Arvato commissions first solar power plant


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Arvato Ontario Solar Power Plant advances sustainability with rooftop photovoltaic panels, PPA financing, and green electricity, generating 800,000 kWh annually to cut logistics emissions, reduce energy costs, and support carbon-neutral supply chain operations.

 

Key Points

A rooftop PV system under a PPA, supplying low-cost green power to Arvato's Ontario, CA distribution center.

✅ 1,160 panels produce 800,000 kWh of renewable power yearly

✅ PPA model avoids upfront costs and lowers electricity rates

✅ Cuts center emissions by 72%; 45% roof coverage

 

Arvato continues to invest consistently in the sustainability of its distribution centers. To this end, the first solar power plant in the focus market has now been commissioned on the roof of the distribution center in Ontario, California. The solar power plant has 1,160 solar panels and generates more than 800,000 kilowatt hours (kWh) of green electricity annually. This reduces electricity costs and, with advances in battery storage, further cuts the logistics center's greenhouse gas emissions. Previously, the international supply chain and e-commerce service provider had converted five other distribution centers in the USA to green electricity.

The project started as early as November 2019 with an intensive site investigation. An extensive catalogue of measures and criteria had to be worked through to install and commission the solar power plant on the roof system. After a rigorous process involving numerous stakeholders, the new solar modules were installed in August 2022, similar to utility-scale deployments like the largest solar array in Washington seen recently. However, further approvals and permits were required before the solar system could be officially commissioned, a common step for solar power plants worldwide. Once official permission for the operation was granted, the switch could be flipped in February 2023, and production of environmentally friendly solar electricity could begin.

The photovoltaic system is operated under a Purchase Power Agreement (PPA), a model widely used in corporate renewable energy projects today. This unique financing mechanism is available in twenty-six U.S. states, including California. While a third-party developer installs, owns and operates the solar panels, Arvato purchases the electricity generated. This allows companies in the U.S. to support clean energy projects while buying low-cost electricity without having to finance upfront costs. "The PPA and the resulting benefits were quite critical to the success of this project," says Christina Greenwell, Microsoft AOC F&L Client Services Manager at Arvato, who managed the project from start to finish. "It allows us to reduce our electricity costs while supporting Bertelsmann's ambitious goal of becoming carbon neutral by 2030."

The 1,160 solar panels were added to an existing system of 920 panels owned by the logistics center's landlord. In total, the panels now cover 45 percent of the roof space at the Ontario distribution center. The emissions generated by the distribution center are now reduced by 72 percent with the new solar panels and clean power generation. As Bertelsmann plans to switch all its sites worldwide to 100 percent green electricity, renewable energy certificates will, as seen when Bimbo Canada signed agreements to offset 100 percent of its electricity for its operations, offset the remaining emissions.

"The new solar power plant is a significant step on our path to carbon neutrality and demonstrates our commitment to finding innovative solutions that reduce our carbon footprint," said Mitat Aydindag, President of North America at Arvato. "All employees at the site are pleased that our Ontario distribution center is now a pioneer and is providing effective support in achieving our ambitious climate goal in 2030."

Similar facility-level efforts include the Bright Feeds Berlin solar project underscoring momentum across industrial operations.

 

Related News

Related News

Electric Cars Have Hit an Inflection Point

U.S. EV Manufacturing Expansion accelerates decarbonization as Ford and SK Innovation invest in lithium-ion batteries and truck assembly in Tennessee and Kentucky, building new factories, jobs, and supply chain infrastructure in right-to-work states.

 

Key Points

A rapid scale-up of U.S. electric vehicle production, battery plants, and assembly lines fueled by major investments.

✅ Ford and SK build battery and truck plants by 2025

✅ $11.4B investment, 11,000 jobs in TN and KY

✅ Right-to-work context reshapes union dynamics

 

One theme of this newsletter is that the world’s physical infrastructure will have to massively change if we want to decarbonize the economy by 2050, which the United Nations has said is necessary to avoid the worst effects of the climate crisis. This won’t be as simple as passing a carbon tax or a clean-electricity mandate: Wires will have to be strung as the power grid expands; solar farms will have to be erected; industries will have to be remade. And although that kind of change can be orchestrated only by the government (hence the importance of the infrastructure bills in Congress), consumers and companies will ultimately do most of the work to make it happen.

Take electric cars, for instance. An electric car is an expensive, highly specialized piece of technology, but building one takes even more expensive, specialized technology—tools that tend to be custom-made, large and heavy, and spread across a factory or the world. And if you want those tools to produce a car in a few years, you have to start planning now, as the EV timeline accelerates ahead.

That’s exactly what Ford is doing: Last night, the automaker and SK Innovation, a South Korean battery manufacturer, announced that they were spending $11.4 billion to build two new multi-factory centers in Tennessee and Kentucky that are scheduled to begin production in 2025. The facilities, which will hire a combined 11,000 employees, will manufacture EV batteries and assemble electric F-series pickup trucks. While Ford already has several factories in Kentucky, this will be its first plant in Tennessee in six decades. The 3,600-acre Tennessee facility, located an hour outside Memphis, will be Ford’s largest campus ever—and its first new American vehicle-assembly plant in decades.

The politics of this announcement are worth dwelling on. Ford and SK Innovation were lured to Tennessee with $500 million in incentives; Kentucky gave them $300 million and more than 1,500 acres of free land. Ford’s workers in Detroit have historically been unionized—and, indeed, a source of power in the national labor movement. But with these new factories, Ford is edging into a more anti-union environment: Both Tennessee and Kentucky are right-to-work states, meaning that local laws prevent unions from requiring that only unionized employees work in a certain facility. In an interview, Jim Farley, Ford’s CEO, played coy about whether either factory will be unionized. (Last week, the company announced that it was investing $250 million, a comparative pittance, to expand EV production at its unionized Michigan facilities.)

That news might depress those on the left who hope that old-school unions, such as the United Auto Workers, can enjoy the benefits of electrification. But you can see the outline of a potential political bargain here. Climate-concerned Democrats get to see EV production expand in the U.S., creating opportunities for Canada to capitalize as supply chains shift, while climate-wary Republicans get to add jobs in their home states. (And unions get shafted.) Whether that bargain can successfully grow support for more federal climate policy, further accelerating the financial-political-technological feedback loop that I’ve dubbed “the green vortex,” remains to be seen.

Read: How the U.S. made progress on climate change without ever passing a bill

More important than the announcement is what it portends. In the past, environmentalists have complained that even when the law has required that automakers make climate-friendly cars, they haven’t treated them as a major product. It’s easy to tune out climate-friendly announcements as so much corporate greenwashing, amid recurring EV hype, but Ford’s two new factories represent real money: The automaker’s share of the investment exceeds its 2019 annual earnings. This investment is sufficiently large that Ford will treat EVs as a serious business line.

And if you look around globally, you’ll see that Ford isn’t alone. EVs are no longer the neglected stepchild of the global car industry. Here are some recent headlines:

Nine percent of new cars sold globally this year will be EVs or plug-in hybrids, according to S&P Global. That’s up from 3 percent two years ago, a staggering, iPhone-like rise.

GM, Ford, Volkswagen, Toyota, BMW, and the parent company of Fiat-Chrysler have all pledged that by 2030, at least 40 percent of their new cars worldwide will run on a non-gasoline source, and there is scope for Canada-U.S. collaboration as companies turn to electric cars. A few years ago, the standard forecast was that half of new cars sold in the U.S. would be electric by 2050. That timeline has moved up significantly not only in America, but around the world. (In fact, counter to its high-tech self-image, America is the laggard in this global transition. The two largest markets for EVs worldwide are China and the European Union.)

More remarkably (and importantly), automakers are spending like they actually believe that goal: The auto industry as a whole will pump more than $500 billion into EV investment by 2030, and new assembly deals are putting Canada in the race. Ford’s investment in these two plants represents less than a third of its planned total $30 billion investment in EV production by 2025, and that’s relatively small compared with its peers’. Volkswagen has announced more than $60 billion in investment. Honda has committed $46 billion.

Norway could phase out gas cars ahead of schedule. The country has one of the world’s most robust pro-EV policies, and it is still outperforming its own mandates. In the most recent accounting period, eight out of 10 cars had some sort of electric drivetrain. If the current trend holds, Norway would sell its last gas car in April of next year—and while I doubt the demise will be that steep, consumer preferences are running well ahead of its schedule to ban new gas-car sales by 2025.

 

Related News

View more

Netherlands' Renewables Drive Putting Pressure On Grid

The Netherlands grid crisis exposes how rapid renewable energy growth is straining transmission capacity. Solar, wind, and electric vehicle demand are overloading networks, forcing officials to urge reduced peak-time power use and accelerate national grid modernization plans.

 

Main Points

The Netherlands grid crisis refers to national electricity congestion caused by surging renewable energy generation and rising consumer demand.

✅ Grid congestion from rapid solar and wind expansion

✅ Strained transmission and distribution capacity

✅ National investment in smart grid upgrades

 

The Dutch government is urging households to reduce electricity consumption between 16:00 and 21:00 — a signal that the country’s once-stable power grid is under serious stress. The call comes amid an accelerating shift to wind and solar power that is overwhelming transmission infrastructure and creating “grid congestion” across regions, as seen in Nordic grid constraints this year.

In a government television campaign, a narrator warns: “When everyone uses electricity at the same time, our power grid can become overloaded. That could lead to failures — so please try to use less electricity between 4 pm and 9 pm.” The plea reflects a system where supply occasionally outpaces the grid’s ability to distribute it, with some regions abroad issuing summer blackout warnings already.

According to Dutch energy firm Eneco’s CEO, Kys-Jan Lamo, the root of the problem lies in the mismatch between modern renewable generation and a grid built for centralized fossil fuel plants. He notes that 70% of Eneco’s output already comes from solar and wind, and this “grid congestion is like traffic on the power lines.” Lamo explains:

“The grid congestion is caused by too much demand in some areas of the network, or by too much supply being pushed into the grid beyond what the network can carry.”

He adds that many of the transmission lines in residential areas are narrow — a legacy of when fewer and larger power plants fed electricity through major feeder lines, underscoring grid vulnerabilities seen elsewhere today. Under the new model, renewable generation occurs everywhere: “This means that electricity is now fed into the grid even in peripheral areas with relatively fine lines — and those lines cannot always cope.”

Experts warn that resolving these issues will demand years of planning and immense investment in smarter grid infrastructure over the coming years. Damien Ernst, an electrical engineering professor at Liège University and respected voice on European grids, states that the Netherlands is experiencing a “grid crisis” brought on by “insufficient investment in distribution and transmission networks.” He emphasizes that the speed of renewable deployment has outpaced the grid’s capacity to absorb it.

Eneco operates a “virtual power plant” control system — described by Lamo as “the brain we run” — that dynamically balances supply and demand. During periods of oversupply, the system can curtail wind turbines or shut down solar panels. Conversely, during peak demand, the system can throttle back electricity provision to participating customers in exchange for lower tariffs. However, these techniques only mitigate strain — they cannot replace the need for physical upgrades or bolster resilience to extreme weather outages alone.

The bottleneck has begun limiting new connections: “Consumers often want to install heat pumps or charge electric vehicles, but they increasingly find it difficult to get the necessary network capacity,” Lamo warns. Businesses too are struggling. “Companies often want to expand operations, but cannot get additional capacity from grid operators. Even new housing developments are affected, since there’s insufficient infrastructure to connect whole communities.”

Currently, thousands of businesses are queuing for network access. TenneT, the national grid operator, estimates that 8,000 firms await initial connection approval, and another 12,000 seek to increase their capacity allocations. Stakeholders warn that unresolved congestion risks choking economic growth.

According to Kys-Jan Lamo: “Looking back, almost all of this could have been prevented.” He acknowledges that post-2015 climate commitments placed heavy emphasis on adding generation and on grid modernization costs more broadly, but “we somewhat underestimated the impact on grid capacity.”

In response, the government has introduced a national “Grid Congestion Action Plan,” aiming to accelerate approvals for infrastructure expansions and to refine regulations to promote smarter grid use. At the same time, feed-in incentives for solar power are being scaled back in some regions, and certain areas may even impose charges to integrate new solar systems into the grid.

The scale of what’s needed is vast. TenneT has proposed adding roughly 100,000 km of new power lines by 2050 and investing in doubling or tripling existing capacity in many areas. However, permit processes can take eight years before construction begins, and many projects require an additional two years to complete. As Lamo points out, “the pace of energy transition far exceeds the grid’s existing capacity — and every new connection request simply extends waiting lists.”

Unless grid expansion keeps up, and as climate pressures intensify, the very clean energy future the Netherlands is striving for may remain constrained by the physics of distribution.

 

Related Articles

 

View more

Canada's race to net-zero and the role of renewable energy

Canada Net-Zero demands renewable energy deployment, leveraging hydropower to integrate wind, solar, and storage, scaling electrification, cutting oil and gas emissions, aligning policy, carbon pricing, and investment to deliver a clean grid by 2050.

 

Key Points

A national goal to cut emissions 40-45% by 2030 and reach economy-wide net-zero by 2050 through clean electrification.

✅ Hydropower balances intermittent wind and solar.

✅ Policy, carbon pricing, and investment accelerate deployment.

✅ Clean energy jobs surge as oil and gas decline.

 

As the UN climate talks draw near, Canada has enormous work left to do to reach its goals of reducing greenhouse gas emissions. Collectively, Canadians have to cut overall greenhouse-gas emissions by 40 to 45 per cent below 2005 levels by 2030 and achieve net-zero by 2050 across the economy.

And whereas countries like the U.K. have dramatically slashed their emissions levels, Canada's one of the few nations where emissions keep skyrocketing, and where fossil fuel extraction keeps increasing every year despite our climate targets.

Changes in national emissions and fossil fuel extraction since 1950, for G7 nations plus Norway and Australia
Graphic by Barry Saxifrage in Sep.15 article,Canada's climate solution? Keep increasing fossil fuels extraction.
Given its track record, and the IEA's finding that Canada will need more electricity to hit net-zero, how will Canada achieve its goal of getting to net-zero by 2050?

As Trudeau seeks to cement his political legacy, these are the MPs he’s considering for cabinet
By Andrew Perez | Opinion | October 25th 2021
In the upcoming online Conversations event on Thursday, 11 a.m. PT/2 p.m. ET, host and Canada's National Observer deputy managing editor David McKie will discuss how cleaning up Canada's electricity and renewable energy can put the country on track to hitting its targets with Clean Energy Canada executive director Merran Smith, Canadian Institute for Climate Choices senior economist Dale Beugin, and WaterPower Canada CEO Anne-Raphaëlle Audouin.

Getting to net-zero grid through renewable electricity
“If we wanted to be powered by 100 per cent renewable electricity, including proposals for a fully renewable electricity grid by 2030, Canada is one of the countries where this is actually possible,” said Audouin.

She says for that to happen, it would take a slate of clean energy providers working together to fill the gaps, rather than competing for market dominance.

“You couldn't power Canada just with wind and solar, even with batteries. That being said, renewables happen to work very well together ” she said. “Hydropower already makes up more than 90 per cent of Canada’s renewable generation and 60 per cent of the country’s total electricity needs are currently met thanks to this flexible, dispatchable, abundant source of baseload renewable electricity. It isn’t a stretch of the imagination to envision hydropower and wind and solar working increasingly together to clean up our grid. In fact, hydropower already backs up and allows intermittent renewable energies like wind and solar onto the grid.”

She noted that while hydropower alone won't be the solution, its long history and indisputable suite of attributes — hydroelectricity has been in Canada since the 1890s — will make it a key part of the clean energy transition required to replace coal, natural gas and oil, which still make up around 20 per cent of Canada's power sources.

Canada's vast access to water, wind, biomass, solar, geothermal, and ocean energy, and a federal government that has committed to climate goals, makes us well-positioned to lead the way to a net-zero future and eventually the electrification of our economy. So, what's holding the country back?

The new reality for renewables
According to Clean Energy Canada, it's possible to grow the clean energy sector, but only if businesses invest massively in renewables and governments give guidance and oversight informed by the implications of decarbonizing Canada's electricity grid research.

A recent modelling study from Clean Energy Canada and Navius Research exploring the energy picture here in Canada over the next decade shows our clean energy sector is expected to grow by about 50 per cent by 2030 to around 640,000 people. Already, the clean energy industry provides 430,500 jobs — more than the entire real estate sector — and that growth is expected to accelerate as our dependence on oil and gas decreases. In fact, clean energy jobs in Alberta are predicted to jump 164 per cent over the next decade.

Currently, provinces with the most hydropower generation are also the ones with the lowest electricity rates, reflecting that electricity has been a nationwide climate success in Canada. Wind and solar are now on par, or even more competitive, than natural gas, and that could have big implications for other major sectors of the economy. Grocery giant Loblaws (which owns brands including President's Choice, Joe Fresh, and Asian grocery chain T&T) deployed its fleet of fully electric delivery trucks in recent years, and Hydro-Québec just signed a $20-billion agreement to help power and decarbonize the state of New York over the next 25 years.

In The New Reality, Smith writes that many carbon-intensive industries, such as the mining sector, could also potentially benefit from the increased demand for certain natural resources — like lithium and nickel — as the world switches to electric vehicles and clean power.

“Oil and gas may have dominated Canada’s energy past, but it’s Canada’s clean energy sector that will define its new reality,” Smith emphasized.

Despite its vast potential to be one of the world's clean energy leaders, Canada has a long way to getting on the path to net zero. Even though the country is home to some of the world's leading cleantech companies, such as B.C.-based clean hydrogen fuel cell providers Ballard Power and Loop Energy and Nova Scotia-based carbon utilization company CarbonCure, the country continues to expand fossil fuel extraction to the point that emissions are projected to jump to around 1,500 MtCO2 worth by 2030.

 

Related News

View more

YVR welcomes government funding for new Electric Vehicle Chargers

YVR EV Charging Infrastructure Funding backs new charging stations at Vancouver International Airport via ZEVIP and CleanBC Go Electric, supporting Net Zero 2030 with Level 2 and DC fast charging across Sea Island.

 

Key Points

A federal and provincial effort to expand EV charging at YVR, accelerating airport electrification toward Net Zero 2030.

✅ Up to 74 new EV charging outlets across Sea Island by 2025

✅ Funded through ZEVIP and CleanBC Go Electric programs

✅ Supports passengers, partners, and YVR fleet electrification

 

Vancouver International Airport (YVR) welcomes today’s announcement from the Government of Canada, which confirms new federal funding under Natural Resource Canada’s Zero Emission Vehicle Infrastructure Program (ZEVIP) and broader zero-emission vehicle incentives for essential infrastructure at the airport that will further enable YVR to achieve its climate targets.

This federal funding, combined with funding through the Government of British Columbia’s CleanBC Go Electric program, which includes EV charger rebates, will support the installation of up to 74 additional Electric Vehicle (EV) Charging outlets across Sea Island over the next three years. EV charging infrastructure is identified as a key priority in the airport’s Roadmap to Net Zero 2030. It is also an important part of its purpose in being a Gateway to the New Economy.

“We know that our passengers’ needs and expectations are changing as EV adaptation increases across our region and policies like the City’s EV-ready requirements take hold, we are always working hard to anticipate and exceed these expectations and provide world-class amenities at our airport,” said Tamara Vrooman, President & CEO, Vancouver Airport Authority.

This airport initiative is among 26 projects receiving $19 million under ZEVIP, which assists organizations as they adapt to the Government of Canada’s mandatory target for all new light-duty cars and passenger trucks to be zero-emission by 2035, and to provincial momentum such as B.C.'s EV charging expansion across the network.

“We are grateful to have found partners at all levels of government as we take bold action to become the world’s greenest airport. Not only will this critical funding support us as we work to the complete electrification of our airport operations, and as regional innovations like Harbour Air’s electric aircraft demonstrate what’s possible, but it will help us in our role supporting the mutual needs of our business partners related to climate action,” Vrooman continued.

These new EV Charging stations are planned to be installed by 2025, and will provide electricity to the YVR fleet, commercial and business partners’ vehicles, as well as passengers and the public, complementing BC Hydro’s expanding charging network in southern B.C. Currently, YVR provides 12 free electric vehicle charging stalls (Level Two) at its parking facilities, as well as one DC fast-charging stall.

This exciting announcement comes on the heels of the Province of BC’s Integrated Marketplace Initiative (IMI) pilot program in November 2022, a partnership between YVR and the Province of British Columbia to invest up to 11.5 million to develop made-in-BC clean-tech solutions for use at the airport, and related programs offering home and workplace charging rebates are accelerating adoption.

 

Related News

View more

New Brunswick announces rebate program for electric vehicles

New Brunswick EV Rebates deliver stackable provincial and federal incentives for electric vehicles, used EVs, and home chargers, supporting NB Power infrastructure, lower GHG emissions, and climate goals with fast chargers across the province.

 

Key Points

Stackable provincial and federal incentives up to $10,000 for EV purchases, plus support for home charging.

✅ $5,000 new EVs; $2,500 used; stackable with federal $5,000

✅ 50% home charger rebate up to $750 through NB Power

✅ Supports GHG cuts, charging network growth, climate targets

 

New Brunswickers looking for an electric vehicle (EV) can now claim up to $10,000 in rebates from the provincial and federal governments.

The three-year provincial program was announced Thursday and will give rebates of $5,000 on new EVs and $2,500 on used ones. It closely mirrors the federal program and is stackable, meaning new owners will be able to claim up to $5,000 from the feds as well.

Minister of Environment and Climate Change Gary Crossman said the move is hoped to kickstart the province’s push toward a target of having 20,000 EVs on the road by 2030.

“This incentive has to make a positive difference,” Crossman said.

“I truly believe people have been waiting for it, they’ve been asking about it, and this will make a difference from today moving forward to put new or used cars in their hands.”

The first year of the program will cost $1.95 million, which will come from the $36 million in the Climate Change Fund and will be run by NB Power, whose public charging network has been expanding across the province. The department says if the full amount is used this year it could represent a reduction of 850 tonnes of greenhouse gasses (GHGs) annually.

Both the Liberal and Green parties welcomed the move calling it long overdue, but Green MLA Kevin Arseneau said it’s not a “miracle solution.”

“Yes, we need to electrify cars, but this kind of initiative without proper funding of public transportation, urban planning for biking … without this kind of global approach this is just another swipe of a sword in water,” he said.

Liberal environment critic Francine Landry says she hopes this will make the difference for those considering the purchase of an EV and says the government should consider further methods of incentivization like waiving registration fees.

The province’s adoption of EVs has not been overly successful so far, reflecting broader Atlantic EV buying interest trends across the region. At the end of 2020, there were 646 EVs registered in the province, far short of the 2,500 target set out in the Climate Action Plan. That was up significantly from the 437 at the end of 2019, but still a long way from the goal.

New Brunswick has a fairly expansive network of charging stations across the province, claiming to be the first “fully-connected province” in the country, and had hoped that the available infrastructure, including plans for new fast-charging stations on the Trans-Canada, would push adoption of non-emitting vehicles.

“In 2017 we had 11 chargers in the province, so we’ve come a long way from an infrastructure standpoint which I think is critical to promoting or having an electric vehicle network, or a number of electric vehicles operating in the province, and neighbouring N.L.’s fast-charging network shows similar progress,” said Deputy Minister of Natural Resources Tom Macfarlane at a meeting of the standing committee on climate change and environmental stewardship in January of 2020.

There are now 172 level two chargers and 83 fast chargers, while Labrador’s EV infrastructure still lags in neighbouring N.L. today. Level two chargers take between six and eight hours to charge a vehicle, while the fast chargers take about half an hour to get to 80 per cent charge.

The newly announced program will also cover 50 per cent of costs for a home charging station up to $750, similar to B.C. charger rebates that support home infrastructure, to further address infrastructure needs.

The New Brunswick Lung Association is applauding the rebate plan.

President and CEO Melanie Langille said about 15,000 Canadians, including 40 people from New Brunswick, die prematurely each year from air pollution. She said vehicle emissions account for about 30 per cent of the province’s air pollution.

“Electric vehicles are critical to reducing our greenhouse gas emissions,” said Langille. “New Brunswick has one of the highest per capita GHG emissions in Canada. But, because our electricity source in New Brunswick is primarily from non-emitting sources and regional initiatives like Nova Scotia’s vehicle-to-grid pilot are advancing grid integration, switching to an EV is an effective way for New Brunswickers to lower their GHG emissions.”

Langille said the lung association has been part of an electric vehicles advisory group in the province since 2014 and its research has shown this type of program is needed.

“The major barrier that is standing in the way of New Brunswickers adopting electric vehicles is the upfront costs,” Langille said. “So today’s announcement, and that it can be stacked on top of the existing federal rebates, is a huge step forward for us.”

 

Related News

View more

California looks to electric vehicles for grid stability

California EV V2G explores bi-directional charging, smart charging, and demand response to enhance grid reliability. CPUC, PG&E, and automakers test incentives aligning charging with solar and wind, helping prevent blackouts and curtailment.

 

Key Points

California EV V2G uses two-way charging and smart incentives to support grid reliability during peak demand.

✅ CPUC studies feasibility, timelines, and cost barriers to V2G

✅ Incentives shift charging to align with solar, wind, off-peak hours

✅ High-cost bidirectional chargers and warranties remain hurdles

 

California energy regulators are eyeing the power stored in electric vehicles as they hunt for ways to avoid blackouts caused by extreme weather.

While few EV and their charging ports are equipped to deliver electricity back into the grid during emergencies, the California Public Utilities Commission wants more data on it as the agency rules on steps utilities must take to ensure they have enough power for this summer and next year. A draft CPUC decision due to be discussed this week asks about the feasibility of reversing the charge when needed (Energywire, March 8).

“Very few [EVs], maybe a couple of thousand at the most, can give power to the grid, and even fewer are connected into a charger that can do it,” said Gil Tal, director of the Plug-in Hybrid & Electric Vehicle Research Center at the University of California, Davis. EVs that feature the ability “have it at a more experimental level.”

The issue arises as California, where about half of all U.S. EVs are purchased, examines what role the vehicles can play in keeping lights on and refrigerators running and how a much bigger grid will support them in the long term. Even if grid operators can’t pull from EV batteries en masse, experts say cash and other incentives can prompt drivers to shift charging times, boosting grid stability.

“What we can do is not charge the electric cars at times of high demand” such as during heat waves, Tal said.

The EV focus comes after California’s grid manager last summer imposed rolling blackouts when power supplies ran short during a record-shattering heat wave. State energy regulators across the U.S., as EVs challenge state grids, are also looking at their disaster preparedness as Texas recovers from a winter storm last month that cut off electricity for more than 4 million homes and businesses there.

California’s EV efforts can help other states as they add more renewable power to their grids, said Adam Langton, energy services manager at BMW of North America.

That automaker ran a pilot program with San Francisco-based utility Pacific Gas & Electric Co. (PG&E) looking at whether money and other incentives could prompt EV drivers to charge their cars at different times. The payments successfully shifted charging to the middle of the night, when wind power often is plentiful. It also moved some repowering to mornings and early afternoons, when there’s abundant solar energy.

“That can be a tool that the utilities can use to deal with supply issues,” Langton said. “What our research has shown is that vehicles can contribute to [conservation] needs and emergency supply by shifting their charging time.”

Such measures can also help states avoid having to curtail solar production on days when there’s more generation than needed. On many bright days, California has more solar power than it can use.

“As more states add more renewable energy, we think that they’re going to find that EVs complement that really well with smart charging, because grid coordination can get that charging to align with the renewable energy,” Langton said. “It allows to add more and more renewable energy.”

High-cost equipment a hurdle
The CPUC at a future workshop plans to collect information on leveraging EVs to head off power shortages at key times.

But Tal said it will probably take a decade to get enough EVs capable of exporting electricity back to utilities “in high numbers that can make an impact on the grid.”

Barriers to reaching such “vehicle to grid” integration are technical and economic, he said. EVs export direct current and need a device on the other side that can convert it to alternating current, similar to a solar power inverter for rooftop panels.

However, the equipment known as a V2G capable charger is costly. It ranges from $4,500 to $5,500, according to a 2017 National Renewable Energy Laboratory report.

PG&E and Los Angeles-based Southern California Edison already have “expressed doubt that short-term measures could be developed in time to expand EV participation by summer 2021” in V2G programs, the draft CPUC proposal said. The utilities suggested instead that the agency encourage EV owners to participate in initiatives where they’d get paid for reducing power consumption or sell electricity back to the grid when needed, known as demand response programs.

Still, almost all major EV automakers are looking at two-directional charging, Tal said.

“The incentive is you can get more value for the car,” he said. “The disincentive is you add more miles in a way on the car,” because an owner would be discharging to the grid and re-charging, and “the battery has limited life.”

And right now, discharging a vehicle to the grid would violate many warranties, he said. Car manufacturers would need to agree to change that and could call for compensation in return.

Meanwhile, San Diego Gas & Electric Co., a Sempra Energy subsidy, plans to launch a pilot looking at delivering power to the grid from electric school buses. The six buses in the pilot transport students in El Cajon, Calif., east of San Diego.

“The buses are perfect because of their big batteries and predictable schedule,” Jessica Packard, SDG&E spokesperson, said in an email. “Ultimately, we hope to scale up and deploy these kinds of innovations throughout our grid in the future.”

She declined to say how much power the buses could deliver because the project isn’t yet operating. It’s set to start later this year.

Mobility needs
While BMW and PG&E did not review vehicle-to-grid power transfers in their own 2017 research ending last year, one study in Delaware did. But it was in a university setting about eight years ago and didn’t look at actual drivers, said Langton with BMW.

In their own findings from the San Francisco Bay Area pilot program, BMW and PG&E found that incentives could quickly change driver behavior in terms of charging.

Technology helps: Most new EVs have timers that allow the driver to control when to charge and when to stop charging. Langton said the pilot program got drivers to have their cars charge from roughly 2 to 6 a.m., when electricity rates typically are lowest.

There can be a lot of solar energy during the day, but in summer, optimum charging times get more complicated in California, he said. People want to run their air conditioners during peak heat hours, so it’s important to be able to get EV drivers to shift to less congested times, he said.

With the right incentives or messaging, Langton said, the pilot persuaded drivers to move charging from 10 a.m. to 2 p.m. or noon to 4 p.m. BMW technology allowed for detailed information on battery charge level, ideal charging times and other EV data to be transmitted electronically after plugging in.

The findings are a good first step toward future vehicle-to-grid integration, Langton added.

“One of the things we really pay attention to when we do smart charging is, ‘How does the driver’s mobility needs figure into shifting their charging?'” he said. “We want to make sure that our customers can always do the driving that they need to do.”

The pilot included safeguards such as an opt-out button if the driver wanted to charge immediately. It also made sure the vehicle had a certain level of minimum charge — 15% to 20% — before the delayed smart charging kicked in.

Vehicle-to-grid technology would need to wrestle with the same concepts in a different way. If a car is getting discharged, the driver would want assurances its battery wouldn’t dip below a level that meets their mobility needs, Langton said.

“If that happened even once to a customer, they would probably not want to participate in these programs in the future,” he said.

One group adding charging stations across the country said it isn’t tweaking pricing based on when drivers charge. That’s to help grow EV purchases, said Robert Barrosa, senior director of sales and marketing at Volkswagen AG subsidiary Electrify America, which operates about 450 charging stations in 45 states.

The company has installed battery storage at more than 100 sites to make sure they can provide power at consistent prices even if California or another state calls for energy conservation.

“It’s very important for vehicle adoption that the customer have that,” Barrosa said.

The company could sell that battery storage back to the grid if there are shortfalls, but some market changes are needed first, particularly in California, he said. That’s because the company buys electricity on the retail side but would be sending it back into the wholesale market.

With that cost differential, Barrosa said, “it doesn’t make sense.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified