US: In 2021, Plug-Ins Traveled 19 Billion Miles On Electricity


plug in mileage in 2021

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

US Plug-in EV Miles 2021 highlight BEV and PHEV growth, DOE and Argonne data, 19.1 billion electric miles, 6.1 TWh consumed, gasoline savings, rising market share, and battery capacity deployed across the US light-duty fleet.

 

Key Points

They represent 19.1 billion electric miles by US BEVs and PHEVs in 2021, consuming 6.1 TWh of electricity.

✅ 700 million gallons gasoline avoided in 2021

✅ $1.3 billion fuel cost savings estimated

✅ Cumulative 68 billion EV miles since 2010

 

Plug-in electric cars are gradually increasing their market share in the US (reaching about 4% in 2021), which starts to make an impact even as the U.S. EV market share saw a brief dip in Q1 2024.

The Department of Energy (DOE)’s Vehicle Technologies Office highlights in its latest weekly report that in 2021, plug-ins traveled some 19.1 billion miles (31 billion km) on electricity - all miles traveled in BEVs and the EV mode portion of miles traveled in PHEVs, underscoring grid impacts that could challenge state power grids as adoption grows.

This estimated distance of 19 billion miles is noticeably higher than in 2020 (nearly 13 billion miles), which indicates how quickly the electrification of driving progresses, with U.S. EV sales continuing to soar into 2024. BEVs noted a 57% year-over-year increase in EV miles, while PHEVs by 24% last year (mostly proportionally to sales increase).

According to Argonne National Laboratory's Assessment of Light-Duty Plug-in Electric Vehicles in the United States, 2010–2021, the cumulative distance covered by plug-in electric cars in the US (through December 2021) amounted to 68 billion miles (109 billion miles).

U.S. Department of Transportation, Federal Highway Administration, December 2021 Traffic Volume Trends, 2022.

The report estimates that over 2.1 million plug-in electric cars have been sold in the US through December 2021 (about 1.3 million all-electric and 0.8 million plug-in hybrids), equipped with a total of more than 110 GWh of batteries, even as EV sales remain behind gas cars in overall market share.

It's also estimated that 19.1 billion electric miles traveled in 2021 reduced the national gasoline consumption by 700 million gallons of gasoline or 0.54%.

On the other hand, plug-ins consumed some 6.1 terawatt-hours of electricity (6.1 TWh is 6,100 GWh), which sounds like almost 320 Wh/mile (200 Wh/km), aligning with projections that EVs could drive a rise in U.S. electricity demand over time.

The difference between the fuel cost and energy cost in 2021 is estimated at $1.3 billion, with Consumer Reports findings further supporting the total cost advantages.

Cumulatively, 68 billion electric miles since 2010 is worth about 2.5 billion gallons of gasoline. So, the cumulative savings already is several billion dollars.

Those are pretty amazing numbers and let's just imagine that electric cars are just starting to sell in high volume, a trend that mirrors global market growth seen over the past decade. Every year those numbers will be improving, thus tremendously changing the world that we know today.

 

Related News

Related News

Solar is now ‘cheapest electricity in history’, confirms IEA

IEA World Energy Outlook 2020 highlights solar power as the cheapest electricity, projects faster renewables growth, models net-zero pathways, assesses COVID-19 impacts, oil and gas demand, and policy scenarios including STEPS, SDS, and NZE2050.

 

Key Points

A flagship IEA report analyzing energy trends, COVID-19 impacts, renewables growth, and pathways to net-zero in 2050.

✅ Solar now the cheapest electricity in most major markets

✅ Scenarios: STEPS, SDS, NZE2050, plus delayed recovery case

✅ Oil and gas demand uncertain; CO2 peak needs stronger policy

 

The world’s best solar power schemes now offer the “cheapest…electricity in history” with the technology cheaper than coal and gas in most major countries.

That is according to the International Energy Agency’s World Energy Outlook 2020. The 464-page outlook, published today by the IEA, also outlines the “extraordinarily turbulent” impact of coronavirus and the “highly uncertain” future of global energy use and progress in the global energy transition over the next two decades.

Reflecting this uncertainty, this year’s version of the highly influential annual outlook offers four “pathways” to 2040, all of which see a major rise in renewables across markets. The IEA’s main scenario has 43% more solar output by 2040 than it expected in 2018, partly due to detailed new analysis showing that solar power is 20-50% cheaper than thought.

Despite a more rapid rise for renewables and a “structural” decline for coal, the IEA says it is too soon to declare a peak in global oil use, unless there is stronger climate action. Similarly, it says demand for gas could rise 30% by 2040, unless the policy response to global warming steps up.

This means that, while global CO2 emissions have effectively peaked flatlining in 2019 according to the IEA, they are “far from the immediate peak and decline” needed to stabilise the climate. The IEA says achieving net-zero emissions will require “unprecedented” efforts from every part of the global economy, not just the power sector.

For the first time, the IEA includes detailed modeling of a 1.5C pathway that reaches global net-zero CO2 emissions by 2050. It says individual behaviour change, such as working from home “three days a week”, would play an “essential” role in reaching this new “net-zero emissions by 2050 case” (NZE2050).

Future scenarios
The IEA’s annual World Energy Outlook (WEO) arrives every autumn and contains some of the most detailed and heavily scrutinised analysis of the global energy system. Over hundreds of densely packed pages, it draws on thousands of datapoints and the IEA’s World Energy Model.

The outlook includes several different scenarios, to reflect uncertainty over the many decisions that will affect the future path of the global economy, as well as the route taken out of the coronavirus crisis during the “critical” next decade. The WEO also aims to inform policymakers by showing how their plans would need to change if they want to shift onto a more sustainable path, including creating the right clean electricity investment incentives to accelerate progress.

This year it omits the “current policies scenario” (CPS), which usually “provides a baseline…by outlining a future in which no new policies are added to those already in place”. This is because “[i]t is difficult to imagine this ‘business as-usual’ approach prevailing in today’s circumstances”.

Those circumstances are the unprecedented fallout from the coronavirus pandemic, which remains highly uncertain as to its depth and duration. The crisis is expected to cause a dramatic decline in global energy demand in 2020, with oil demand also dropping sharply as fossil fuels took the biggest hit.

The main WEO pathway is again the “stated policies scenario” (STEPS, formerly NPS). This shows the impact of government pledges to go beyond the current policy baseline. Crucially, however, the IEA makes its own assessment of whether governments are credibly following through on their targets.

The report explains:

“The STEPS is designed to take a detailed and dispassionate look at the policies that are either in place or announced in different parts of the energy sector. It takes into account long-term energy and climate targets only to the extent that they are backed up by specific policies and measures. In doing so, it holds up a mirror to the plans of today’s policy makers and illustrates their consequences, without second-guessing how these plans might change in future.”

The outlook then shows how plans would need to change to plot a more sustainable path, highlighting efforts to replace fossil fuels with electricity in time to meet climate goals. It says its “sustainable development scenario” (SDS) is “fully aligned” with the Paris target of holding warming “well-below 2C…and pursuing efforts to limit [it] to 1.5C”. (This interpretation is disputed.)

The SDS sees CO2 emissions reach net-zero by 2070 and gives a 50% chance of holding warming to 1.65C, with the potential to stay below 1.5C if negative emissions are used at scale.

The IEA has not previously set out a detailed pathway to staying below 1.5C with 50% probability, with last year’s outlook only offering background analysis and some broad paragraphs of narrative.

For the first time this year, the WEO has “detailed modelling” of a “net-zero emissions by 2050 case” (NZE2050). This shows what would need to happen for CO2 emissions to fall to 45% below 2010 levels by 2030 on the way to net-zero by 2050, with a 50% chance of meeting the 1.5C limit, with countries such as Canada's net-zero electricity needs in focus to get there.

The final pathway in this year’s outlook is a “delayed recovery scenario” (DRS), which shows what might happen if the coronavirus pandemic lingers and the global economy takes longer to recover, with knock-on reductions in the growth of GDP and energy demand.

 

Related News

View more

Factory Set to Elevate the United States in the Clean Energy Race

Maxeon IBC Solar Factory USA will scale clean energy with high-efficiency interdigitated back contact panels, DOE-backed manufacturing in Albuquerque, utility-scale supply, domestic production, 3 GW capacity, reduced imports, carbon-free electricity leadership.

 

Key Points

DOE-backed Albuquerque plant making high-efficiency IBC panels, 3 GW yearly, for utility-scale, domestic solar supply.

