US: In 2021, Plug-Ins Traveled 19 Billion Miles On Electricity


plug in mileage in 2021

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$0
Coupon Price:
$-50
Reserve Your Seat Today

US Plug-in EV Miles 2021 highlight BEV and PHEV growth, DOE and Argonne data, 19.1 billion electric miles, 6.1 TWh consumed, gasoline savings, rising market share, and battery capacity deployed across the US light-duty fleet.

 

Key Points

They represent 19.1 billion electric miles by US BEVs and PHEVs in 2021, consuming 6.1 TWh of electricity.

✅ 700 million gallons gasoline avoided in 2021

✅ $1.3 billion fuel cost savings estimated

✅ Cumulative 68 billion EV miles since 2010

 

Plug-in electric cars are gradually increasing their market share in the US (reaching about 4% in 2021), which starts to make an impact even as the U.S. EV market share saw a brief dip in Q1 2024.

The Department of Energy (DOE)’s Vehicle Technologies Office highlights in its latest weekly report that in 2021, plug-ins traveled some 19.1 billion miles (31 billion km) on electricity - all miles traveled in BEVs and the EV mode portion of miles traveled in PHEVs, underscoring grid impacts that could challenge state power grids as adoption grows.

This estimated distance of 19 billion miles is noticeably higher than in 2020 (nearly 13 billion miles), which indicates how quickly the electrification of driving progresses, with U.S. EV sales continuing to soar into 2024. BEVs noted a 57% year-over-year increase in EV miles, while PHEVs by 24% last year (mostly proportionally to sales increase).

According to Argonne National Laboratory's Assessment of Light-Duty Plug-in Electric Vehicles in the United States, 2010–2021, the cumulative distance covered by plug-in electric cars in the US (through December 2021) amounted to 68 billion miles (109 billion miles).

U.S. Department of Transportation, Federal Highway Administration, December 2021 Traffic Volume Trends, 2022.

The report estimates that over 2.1 million plug-in electric cars have been sold in the US through December 2021 (about 1.3 million all-electric and 0.8 million plug-in hybrids), equipped with a total of more than 110 GWh of batteries, even as EV sales remain behind gas cars in overall market share.

It's also estimated that 19.1 billion electric miles traveled in 2021 reduced the national gasoline consumption by 700 million gallons of gasoline or 0.54%.

On the other hand, plug-ins consumed some 6.1 terawatt-hours of electricity (6.1 TWh is 6,100 GWh), which sounds like almost 320 Wh/mile (200 Wh/km), aligning with projections that EVs could drive a rise in U.S. electricity demand over time.

The difference between the fuel cost and energy cost in 2021 is estimated at $1.3 billion, with Consumer Reports findings further supporting the total cost advantages.

Cumulatively, 68 billion electric miles since 2010 is worth about 2.5 billion gallons of gasoline. So, the cumulative savings already is several billion dollars.

Those are pretty amazing numbers and let's just imagine that electric cars are just starting to sell in high volume, a trend that mirrors global market growth seen over the past decade. Every year those numbers will be improving, thus tremendously changing the world that we know today.

 

Related News

Related News

Solar panel sales double in the UK as homeowners look to cut soaring bills

UK Home Solar Panel Installation drives self-consumption as PV panels, hybrid inverters, and smart meters cut grid demand, enable EV charging, and prepare battery storage, even in cloudy winters, with app-based monitoring and MCS-certified installers.

 

Key Points

A residential PV setup reducing grid reliance via panels, hybrid inverters, smart meters, and battery-ready design.

✅ Cuts grid use; boosts self-consumption with PV generation

✅ Hybrid inverters enable future battery storage integration

✅ Smart meter and app monitor output, EV charging patterns

 

In a town north of London, the weather's been cloudy over the winter months. But it didn't stop this homeowner from installing solar panels in December.

On his smart metre, Kumi Thiruchelvam looks satisfied at the "0 watts" showing up under electricity. It's about 10 am, and he's not using any electricity from the grid.

Cost of installation? Between £12,000 and £13,000 (€13,500-€14,500), a fair chunk of savings, even for Thiruchelvam, who lives on a private avenue in Luton.

The investment was common sense for him following the surge in energy prices caused by the Russian invasion of Ukraine.

