Benjamin Franklin, it’s a crucial way to keep the Postal Service relevant.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.