✅ 3 GW annual capacity; up to 8 million panels produced

✅ IBC cell efficiency up to 24.7% for utility-scale projects

✅ Reduces U.S. reliance on imported panels via domestic manufacturing

 

Solar energy stands as a formidable source of carbon-free electricity, with the No. 3 renewable source in the U.S. offering a clean alternative to traditional power generation methods reliant on polluting fuels. Advancements in solar technology continue to emerge, with a U.S.-based company poised to spearhead progress from a cutting-edge factory in New Mexico.

Maxeon, initially hailing from Silicon Valley in the 1980s, recently ventured into independence after separating from its parent company, SunPower, in 2020. Over the past few years, Maxeon has been manufacturing solar panels in Mexico, Malaysia, and the Philippines, as record U.S. panel shipments underscored rising demand.

Now, with backing from the U.S. Department of Energy's Loans Programs Office, Maxeon is preparing to commence construction on a new facility in Albuquerque in 2024, amid unprecedented growth in solar and storage nationwide. This state-of-the-art factory aims to produce up to 8 million panels annually, featuring the company's interdigitated back contact (IBC) technology, which has the capacity to generate three gigawatts of power each year. Notably, the entire U.S. solar industry completed five gigawatts of panels in 2022, making Maxeon's endeavor particularly ambitious and aligned with Biden's proposed tenfold increase in solar power goals.

Maxeon's presence in the United States holds the potential to reduce the country's reliance on imported panels, particularly from China. The primary focus will be on providing this advanced technology for utility departments, where pairing with increasingly affordable batteries can enhance grid reliability while shifting away from residential and commercial rooftops.

Maxeon has achieved a remarkable milestone in solar efficiency, with its latest IBC technology boasting an efficiency rating of 24.7%, as reported by PV Magazine.

This strategic move to the United States could be a game-changer, not only for Maxeon's success but also for clean power generation in a nation that has traditionally depended on external sources for its supply of solar panels, as energy-hungry Europe turns to U.S. solar equipment makers for solutions. Matt Dawson, Maxeon's Chief Technology Officer, emphasized the importance of achieving the lowest levelized cost of electricity with the lowest overall capital, a feat that China has accomplished in recent years due to the strength of its supply chain. As energy independence becomes a global concern, solar manufacturing is poised to expand beyond China, with Southeast Asia already showing signs of growth, and now the United States and possibly Europe, including Germany's solar boost during the energy crisis, following suit.

 

Related News

View more

Canada unveils plan for regulating offshore wind

Canada Offshore Wind Amendments streamline offshore energy regulators in Nova Scotia and Newfoundland and Labrador, enabling green hydrogen, submerged land licences, regional assessments, MPAs standards, while raising fisheries compensation, navigation, and Indigenous consultation considerations.

 

Key Points

Reforms assign offshore wind to joint regulators, enable seabed licensing, and address fisheries and Indigenous issues.

✅ Assigns wind oversight to Canada-NS and Canada-NL offshore regulators

✅ Introduces single submerged land licence and regional assessments

✅ Addresses fisheries, navigation, MPAs, and Indigenous consultation

 

Canada's offshore accords with Nova Scotia and Newfoundland and Labrador are being updated to promote development of offshore wind farms, but it's not clear yet whether any compensation will be paid to fishermen displaced by wind farms.

Amendments introduced Tuesday in Ottawa by the federal government assign regulatory authority for wind power to jointly managed offshore boards — now renamed the Canada-Nova Scotia Offshore Energy Regulator and Canada-Newfoundland and Labrador Offshore Energy Regulator.

Previously the boards regulated only offshore oil and gas projects.

The industry association promoting offshore wind development, Marine Renewables Canada, called the changes a crucial step.

"The tabling of the accord act amendments marks the beginning of, really, a new industry, one that can play a significant role in our clean energy future," said  Lisen Bassett, a spokesperson for Marine Renewables Canada. 

Nova Scotia's lone member of the federal cabinet, Immigration Minister Sean Fraser, also talked up prospects at a news conference in Ottawa.


'We have lots of water'

"The potential that we have, particularly when it comes to offshore wind and hydrogen is extraordinary," said Fraser.

"There are real projects, like Vineyard Wind, with real investors talking about real jobs."

Sharing the stage with assembled Liberal MPs from Nova Scotia and Newfoundland and Labrador was Nova Scotia Environment Minister Tim Halman, representing a Progressive Conservative government in Halifax.