According to the Office of National Statistics, electricity prices in the UK had increased by 67 per cent in January 2023 compared to January 2022, while pilots show parked EVs can earn from grids in Europe, offering some relief.

Solar power installations doubled in 2022 compared to 2021, according to MCS, the standards organisation in charge of solar installations, a shift aligned with the UK grid's net-zero transition underway today.

"We've had a combination of soaring energy prices around the world, and then also we've increased our electricity consumption in the home through a number of reasons, including electric vehicles and emerging EV-solar integration trends," says Thiruchelvam.

His family owns a big house and no less than three electric vehicles, some of which can now power a home for days during outages, so their electricity consumption is higher than the normal household, about 12,000 kWh per year.

Around two-thirds should now be provided by solar panels, and EV owners can sell electricity back to the grid in some schemes as well, diversifying benefits.

"We originally sought the configuration to be rear, which is where the sun comes up, but we went for the front because it spends more time in the front throughout most of the year than in the rear. Also, there's more shade in the rear with trees," he says.

To get a quote for the installation, Thiruchelvam used Otovo, a Norwegian company which recently launched in the UK.

Using their app, he can monitor the electricity generated by his photovoltaic (PV) installation from his phone. The data comes from the inverters installed in the attic.

Their role is to change the direct current generated by the solar panels into alternating current to power appliances in the house safely.

They also communicate with the grid and monitor the electricity generated, supporting emerging vehicle-to-building charging strategies for demand management.

"We went for two hybrid inverters, allowing me to use a battery in the future or tap stored EV energy for buildings if needed," says Thiruchelvam.

"But because battery technology is still evolving, I chose not to. And also I viewed at that time that we would be consuming everything we'd be generating. So we didn't. But most likely I will upgrade the system as we approach summer with batteries."

 

Related News

View more

When We Lean Into Clean Energy, Rural America Thrives

USDA Rural Clean Energy Programs drive climate-smart infrastructure, energy efficiency, and smart grid upgrades, delivering REAP grants, renewable power, and cost savings that boost rural development, create jobs, and modernize electric systems nationwide.

 

Key Points

USDA programs funding renewable upgrades, efficiency projects, and grid resilience to cut costs and spur rural growth.

✅ REAP grants fund renewable and efficiency upgrades

✅ Smart grid loans strengthen rural electric resilience

✅ Projects cut energy costs and support good-paying jobs

 

When rural communities lean into clean energy, the path to economic prosperity is clear. Cleaner power options like solar and electric guided by decarbonization goals provide new market opportunities for producers and small businesses. They reduce energy costs for consumers and supports good-paying jobs in rural America.

USDA Rural Development programs have demonstrated strong success in the fight against climate change, as recent USDA grants for energy upgrades show while helping to lower energy costs and increase efficiency for people across the nation.

This week, as we celebrate Earth Day, we are proud to highlight some of the many ways USDA programs advance climate-smart infrastructure, including the first Clean Energy Community designation that showcases local leadership, to support economic development in rural areas.

Advancing Energy Efficiency in Rural Massachusetts

Prior to receiving a Rural Energy for America Program (REAP) grant from USDA, Little Leaf Farms in the town of Devens used a portable, air-cooled chiller to cool its greenhouses. The inefficient cooling system, lighting and heating accounted for roughly 20 percent of the farm's production costs.

USDA Rural Development awarded the farm a $38,471 REAP grant to purchase and install a more efficient air-cooled chiller. This project is expected to save Little Leaf Farms $51,341 per year and will replace 798,472 kilowatt-hours per year, which is enough energy to power 73 homes.

To learn more about this project, visit the success story: Little Leaf Farms Grows Green while Going Green | Rural Development (usda.gov).

In the Fight Against Climate Change, Students in New Hampshire Lead the Way

Students at White Mountains Regional High School designed a modern LED lighting retrofit informed by building upgrade initiatives to offset power costs and generate efficient energy for their school.

USDA Rural Development provided the school a $36,900 Economic Impact Initiative Grant under the Community Facilities Program to finance the project. Energy upgrades are projected to save 92,528 kilowatt-hours and $12,954 each year, and after maintenance reduction is factored in, total savings are estimated to be more than $20,000 annually.

As part of the project, the school is incorporating STEM (Science, Technology, Math and Engineering) into the curriculum to create long-term impacts for the students and community. Students will learn about the lighting retrofit, electricity, energy efficiency and wind energy as well as climate change.

Clean Energy Modernizes Power Grid in Rural Pennsylvania

USDA Rural Development is working to make rural electric infrastructure stronger, more sustainable and more resilient than ever before, and large-scale energy projects in New York reinforce this momentum nationwide as well. For instance, Central Electric Cooperative used a $20 million Electric Infrastructure Loan Program to build and improve 111 miles of line and connect 795 people.

The loan includes $115,153 in smart grid technologies to help utilities better manage the power grid, while grid modernization in Canada underscores North America's broader transition to cleaner, more resilient systems. Central Electric serves about 25,000 customers over 3,049 miles of line in seven counties in western Pennsylvania.

Agricultural Producers Upgrade to Clean Energy in New Jersey

Tuckahoe Turf Farms Inc. in Hammonton used a REAP grant to purchase and install a 150HP electric irrigation motor to replace a diesel motor. The project will generate 18.501 kilowatt-hours of energy.

In Asbury, North Jersey RCandD Inc. used a REAP grant to conduct energy assessments and provide technical assistance to small businesses and agricultural producers in collaboration with EnSave.

 

Related News

View more

China's electric carmakers make their move on Europe

Chinese EV Makers in Europe target the EU market with electric SUVs, battery swapping, competitive pricing, and subsidies, led by NIO, Xpeng, MG, and BYD, starting in Norway amid Europe's zero-emissions push.

 

Key Points

Chinese EV makers expanding into EU markets with tech, pricing, and lean retail to gain share.

✅ Early launches in Norway leverage EV incentives

✅ Compete via battery swapping, OTA tech, and price

✅ Mix of importers, online sales, and lean dealerships

 

China's electric carmakers are darting into Europe, hoping to catch traditional auto giants cold and seize a slice of a market supercharged by the continent's EV transition towards zero emissions.

Nio Inc (NIO.N), among a small group of challengers, launches its ES8 electric SUV in Oslo on Thursday - the first foray outside China for a company that is virtually unheard of in Europe even though it's valued at about $57 billion.

Other brands unfamiliar to many Europeans that have started selling or plan to sell cars on the continent include Aiways, BYD's (002594.SZ) Tang, SAIC's (600104.SS) MG, Dongfeng's VOYAH, and Great Wall's (601633.SS) ORA.

Yet Europe, a crowded, competitive car market dominated by famous brands, has proved elusive for Chinese carmakers in the past. They made strategic slips and also contended with a perception that China, long associated with cheap mass-production, could not compete on quality.

Indeed, Nio Chief Executive William Li told Reuters he foresees a long road to success in a mature market where it is "very difficult to be successful".

Chinese carmakers may need up to a decade to "gain a firm foothold" in Europe, the billionaire entrepreneur said - a forecast echoed by He Xiaopeng, CEO of electric vehicle (EV) maker Xpeng (9868.HK) who told Reuters his company needs 10 years "to lay a good foundation" on the continent.

These new players, many of which have only ever made electric vehicles, believe they have a window of opportunity to finally crack the lucrative market.

While electric car sales in the European Union more than doubled last year and jumped 130% in the first half of this year, even as threats to the EV boom persist, traditional manufacturers are still gradually shifting their large vehicle ranges over to electric and have yet to flood the thirsty market with models.

"The market is not that busy yet, if you compare it with combustion-engine models where each of the major carmakers has a whole range of vehicles," said Alexander Klose, who heads the foreign operations of Chinese electric vehicle maker Aiways.

"That is where we think we have an opportunity," he added on a drive around Munich in a U5, a crossover SUV on sale in Germany, the Netherlands, Belgium and France, where new EV rules are aimed at discouraging purchases of Chinese models.

The U5 starts at 30,000 euros ($35,000) in Germany - below the average new car price and most local EV prices - before factoring in 9,000 euros in EV subsidies, though France's EV incentives have tightened for Chinese models - and comes in just four colours and two trim levels to minimize costs.

'GERMAN PEOPLE BUY GERMAN CARS'
As Chinese carmakers gear up to enter Europe, they are trying out different business models, from relying on importers, low-cost retail options or building up more traditional dealerships.

The new reality that top Western carmakers like BMW (BMWG.DE) and Tesla Inc (TSLA.O) now produce cars in technological powerhouse China, where the EV market is intensely competitive, has likely undermined past perceptions of low quality workmanship - though they can be hard to shake.

Antje Levers, a teacher who lives in western Germany near the Dutch border, and her husband owned a diesel Chevrolet Orlando but wanted a greener option. They bought an Aiways U5 last year after plenty of research to fend off criticism for not buying local, and loves its handling and low running costs.

She said people had told her: "You can't buy a Chinese car, they're plastic and cheap and do not support German jobs." But she feels that is no longer true in a global car industry where you find German auto parts in Chinese cars and vice versa.

"German people buy German cars, so to buy a Chinese car you need to have a little courage," the 47-year-old added. "Sometimes you just have to be open for new things."

NIO LANDS IN NORWAY WITH NOMI
Nio launches its ES8 electric SUV alongside a NIO House - part-showroom, part-cafe and workspace for customers in the capital of Norway, a country that's also the initial base for Xpeng.

Norwegian state support for EVs has put the country at the forefront of the shift to electric. It makes sense as a European entry point because customers are used to electric vehicles so only have to be sold on an unknown Chinese brand, said Christina Bu, secretary general of the Norwegian EV Association.

"If you go to another European country you may struggle to sell both," said Bu, adding that her organisation has talked extensively with a number of Chinese EV makers keen to learn market specifics and consumer culture before launching there.

She is uncertain, though, how consumers will react to Nio's approach of swapping out batteries for customers rather than stopping to charge them, a contrast to other EV battery strategies in the industry, or the carmaker's strategy of leasing rather than selling batteries to customers.

"But where the Chinese are really at the forefront is the technology," she added, referring in particular to Nomi, the digital assistant in the dashboard of Nio's cars.

NEWCOMERS' STRATEGIES DIVERGE
One size does not fit all. While Nio and Xpeng have been hiring staff building up their organizations in Norway, SAIC's MG works through a car importer to sell cars in a handful of European markets.

Aiways is trying an lower-cost approach to selling cars in Europe, though Klose says it varies by market.

In Germany, for instance, the company sells its cars through Euronics, an association of independent electronics retailers, rather than building traditional dealerships.

It aims to sell across the EU by next year and to enter the U.S. market by 2023, said Klose, a former Volvo and Ford executive.

Past failed attempts by Chinese carmakers to conquer Europe are unlikely to hurt Chinese EV makers today, as consumers have grown accustomed to electronics coming from China, he added.

Such failures included Brilliance in 2007, whose vehicle received one out of five stars in a German car crash test, damaging the brand.

"The fact there are more Chinese carmakers entering the market will also help us, as it will make Chinese brands more accepted by consumers," Klose said.

Selling cars to Europeans is a "tough business, especially if your product isn't well known," said Arnie Richters, chairman of Brussels-based industry group Platform for Electromobility.

"But if they bring a lot of innovation they have a lot of opportunity."

 

Related News

View more

More than half of new U.S. electric-generating capacity in 2023 will be solar

U.S. 2023 Utility-Scale Capacity Additions highlight surging solar power, expanding battery storage, wind projects, natural gas plants, and new nuclear reactors, boosting grid reliability in Texas and California with record planned installations.

 

Key Points

Planned grid expansions led by solar and battery storage, with wind, natural gas, and nuclear increasing U.S. capacity.

✅ 29.1 GW solar planned; Texas and California lead installations.

✅ 9.4 GW battery storage to more than double current capacity.

✅ Natural gas, wind, and 2.2 GW nuclear round out additions.

 

Developers plan to add 54.5 gigawatts (GW) of new utility-scale electric-generating capacity to the U.S. power grid in 2023, according to our Preliminary Monthly Electric Generator Inventory. More than half of this capacity will be solar power (54%), even as coal generation increase has been reported, followed by battery storage (17%).

 

Solar

U.S. utility-scale solar capacity has been rising rapidly EIA summer outlook since 2010. Despite its upward trend over the past decade 2018 milestone, additions of utility-scale solar capacity declined by 23% in 2022 compared with 2021. This drop in solar capacity additions was the result of supply chain disruptions and other pandemic-related challenges. We expect that some of those delayed 2022 projects will begin operating in 2023, when developers plan to install 29.1 GW of solar power in the United States. If all of this capacity comes online as planned, 2023 will have the most new utility-scale solar capacity added in a single year, more than doubling the current record (13.4 GW in 2021).

In 2023, the most new solar capacity, by far, will be in Texas (7.7 GW) and California (4.2 GW), together accounting for 41% of planned new solar capacity.

 

Battery storage

U.S. battery storage capacity has grown rapidly January generation jump over the past couple of years. In 2023, U.S. battery capacity will likely more than double. Developers have reported plans to add 9.4 GW of battery storage to the existing 8.8 GW of battery storage capacity.

Battery storage systems are increasingly installed with wind and solar power projects. Wind and solar are intermittent sources of generation; they only produce electricity when the wind is blowing or the sun is shining. Batteries can store excess electricity from wind and solar generators for later use. In 2023, we expect 71% of the new battery storage capacity will be in California and Texas, states with significant solar and wind capacity.

 

Natural gas

Developers plan to build 7.5 GW of new natural-gas fired capacity record natural gas output in 2023, 83% of which is from combined-cycle plants. The two largest natural gas plants expected to come online in 2023 are the 1,836 megawatt (MW) Guernsey Power Station in Ohio and the 1,214 MW CPV Three Rivers Energy Center in Illinois.

 

Wind

In 2023, developers plan to add 6.0 GW of utility-scale wind capacity, as renewables poised to eclipse coal in global power generation. Annual U.S. wind capacity additions have begun to slow, following record additions of more than 14 GW in both 2020 and 2021.

The most wind capacity will be added in Texas in 2023, at 2.0 GW. The only offshore wind capacity expected to come online this year is a 130.0 MW offshore windfarm in New York called South Fork Wind.

 

Nuclear

Two new nuclear reactors at the Vogtle nuclear power plant in Georgia nuclear and net-zero are scheduled to come online in 2023, several years later than originally planned. The reactors, with a combined 2.2 GW of capacity, are the first new nuclear units built in the United States in more than 30 years.

Developers and power plant owners report planned additions to us in our annual and monthly electric generator surveys. In the annual survey, we ask respondents to provide planned online dates for generators coming online in the next five years. The monthly survey tracks the status of generators coming online based on reported in-service dates.

 

 

Related News

View more

Electric vehicle assembly deals put Canada in the race

Canada EV Manufacturing Strategy catalyzes electric vehicles growth via batteries, mining, and supply chain localization, with Unifor deals, Ford and FCA retooling, and government incentives safeguarding jobs and competitiveness across the auto industry.

 

Key Points

A coordinated plan to scale EV assembly, batteries, and mining supply chains in Canada via union deals and incentives.

✅ Government-backed Ford and FCA retooling for EV models.

✅ Battery cell, module, and pack production localizes value.

✅ Mining-to-mobility links metals to the EV supply chain.

 

As of a month ago Canada was just a speck on the global EV manufacturing map. We couldn’t honestly claim to be in the global race to electrify the automotive sector, even as EV shortages and wait times signalled surging demand.

An analysis published earlier this year by the International Council on Clean Transportation and Pembina Institute found that while Canada ranked 12th globally in vehicle production, EV production was a miniscule 0.4 per cent of that total and well off the average of 2.3 per cent amongst auto producing nations.

As the report’s co-author Ben Sharpe noted, “Canada is a huge auto producer. But nobody is really shining a light on the fact that if Canada’s doesn’t quickly ramp up its EV production, the steady decline we’ve seen in auto manufacturing over the past 20 years is going to accelerate.”


National strategy
While the report received relatively scant attention outside industry circles, its thesis was not lost on the leadership of Unifor, the union representing Canadian autoworkers.

In an August op-ed, Unifor national president Jerry Dias laid out the table stakes: “Global automakers are pouring hundreds of billions of dollars into electric vehicle investments, but no major programs are landing in Canada. Without a comprehensive national auto strategy, and active government engagement, the future is dim … securing our industry’s future requires a much bigger made-in-Canada style effort. An effort that government must lead.”


And then he got busy at the negotiating table.

The result? All of a sudden Canada is (or rather, will be) on the EV assembly map, just as the market hits an EV inflection point globally on adoption trends.

Late last month, contract negotiations between Unifor and Ford produced the Ford Oakville deal that will see $2 billion — including $590 million from the federal and Ontario governments ($295 million each) — invested towards production of five EV models in Oakville, Ont.

Three weeks later, Unifor reached a similar agreement with Fiat Chrysler Automobiles on a $1.5-billion investment, including retooling, to accommodate production of both a plug-in hybrid and battery electric vehicle (including at least one additional model). 

 

Workforce implications
The primary motivation for Unifor in pushing for EVs in contract negotiations is, at minimum, preserving jobs — if not creating them. Unifor estimates that retooling the Ford plant in Oakville will save 3,000 of the 3,400 jobs there, contributing to Ontario's EV jobs boom as the transition accelerates. However, as VW CEO Herbert Diess has noted, “The reality is that building an electric car involves some 30 per cent less effort than one powered by an internal combustion engine.”


So, when it comes to the relationship between jobs and EVs, at first glance it might not seem to be a great news story. What exactly are the workforce implications?

To answer this question, and aid automakers and their suppliers in navigating the transition to EV production, the Boston Consulting Group (BCG) has done a study on the evolution of labour requirements along the automotive value chain. And the results, it turns out, are both illuminating and encouraging — so long as you look across the full value chain.

 

Common wisdom “inaccurate”
The study provides an in-depth unpacking of the similarities and differences between manufacturing an internal combustion engine (ICE) vehicle versus a battery EV (BEV), and in doing so it arrives at a surprising conclusion: “The common wisdom that BEVs are less labor intensive in assembly stages than traditional vehicles is inaccurate.” 

BCG’s analysis modeled how many labour hours were required to build an ICE vehicle versus a BEV, including the distribution of labour value across the automotive value chain.

While ICE vehicles require more labour associated with components, engine, motor and transmission assembly and installation, BEVs require the addition of battery manufacturing (cell production and module and battery pack assembly) and an increase in assembly-related labour. Meanwhile, labour requirements for press, body and paint shops don’t differ at all. Put that all together and labour requirements for BEVs are comparable to those of ICE vehicles when viewed across the full value chain.


Value chain shifting to parts suppliers
However, as BCG notes, this similarity not only masks, but even magnifies, a significant change that was already underway in the distribution of labour value across the value chain — an accelerating shift to parts suppliers.

This trend is a key reason why the Canadian Automotive Parts Manufacturers’ Association launched Project Arrow earlier this year, and just unveiled the winner of the EV concept design that will ultimately become a full-build, 100 per cent Canadian-equipped zero-emission concept vehicle. The project is a showcase for Canadian automotive SMEs.

The bulk of the value shift is into battery cell manufacturing, which is dominated by Asian players. In light of this, both the EU and UK are working hard to devise strategies to secure battery cell manufacturing, including projects like a Niagara Region battery plant that signal momentum, and hence capture this value domestically. Canada must now do the same — and in the process, capitalize on the unique opportunity we have buried underground: the metals and minerals needed for batteries.

The federal government is well aware of this opportunity, which Minister of Industry, Science and Economic Development Navdeep Bains has coined “mines to mobility.” But we’re playing catch up, and the window to effectively position to capture this opportunity will close quickly.

 

Cooperation and coordination needed
As Unifor’s Dias noted in an interview with Electric Autonomy after the FCA deal, the scale of the opportunity extends beyond the assembly plants in Oakville and Windsor: “This is about putting workers back in our steel plants. This is about making batteries. This is about saying to aluminum workers in Quebec and B.C. … to lithium workers in Quebec … cobalt workers in Northern Ontario, you’re going to be a part of the solution…It is a transformative time. … We’re on the cusp of leading globally for where this incredible industry is going.”


With their role in securing Ford’s EV production commitment, the federal and Ontario governments made clear that they understand the potential that EVs offer Canada, including how to capitalize on the U.S. auto sector's pivot as supply chains evolve, and their role in capitalizing on this opportunity.

But to ultimately succeed will require more than an open chequebook, it will take a coordinated industrial strategy that spans the full automotive value chain and extends beyond it into batteries and even mining, alongside Canada-U.S. collaboration to align supply chains. This will require effective cooperation and coordination between governments and across several industrial sectors and their associations.

Together they are Team Canada’s pit crew in the global EV race. How we fare will depend on how efficiently and effectively that crew works together. 

 

Related News

View more

Climate change, not renewables, threaten grid

New Mexico Energy Transition Act advances renewable energy, battery storage, energy efficiency, and demand response to boost grid reliability during climate change-fueled heatwaves, reducing emissions while supporting solar and wind deployment.

 

Key Points

A state policy phasing out power emissions, scaling renewables and storage, bolstering grid reliability in extreme heat.

✅ Replaces coal generation with solar plus battery storage

✅ Enhances grid reliability during climate-driven heatwaves

✅ Promotes energy efficiency and demand response programs

 

While temperatures hit record highs across much of the West in recent weeks and California was forced to curb electricity service amid heat-driven grid strain that week, the power stayed on in New Mexico thanks to proactive energy efficiency and conservation measures.

Public Service Company of New Mexico on Aug. 19 did ask customers to cut back on power use during the peak demand time until 9 p.m., to offset energy supply issues due to the record-breaking heatwave that was one of the most severe to hit the West since 2006. But the Albuquerque Journal's Aug. 28 editorial, "PRC should see the light with record heat and blackouts," confuses the problem with the solution. Record temperatures fueled by climate change – not renewable energy – were to blame for the power challenges last month. And thanks to the Energy Transition Act, New Mexico is reducing climate change-causing pollution and better positioned to prevent the worst impacts of global warming.

During those August days, more than 80 million U.S. residents were under excessive heat warnings. As the Journal's editorial pointed out, California experienced blackouts on Aug. 14 and 15 as wildfires swept across the state and temperatures rose. In fact, a recent report by the University of Chicago's Climate Impact Lab found the world has experienced record heat this summer due to climate change, and heat-related deaths will continue to rise in the future.

As the recent California energy incidents show, climate change is a threat to a reliable electricity system and our health as soaring temperatures and heatwaves strain our grid, as seen in Texas grid challenges this year as well. Demand for electricity rises as people depend more on energy-intensive air conditioning. High temperatures also can decrease transmission line efficiency and cause power plant operators to scale back or even temporarily stop electricity generation.

Lobbyists for the fossil fuel industry may claim that the service interruptions and the conservation requests in New Mexico demonstrate the need for keeping fossil-fueled power generation for electricity reliability, echoing policy blame narratives in California that fault climate policies. But fossil fuel combustion still is subject to the factors that cause blackouts – while also driving climate change and making resulting heatwaves more common. After an investigation, California's own energy agencies found no substance to the claim that renewable energy use was a factor in the situation there, and it's not to blame in New Mexico, either.

New Mexico's Energy Transition Act is a bold, necessary step to limit the damage caused by climate change in the future. It creates a reasonable, cost-saving path to eliminating greenhouse gas emissions associated with generating electricity.

The New Mexico Public Regulation Commission properly applied this law when it recently voted unanimously to replace PNM's coal-fired generation at San Juan Generating Station with carbon-free solar energy and battery storage located in the Four Corners communities, a prudent step given California's looming electricity shortage warnings across the West. The development will create jobs and provide resources for the local school district and help ensure a stronger economy and a healthier future for the region.

As we expand solar and wind energy here in New Mexico, we can help ensure reliable electricity service by building out greater battery storage for renewable energy resources. Expanding regional energy markets that can dispatch the lowest-cost energy from across the region to places where it is needed most would make renewable energy more available and reduce costs, despite concerns over policy exports raised by some observers.

Energy efficiency and demand response are important when we are facing extraordinary conditions, and proven strategies to improve electricity reliability show how demand-side tools complement the grid, so it is unfortunate that the Albuquerque Journal made the unsubstantiated claim that a stray cloud will put out the lights. It was hot, supplies were tight on the electric grid, and in those moments, we should conserve. We should not use those moments to turn our back on progress.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.