'Consumer Reports' finds electric cars really do save money in the long run


ev charging

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Electric Vehicle Ownership Costs include lower maintenance, repair, and fuel expenses; Consumer Reports shows BEV and PHEV TCO beats ICE over 200,000 miles, with per-mile savings compounding through electricity prices and reduced service.

 

Key Points

Lifetime EV expenses, typically lower than ICE, due to cheaper electricity, reduced maintenance, and fewer repairs.

✅ BEV: $0.012/mi to 50k; $0.028/mi after; vs ICE up to $0.06/mi

✅ PHEV: $0.021/mi to 50k; $0.031/mi after; still below ICE

✅ Savings increase over 200k miles from fuel and service reductions

 

Electric vehicles are a relatively new technology, and the EV age is arriving ahead of schedule today. Even though we technically saw the first battery-powered vehicles more than 100 years ago, they haven’t really become viable transportation in the modern world until recently, and they are greener than ever in all 50 states as the grid improves.

As viable as they may now be, however, it still seems they’re unarguably more expensive than their conventional internal-combustion counterparts, prompting many to ask whether it’s time to buy an electric car today. Well, until now.

Lower maintenence costs and the lower price of electricity versus gasoline (see the typical cost to charge an electric vehicle in most regions) actually make electric cars much cheaper in the long run, despite their often higher purchase price, according to a new survey by Consumer Reports. The information was collected using annual reliability surveys conducted by CR in 2019 and 2020.

In the first 50,000 miles (80,500 km), battery electric vehicles cost just US$0.012 per mile for maintenence and repairs, while plug-in hybrid models bump that number up to USD$0.021. Compare these numbers to the typical USD$0.028 cost for internal combustion vehicles, and it becomes clear the more you drive, the more you will save, and across the U.S. plug-ins logged 19 billion electric miles in 2021 to prove the point. After 50,000 miles, the costs for BEV and PHEV vehicles is US$0.028 and US$0.031 respectively, while ICE vehicles jump to US$0.06 per mile.

To put it more practically, if you chose to buy a Model 3 instead of a BMW 330i, you’d see a total US$17,600 in savings over the lifetime of the vehicle, aligning with evidence that EVs are better for the planet and your budget as well, based on average driving. In the SUV sector, buying a Tesla Model Y instead of a Lexus crossover would save US$13,400 (provided the former’s roof doesn’t fly off) and buying a Nissan Leaf over a Honda Civic would save US$6,000 over the lifetime of the vehicles.

CR defines the vehicle’s “lifetime” as 200,000 miles (320,000 km). Ergo the final caveat: while it sounds like driving electric means big savings, you might only see those returns after quite a long period of ownership, though some forecasts suggest that within a decade adoption will be nearly universal for many drivers.

 

Related News

Related News

Spain Breaks Gas Link with Wind and Solar

Spain has broken its reliance on fossil gas as soaring wind and solar energy drive Europe’s lowest wholesale electricity prices, reducing emissions, stabilizing the grid, and advancing renewable power, energy independence, and clean transition goals across the EU.

 

How Has Spain Broken the Gas Link with Wind and Solar??

Spain has broken the link between gas and power prices by rapidly expanding wind and solar generation, which now supplies nearly half its electricity, cutting fossil fuel influence by 75% since 2019 and reducing power costs 32% below the EU average.

✅ Wind and solar cut fossil influence by 75% since 2019

✅ Power prices 32% below EU average in 2025

✅ Renewables meet nearly half of national electricity demand

 

Spain has emerged as one of Europe’s most affordable electricity markets, largely due to its rapid expansion of wind and solar power. By decoupling its wholesale electricity prices from volatile fossil gas and coal, Spain has achieved a 32 percent lower average wholesale price than the EU average in the first half of 2025. This remarkable shift marks a dramatic turnaround from 2019, when Spain had some of the highest power prices in Europe.

According to new data, the influence of fossil fuels on Spain’s electricity prices has fallen by 75 percent since 2019, mirroring how renewables have surpassed fossil fuels in Europe over the same period, dropping from 75 percent of hours tied to gas costs to just 19 percent in early 2025. “Spain has broken the ruinous link between power prices and volatile fossil fuels, something its European neighbours are desperate to do,” said Dr. Chris Rosslowe, Senior Energy Analyst at Ember.

The change is driven by a surge in renewable generation. Between 2019 and mid-2025, Spain added more than 40 gigawatts of new solar and wind capacity—second only to Germany, whose power market is twice the size. Wind and solar now meet nearly half (46 percent) of Spain’s electricity demand, compared with 27 percent six years ago. As a result, fossil generation has fallen to 20 percent of total demand, well below the levels seen in other major economies such as Germany (41 percent) and Italy (43 percent).

This renewable growth has also cut Spain’s dependence on imported fuels. In the past five years, new solar and wind plants have avoided 26 billion cubic metres of gas imports, saving €13.5 billion—five times the amount the country invested in transmission infrastructure over the same period. The Central Bank of Spain estimated that wholesale electricity prices would have been 40 percent higher in 2024 if renewables had not displaced fossil generation, and neighboring France has seen negative prices during periods of renewable surplus.

August 2025 marked a historic milestone: Spain recorded a full month without coal-fired generation for the first time. A decade earlier, coal accounted for a quarter of the nation’s electricity supply. Gas use has also declined steadily, from 26% of demand in 2019 to 19% this year.

However, the system still faces challenges. Following the April 28th Iberian blackout, Spain has relied more heavily on gas-fired plants to stabilize the grid. These services—such as voltage control and balancing—have proven to be expensive, with costs doubling since the blackout and accounting for 57 percent of the average electricity price in May 2025, up from 14 percent the previous year. Curtailment of renewables has also tripled, reaching 7.2 percent of generation between May and July.

Despite being Europe’s fourth-largest electricity market, Spain ranks only 13th in battery storage capacity, underscoring the need for further investment in clean flexibility solutions, such as grid-scale batteries to provide flexibility and stronger interconnections. Post-blackout reforms aim to address this weakness and ensure the gains from renewable integration are not lost.

“Spain risks sliding back into costly gas reliance amid post-blackout fears,” warned Rosslowe. “Boosting grids and batteries will help Spain break free from fossil dependency for good.”

With record-low electricity prices and one of the fastest decoupling rates in Europe, Spain’s experience demonstrates how large-scale wind and solar adoption can reshape energy economics—and offers a roadmap for other nations seeking to escape the volatility of fossil fuels.

View more

Feds announce $500M contract with Edmonton company for green electricity

Canada Renewable Energy Partnerships advance wind power and clean electricity in Alberta and Saskatchewan, cutting emissions and supporting net-zero goals through Capital Power and SaskPower agreements with Indigenous participation and 25-year supply contracts.

 

Key Points

Government-backed deals with Capital Power and SaskPower to deliver clean electricity and reduce emissions.

✅ 25-year renewable supply for federal facilities

✅ New Halkirk 2 Wind project in Alberta

✅ Emissions cuts with Indigenous participation

 

The Government of Canada has partnered with two major energy providers in Western Canada (Prairie provinces) on renewable energy projects.

Tourism Minister Randy Boissonnault appeared in Edmonton on Friday to announce a new Alberta wind-generation facility in partnership with Capital Power.

It's one of two new energy partnerships in Western Canada as part of the 2030 emissions reduction plan by Public Services and Procurement Canada.

On Jan. 1, the federal government awarded a contract worth up to $500 million to Capital Power to provide all federal facilities in Alberta with renewable electricity as part of Alberta's renewable energy surge for 25 years.

"We're proud to partner with the government of Canada to help them reach their 100 per cent clean electricity by 2025 goal," said Jason Comandante, Capital Power vice president of commercial services.

The agreement also includes opportunities for Indigenous participation, including facility development partnerships and employment and training opportunities.

"At Capital Power, we are committed to net-zero by 2045, and are proud to take action against climate change. Collaborative agreements like this help support our net-zero goals, provide us opportunities to meaningfully engage Indigenous communities, and help decarbonize Alberta's power grid," Comandante said.

Capital Power will provide around 250,000 megawatt-hours of electricity each year through existing renewable energy credits while the new Capital Power Halkirk 2 Wind facility is being developed.

Located near Paintearth, Alta., the proposed wind farm will have up to 35 turbines and generate enough power for the average yearly electricity needs of more than 70,000 Alberta homes.

The project is currently awaiting regulatory approval, within Alberta's energy landscape, with construction projected to begin this summer. When complete, it will supply 49 per cent of its output to the federal government.

"Through the agreement, the federal government is supporting the ongoing development of renewable energy infrastructure development within the province," Boissonnault said.

The new partnership will join another in Saskatchewan and complement Alberta solar facilities that have been contracted at lower cost than natural gas.

In 2022, the federal government signed an agreement with SaskPower to supply clean electricity to the approximately 600 federal facilities in Saskatchewan. That wind project is expected to come online by 2024.

Boissonnault said the two initiatives combined will reduce carbon dioxide emissions in Alberta and Saskatchewan by about 166 kilotonnes.

"That is the equivalent of the emissions from more than 50,000 cars driven for one year. So, if you think about that, that's a great reduction right here in Alberta and Saskatchewan," he said.

"These are concrete steps to ensuring that Canada remains a leader of renewable energy on the global stage and grid modernization projects to help the fight against climate change." 

 

Related News

View more

EV charging to solar panels: How connected tech is changing the homes we live in

Connected Home Energy Technologies integrate solar panels, smart meters, EV charging, battery storage, and IoT energy management to cut costs, optimize demand response, and monitor usage in real time for safer, lower-carbon homes.

 

Key Points

Devices and systems managing home energy: solar PV, smart meters, EV chargers, and storage to cut costs and emissions.

✅ Real-time visibility via apps, smart meters, and IoT sensors

✅ Integrates solar PV, batteries, and EV charging with the grid

✅ Enables demand response, lower bills, and lower carbon

 

Driven by advances in tech and the advent of high-speed internet connections, many of us now have easy access to a raft of information about the buildings we live in.

Thanks to the proliferation of hardware and software within the home, this trend shows no sign of letting up and comes in many different forms, from indoor air quality monitors to “smart” doorbells which provide us with visual, real-time notifications when someone is attempting to access our property.

Residential renewable electricity generation is also starting to gain traction, with a growing number of people installing solar panels in the hope of reducing bills and their environmental footprint.

In the U.S. alone, the residential solar market installed 738 megawatts of capacity in the third quarter of 2020, a 14% jump compared to the second quarter, according to a recent report from the Solar Energy Industries Association and Wood Mackenzie.

Earlier this month, California-headquartered SunPower — which specializes in the design, production and delivery of solar panels and systems — announced it was rolling out an app which will enable homeowners to assess and manage their energy generation, usage and battery storage settings with their mobile, as California looks to EVs for grid stability amid broader electrification.

The service will be available to customers using its SunPower Eqiunox system and represents yet another instance of how connected technologies can provide us with valuable information about how buildings operate.

Similar offerings in this increasingly crowded marketplace include so-called “smart” meters, which allow consumers to see how much energy they are using and money they are spending in real time.

Elsewhere products such as Hive, from Centrica, enable users to install a range of connected kit — from plugs and lighting to thermostats and indoor cameras — that can be controlled via an app on their cellphone and, in some cases, their voice. 

Connected car charging
Solar panels represent one way that sustainable tech can be integrated into homes. Other examples include the installation of charging points for electric vehicles, as EV growth challenges state grids in many markets.

With governments around the world looking to phase-out the sale of diesel and gasoline vehicles and encourage consumers to buy electric, and Model 3's utility impact underscoring likely shifts in demand, residential charging systems could become an integral part of the built environment in the years ahead.

Firms offering home-based, connected, charging include Pod Point and BP Pulse. Both of these services include apps which provide data such as how much energy has been used, the cost of charging and charge history.  

Another firm, Wallbox, recently announced it was launching its first electric vehicle charger for North American homes.

The company, which is based in Spain, said the system was compatible with all types of electric vehicles, would allow customers to schedule charges, and could be voice-controlled through Google Assistant and Amazon Alexa, while mobile energy storage promises added flexibility for strained grids.

Away from the private sector, governments are also making efforts to encourage the development of home charging infrastructure.

Over the weekend, U.K. authorities said the Electric Vehicle Homecharge Scheme — which gives drivers as much as £350 (around $487) toward a charging system — would be extended and expanded, targeting those who live in leasehold and rented properties, even as UK grid capacity for EVs remains under scrutiny.

Mike Hawes, chief executive of the Society of Motor Manufacturers and Traders, described the government’s announcement as “welcome and a step in the right direction.”

“As we race towards the phase out of sales of new petrol and diesel cars and vans by 2030, we need to accelerate the expansion of the electric vehicle charging network, and proper grid management can ensure EVs are accommodated at scale,” he added.

“An electric vehicle revolution will need the home and workplace installations this announcement will encourage, but also a massive increase in on-street public charging and rapid charge points on our strategic road network.”

Change afoot, but challenges ahead
As attempts to decarbonize buildings and society ramp up, the way our homes look and function could be on the cusp of quite a big shift.

“Grid-connected home generation technologies such as solar electric panels will be important in the shift to a 100% renewable electricity grid, but decarbonising the electricity supply is only one part of the transition,” Peter Tyldesley, chief executive of the Centre for Alternative Technology, told CNBC via email.

With reference to Britain, Tyldesley went on to explain how his organization envisaged “just under 10% of electricity in a future zero carbon society coming from solar PV, utilising 15-20% of … U.K. roof area.” This, he said, compared to over 75% of electricity coming from wind power. 

Heating, Tyldesley went on to state, represented “the bigger challenge.”

“To decarbonise the U.K.’s housing stock at the scale and speed needed to get to zero carbon, we’ll need to refurbish possibly a million houses every year for the next few decades to improve their insulation and airtightness and to install heat pumps or other non-fossil fuel heating,” he said.

“To do this, we urgently need a co-ordinated national programme with a commitment to multi-year government investment,” he added.

On the subject of buildings becoming increasingly connected, providing us with a huge amount of data about how they function, Tyldesley sought to highlight some of the opportunities this could create. 

“Studies of the roll out of smart metering technology have shown that consumers use less energy when they are able to monitor their consumption in real time, so this kind of technology can be a useful part of behaviour change programmes when combined with other forms of support for home efficiency improvements,” he said.

“The roll out of smart appliances can go one step further — responding to signals from the grid and, through vehicle-to-grid power, helping to shift consumption away from peak times towards periods when more renewable energy is available,” he added.

 

Related News

View more

General Motors to add 3,000 jobs focused on electric vehicles

General Motors EV Hiring expands software development, engineering, and IT roles for electric vehicles, Ultium batteries, and autonomous tech, offering remote jobs, boosting diversity and inclusion, and accelerating zero-emission mobility and customer experience initiatives.

 

Key Points

GM plan to hire 3,000 software, engineering, and IT staff to speed EV programs, remote work, and customer experience.

✅ 3,000 hires in software, engineering, IT

✅ Focus on EVs, Ultium batteries, autonomous tech

✅ Remote roles, diversity, inclusion priorities

 

General electrical safety involves practices and procedures designed to prevent electric shock, arc flash, and other hazards associated with electrical systems. Whether at home, in the workplace, or industrial environments, following established safety guidelines helps protect people, property, and equipment from electrical accidents. General Motors plans to hire 3,000 new employees largely focused on software development as the company accelerates its plans for electric vehicles, the automaker announced Monday.

GM said the jobs will be focused on engineering, design and information technology “to increase diversity and inclusion and contribute to GM’s EV and customer experience priorities.” The hiring is expected through the first quarter of 2021, as the company addresses EV adoption challenges in key markets. Many of the positions will be remote as GM begins to offer “more remote opportunities than ever before,” the company said.

“As we evolve and grow our software expertise and services, it’s important that we continue to recruit and add diverse talent,” GM President Mark Reuss said in a release. “This will clearly show that we’re committed to further developing the software we need to lead in EVs, enhance the customer experience and become a software expertise-driven workforce.”

General Motors CEO on third-quarter earnings, rise in demand for trucks and more
The hiring blitz comes as the automaker expects to increase focus on electric vehicles, including offering at least 20 new electric vehicles globally by 2023, while competitors like Ford accelerate EV investment as well. GM earlier this year said it planned to invest $20 billion in electric and autonomous vehicles by 2025, including a tentative Ontario EV plant commitment.

Ken Morris, GM vice president of autonomous and electric vehicles programs, told reporters on a call Monday that the automaker has pulled forward at least two upcoming electric vehicles following the GMC Hummer EV, which is the first vehicle on GM’s next-generation electric vehicle platform with its proprietary Ultium battery cells.

“We’re moving as fast as we can in terms of developing vehicles virtually, more so than we ever have by far,” Morris said. “We are doing things virtually, more effective than we ever have.”

Shares of the automaker reached a new 52-week high of $39.72 ahead of the Monday announcement. The stock was up 5% during midday trading Monday following market optimism about a Covid-19 vaccine and President-elect Joe Biden outlining priorities that would support electric vehicles nationwide.

The race between Tesla, GM, Rivian and others to dominate electric pickup trucks
“We’re looking forward to working with the Biden administration and support policies that will foster greater adoption of EVs across all 50 states and encourage investments in R&D and manufacturing,” Morris said. “At the end of the day, climate change is a global concern and the best way to remove automobile emissions from the environmental equation is all-electric, zero-emissions future.”

At the same time, gas-electric hybrids continue to gain momentum in the U.S., shaping consumer transition paths.

The additional jobs are separate from a previous announcement by GM to hire 1,100 new employees as part of a $2.3 billion joint venture with LG Chem to produce Ultium cells in northeast Ohio.

GM employed about 164,000 people globally in 2019, down from 215,000 in 2015 as the company has restructured and cut operations in recent years.

 

Related News

View more

Solar Is Now 33% Cheaper Than Gas Power in US, Guggenheim Says

US Renewable Energy Cost Advantage signals cheaper utility-scale solar and onshore wind versus natural gas, with LCOE declines, tax credits, and climate policy cutting electricity costs for utilities and grids across the United States.

 

Key Points

Cheaper solar and wind than natural gas, driven by LCOE drops, tax credits, and policy, lowering US electricity costs.

✅ Utility-scale solar is about one-third cheaper than gas

✅ Onshore wind costs roughly 44 percent less than natural gas

✅ Policy and tax credits accelerate renewables and cut power prices

 

Natural gas’s dominance as power-plant fuel in the US is fading fast as the cost of electricity generated by US wind and solar projects tumbles and as wind and solar surpass coal in the generation mix, according to Guggenheim Securities.

Utility-scale solar is now about a third cheaper than gas-fired power, while onshore wind is about 44% less expensive, Guggenheim analysts led by Shahriar Pourreza said Monday in a note to clients, a dynamic consistent with falling wholesale power prices in several markets today. 

“Solar and wind now present a deflationary opportunity for electric supply costs,” the analysts said, which “supports the case for economic deployment of renewables across the US,” as the country moves toward 30% wind and solar and one-fourth of total generation in the near term.

Gas prices have surged amid a global supply crunch after Russia’s invasion of Ukraine, while tax-credit extensions and sweeping US climate legislation have brought down the cost of wind and solar, even as renewables surpassed coal in 2022 nationwide. Renewables-heavy utilities like NextEra Energy Inc. and Allete Inc. stand to benefit, and companies that can boost spending on wind and solar, as wind, solar and batteries dominate the 2023 pipeline, will also see faster growth, Guggenheim said.
 

 

Related News

View more

Massachusetts Issues Energy Storage Solicitation Offering $10M

Massachusetts Energy Storage Solicitation offers grants and matching funds via MassCEC and DOER for grid-connected, behind-the-meter projects, utility partners, and innovative business models, targeting 600 MW, clean energy leadership, and ratepayer savings.

 

Key Points

MassCEC and DOER matching-fund program for grid-connected storage pilots, advancing innovation and ratepayer savings.

✅ $100k-$1.25M matching funds; 50% cost share required

✅ Grid-connected, utility-partnered and behind-the-meter eligible

✅ 10-15 awards; proposals due June 9; install within 18 months

 

Massachusetts released a much-awaited energy storage solicitation on Thursday offering up to $10 million for new projects.

Issued by the Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER), the solicitation makes available $100,000 to $1.25 million in matching funds for each chosen project.

The solicitation springs from a state report issued last year that found Massachusetts could save electricity ratepayers $800 million by incorporating 600 MW of energy storage projects. The state plans to set a specific energy storage goal, now the subject of a separate proceeding before the DOER.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state plans to allot about half of the money from the energy storage solicitation to projects that include utility partners. Both distribution scale and behind-the-meter projects, including net-zero buildings among others, will be considered, but must be grid connected.

The solicitation seeks innovative business models that showcase the commercial value of energy storage in light of the specific local energy challenges and opportunities in Massachusetts.

Projects also should demonstrate multiple benefits/value streams to ratepayers, the local utility, or wholesale market.

And finally, projects should help uncover market and regulatory issues as well as monetization and financing barriers.

The state anticipates teams forming to apply for the grants. Teams may include public and private entities and are are encouraged to include the local utility.

Proposals are due June 9. The state expects to notify winners September 8, with contracts issued within the following month. Projects must be installed within 18 months of receiving contracts.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.