"If you've ever visited us or Newfoundland, you know we have lots of water, you know we have lots of wind, and we're gearing up to take advantage of those natural resources in a clean, sustainable way. We're paving the way for projects such as offshore wind, tidal energy in Nova Scotia, and green hydrogen production," said Halman.

Before a call for bids is issued, authorities will identify areas suitable for development, conservation or fishing.

The legislation does not outline compensation to fishermen excluded from offshore areas because of wind farm approvals.


Regional assessments

Federal officials said potential conflicts can be addressed in regional assessments underway in both provinces.

Minister of Natural Resources of Canada Jonathan Wilkinson said fisheries and navigation issues will have to be dealt with.

"Those are things that will have to be addressed in the context of each potential project. But the idea is obviously to ensure that those impacts are not significant," Wilkinson said.

Speaking after the event, Christine Bonnell-Eisnor, chair of what is still called the Canada Nova Scotia Offshore Petroleum Board, said what compensation — if any — will be paid to fishermen has yet to be determined.

"It is a question that we're asking as well. Governments are setting the policy and what terms and conditions would be associated with a sea bed licence. That is a question governments are working on and what compensation would look like for fishers."

Scott Tessier, who chairs  the Newfoundland Board, added "the experience has been the same next door in Nova Scotia, the petroleum sector and the fishing sector have an excellent history of cooperation and communication and I don't expect it look any different for offshore renewable energy projects."


Nova Scotia in a hurry to get going

The legislation says the offshore regulator would promote compensation schemes developed by industry and fishing groups linked to fishing gear.

Nova Scotia is in a hurry to get going.

The Houston government has set a target of issuing five gigawatts of licences for offshore wind by 2030, with leasing starting in 2025, reflecting momentum in the U.S. offshore wind market as well. It is intended largely for green hydrogen production. That's almost twice the province's peak electricity demand in winter, which is 2.2 gigawatts.

The amendments will streamline seabed approvals by creating a single "submerged land" licence, echoing B.C.'s streamlined process for clean energy projects, instead of the exploration, significant discovery and production licences used for petroleum development.

Federal and provincial ministers will issue calls for bids and approve licences, akin to BOEM lease requests seen in the U.S. market.

The amendments will ensure Marine Protected Area's  (MPAs) standards apply in all offshore areas governed by the regulations.


Marine protected areas

Wilkinson suggested, but declined, three times to explicitly state that offshore wind farms would be excluded from within Marine Protected Areas.

After this story was initially published on Tuesday, Natural Resources Canada sent CBC a statement indicating offshore wind farms may be permitted inside MPAs.

Spokesperson Barre Campbell noted that all MPAs established in Canada after April 25, 2019, will be subject to the Department of Fisheries and Oceans new standards that prohibit key industrial activities, including oil and gas exploration, development and production.

"Offshore renewable energy activities and infrastructure are not key industrial activities," Campbell said in a statement.

"Other activities may be prohibited, however, if they are not consistent with the conservation objectives that are established by the relevant department that has or that will establish a marine protected area."


Federal impact assessment process

The new federal impact assessment process will apply in offshore energy development, and recent legal rulings such as the Cornwall wind farm decision highlight how courts can influence project timelines.

For petroleum projects, future significant discovery licences will be limited to 25 years replacing the current indefinite term.

Existing significant discovery licences have been an ongoing exception and are not subject to the 25-year limit. Both offshore energy regulators will be given the authority to fulfil the Crown's duty to consult with Indigenous peoples

 

Related News

View more

UK sets new record for wind power generation

Britain Wind Generation Record underscores onshore and offshore wind momentum, as National Grid ESO reported 20.91 GW, boosting zero-carbon electricity, renewables share, and grid stability amid milder weather, falling gas prices, and net zero goals.

 

Key Points

The Britain wind generation record is 20.91 GW, set on 30 Dec, driven by onshore and offshore turbines.

✅ Set on 30 Dec 2022 with peak output of 20.91 GW.

✅ Zero-carbon sources hit 87.2% of grid supply.

✅ Driven by onshore and offshore wind; ESO reported stability.

 

Britain has set a new record for wind generation as power from onshore and offshore turbines helped boost clean energy supplies late last year.

National Grid’s electricity system operator (ESO), which handles Great Britain’s grid operations, said that a new record for wind generation was set on 30 December, when 20.91 gigawatts (GW) were produced by turbines.

This represented the third time Britain’s fleet of wind turbines set new generation records in 2022. In May, National Grid had to ask some turbines in the west of Scotland to shut down, as the network was unable to store such a large amount of electricity when a then record 19.9GW of power was produced – enough to boil 3.5m kettles.

The ESO said a new record was also set for the share of electricity on the grid coming from zero-carbon sources – renewables and nuclear – which supplied 87.2% of total power. These sources have accounted for about 55% to 59% of power over the past couple of years.

The surge in wind generation represents a remarkable reversal in fortunes as a cold snap that enveloped Britain and Europe quickly turned to milder weather.

Power prices had soared as the freezing weather forced Britons to increase their heating use, pushing up demand for energy despite high bills.

The cold weather came with a period of low wind, reducing the production of Britain’s windfarms to close to zero.

Emergency coal-fired power units at Drax in North Yorkshire were put on standby but ultimately not used, while gas-fired generation accounted for nearly 60% of the UK’s power output at times.

However, milder weather in the UK and Europe in recent days has led to a reduction in demand from consumers and a fall in wholesale gas prices. It has also reduced the risk of power cuts this winter, which National Grid had warned could be a possibility.

Wind generation is increasingly leading the power mix in Britain and is seen as a crucial part of Britain’s move towards net zero. The prime minister, Rishi Sunak, is expected to overturn a moratorium on new onshore wind projects with a consultation on the matter due to run until March.

 

Related News

View more

Four effective ways to meet US decarbonization goals

US Grid Decarbonization demands balancing renewables, reliability, and resilience with smart transmission, storage, siting, and demand response, leveraging digital asset management to modernize infrastructure while meeting climate goals and rising electricity consumption.

 

Key Points

Low-carbon power while maintaining reliability via renewables, storage, transmission, and digital operations.

✅ Siting wind and solar requires community engagement and environmental review

✅ Balance variable renewables with storage, flexible load, and firm capacity

✅ Modernize transmission and digitize asset data for reliable operations

 

Last week, over 13,000 energy and technology leaders arrived in Dallas for DISTRIBUTECH International to share knowledge, showcase new technology advancements, and discuss initiatives to prepare for the future of energy. Among the many topics discussed was the critical need to balance rising energy demands and environmental pressures while understanding why the grid isn't 100% renewable today alongside effective climate change solutions.

The most widespread source of energy consumption is electricity. According to The U.S. Energy Information Administration, 2020 electricity consumption rates were roughly 3.8 trillion kWh - 13 times higher than in 1950. With our ever-increasing reliance on electricity, renewables' share of generation is also rising and this number is sure to grow exponentially in the coming years.

How can the US achieve meaningful decarbonization goals without sacrificing reliable and stable energy? Here are 4 of the biggest challenges and practical ways to meet them:


Siting New Solar and Wind Farms
Building renewable energy sources is more difficult than it seems. Scouting for sites is fraught with issues such as community opposition due to local aesthetics and clean energy's hidden costs around disruption to the environment and recreation.

NIMBY (Not In My Backyard) is an influential source of opposition. Local residents join together in an effort to prevent shore front views in wealthy coastal areas from obstruction, which are needed to support offshore wind farms. These farms can also negatively impact local fisheries, while outdoor sports and entertainment activities such as sailing, waterskiing, fishing, or swimming may be disrupted, which are equally opposed by NIMBY advocates.

Utilities must take these concerns into account when scouting for renewable energy sites.

 

Maintaining Consistent Availability of Generation Capacity
The capacity to generate consistent, reliable electricity is both a regional and nationwide concern.

Wind and solar farms depend on a consistent level of wind velocity and sunny periods, yet wind and solar could meet 80% of U.S. demand and regional concerns must be considered. For example, the southwestern United States is an ideal location for large commercial solar arrays. Areas in the north are more problematic since fall and winter days are shorter, reducing their ability to consistently generate energy. The Midwest is a prime location for wind-based generation since it experiences a consistent level of wind throughout the year.

Nighttime periods and cloudy days virtually eliminate solar farms as a consistent energy source while loss of available winds impacts the reliability of wind as a base load supply of energy generation.

 

Pivoting From Current Energy Usage Models
Over the last 20 years, utilities have been heavily involved with normalizing consumer energy consumption curves, pursuing grid resilience strategies to manage variability. Due to the high cost of siting new fossil fuel facilities, building new electric grid interconnections, and the high commodity pricing for imported power, utilities were driven to modify their customers’ energy usage patterns.

These consumption regulating policies included:

  • Time of use metering to entice customers to use high energy devices at night
  • Installation of energy monitoring devices on high use customer equipment to enable the utility to reduce energy demand during peak use periods
  • Charging electric vehicles overnight

With fundamental changes occurring in how energy is generated, the availability of renewable power during low or no-sun periods and lower wind levels will require utilities to alter their energy consumption models.

 

Utilizing Government Support of New Electric Infrastructure
With the proposed government infusion of funds, including a rule to boost renewable transmission, to build and modernize infrastructures, utility leaders will be ideally positioned to drastically improve the reliability of the US electric grid.

Utilities will be involved in aggressive transmission line building projects to ensure the effective distribution of energy across multiple state lines, aligning with the U.S. grid overhaul for renewables underway today. This expansive build out of the US transmission and distribution system will create a dramatic increase in the need to accurately document the location and details of the new utility assets for current tracking and future analysis needs.

Energy leaders must seek advanced technology to provide them with solutions for precisely this purpose. Manual, paper-based field data collection must be replaced with digital workflows which automate and simplify asset data capture and analysis. Continued reliance on manual methods will cause them to lag behind the industry and impede their ability to support renewable energy for the modern era.

 

Related News

View more

Ford Motor Co. details plans to spend $1.8B to produce EVs

Ford Oakville Electric Vehicle Complex will anchor EV production in Ontario, adding a battery plant, retooling lines, and assembly capacity for passenger models targeting the North American market and Canada's zero-emission mandates.

 

Key Points

A retooled Ontario hub for passenger EV production, featuring on-site battery assembly and modernized lines.

✅ Retooling begins Q2 2024; EV production slated for 2025.

✅ New 407,000 sq ft battery plant for pack assembly.

✅ First full-line passenger EV production in Canada.

 

Ford Motor Co. has revealed some details of its plan to spend $1.8 billion on its Oakville Assembly Complex to turn it into an electric vehicle production hub, a government-backed Oakville EV deal, in the latest commitment by an automaker transitioning towards an electric future.

The automaker said Tuesday that it will start retooling the Ontario complex in the second quarter of 2024, bolstering Ontario's EV jobs boom, and begin producing electric vehicles in 2025.

The transformation of the Oakville site, to be renamed the Oakville Electric Vehicle Complex, will include a new 407,000 square-foot battery plant, similar to Honda's Ontario battery investment efforts, where parts produced at Ford's U.S. operations will be assembled into battery packs.

General Motors is already producing electric delivery vans in Canada, and its Ontario EV plant plans continue to expand, but Ford says this is the first time a full-line automaker has announced plans to produce passenger EVs in Canada for the North American market.

GM said in February it plans to build motors for electric vehicles at its St. Catharines, Ont. propulsion plant, aligning with the Niagara Region battery investment now underway. The motors will go into its BrightDrop electric delivery vans, which it produces in part at its Ingersoll, Ont. plant, as well as its electric pickup trucks, producing enough at the plant for 400,000 vehicles a year.

Ford's announcement is the latest commitment by an automaker transitioning towards an electric future, part of Canada's EV assembly push that is accelerating.

"Canada and the Oakville complex will play a vital role in our Ford Plus transformation," said chief executive Jim Farley in a statement.

The company has committed to invest over US$50 billion in electric vehicles globally and has a target of producing two million EVs a year by the end of 2026 as part of its Ford Plus growth plan, reflecting an EV market inflection point worldwide.

Ford didn't specify in the release which models it planned to build at the Oakville complex, which currently produces the Ford Edge and Lincoln Nautilus.

The company's spending plans were first announced in 2020 as part of union negotiations, with workers seeking long-term production commitments and the Detroit Three automakers eventually agreeing to invest in Canadian operations in concert with spending agreements with the Ontario and federal governments.

The two governments agreed to provide $295 million each in funding to secure the Ford investment.

"The partnership between Ford and Canada helps to position us as a global leader in the EV supply chain for decades to come," said Industry Minister Francois-Philippe Champagne in Ford's news release.

Funding help comes as the federal government moves to require that at least 20 percent of new vehicles sold in Canada will be zero-emission by 2026, at least 60 per cent by 2030, and 100 per cent by 2035.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified