When We Lean Into Clean Energy, Rural America Thrives


Clean Energy

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

USDA Rural Clean Energy Programs drive climate-smart infrastructure, energy efficiency, and smart grid upgrades, delivering REAP grants, renewable power, and cost savings that boost rural development, create jobs, and modernize electric systems nationwide.

 

Key Points

USDA programs funding renewable upgrades, efficiency projects, and grid resilience to cut costs and spur rural growth.

✅ REAP grants fund renewable and efficiency upgrades

✅ Smart grid loans strengthen rural electric resilience

✅ Projects cut energy costs and support good-paying jobs

 

When rural communities lean into clean energy, the path to economic prosperity is clear. Cleaner power options like solar and electric guided by decarbonization goals provide new market opportunities for producers and small businesses. They reduce energy costs for consumers and supports good-paying jobs in rural America.

USDA Rural Development programs have demonstrated strong success in the fight against climate change, as recent USDA grants for energy upgrades show while helping to lower energy costs and increase efficiency for people across the nation.

This week, as we celebrate Earth Day, we are proud to highlight some of the many ways USDA programs advance climate-smart infrastructure, including the first Clean Energy Community designation that showcases local leadership, to support economic development in rural areas.

Advancing Energy Efficiency in Rural Massachusetts

Prior to receiving a Rural Energy for America Program (REAP) grant from USDA, Little Leaf Farms in the town of Devens used a portable, air-cooled chiller to cool its greenhouses. The inefficient cooling system, lighting and heating accounted for roughly 20 percent of the farm's production costs.

USDA Rural Development awarded the farm a $38,471 REAP grant to purchase and install a more efficient air-cooled chiller. This project is expected to save Little Leaf Farms $51,341 per year and will replace 798,472 kilowatt-hours per year, which is enough energy to power 73 homes.

To learn more about this project, visit the success story: Little Leaf Farms Grows Green while Going Green | Rural Development (usda.gov).

In the Fight Against Climate Change, Students in New Hampshire Lead the Way

Students at White Mountains Regional High School designed a modern LED lighting retrofit informed by building upgrade initiatives to offset power costs and generate efficient energy for their school.

USDA Rural Development provided the school a $36,900 Economic Impact Initiative Grant under the Community Facilities Program to finance the project. Energy upgrades are projected to save 92,528 kilowatt-hours and $12,954 each year, and after maintenance reduction is factored in, total savings are estimated to be more than $20,000 annually.

As part of the project, the school is incorporating STEM (Science, Technology, Math and Engineering) into the curriculum to create long-term impacts for the students and community. Students will learn about the lighting retrofit, electricity, energy efficiency and wind energy as well as climate change.

Clean Energy Modernizes Power Grid in Rural Pennsylvania

USDA Rural Development is working to make rural electric infrastructure stronger, more sustainable and more resilient than ever before, and large-scale energy projects in New York reinforce this momentum nationwide as well. For instance, Central Electric Cooperative used a $20 million Electric Infrastructure Loan Program to build and improve 111 miles of line and connect 795 people.

The loan includes $115,153 in smart grid technologies to help utilities better manage the power grid, while grid modernization in Canada underscores North America's broader transition to cleaner, more resilient systems. Central Electric serves about 25,000 customers over 3,049 miles of line in seven counties in western Pennsylvania.

Agricultural Producers Upgrade to Clean Energy in New Jersey

Tuckahoe Turf Farms Inc. in Hammonton used a REAP grant to purchase and install a 150HP electric irrigation motor to replace a diesel motor. The project will generate 18.501 kilowatt-hours of energy.

In Asbury, North Jersey RCandD Inc. used a REAP grant to conduct energy assessments and provide technical assistance to small businesses and agricultural producers in collaboration with EnSave.

 

Related News

Related News

Shanghai Electric Signs Agreement to Launch PEM Hydrogen Production Technology R&D Center, Empowering Green Hydrogen Development in China

Shanghai Electric PEM Hydrogen R&D Center advances green hydrogen via PEM electrolysis, modular megawatt electrolyzers, zero carbon production, and full-chain industrial applications, accelerating decarbonization, clean energy integration, and hydrogen economy scale-up across China.

 

Key Points

A joint R&D hub advancing PEM electrolysis, modular megawatt systems, and green hydrogen industrialization.

✅ Megawatt modular PEM electrolyzer design and system integration

✅ Zero-carbon hydrogen targeting mobility, chemicals, and power

✅ Full-chain collaboration from R&D to EPC and demonstration projects

 

Shanghai Electric has reached an agreement with the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (the "Dalian Institute") to inaugurate the Proton Exchange Membrane (PEM) Hydrogen Production Technology R&D Center on March 4. The two parties signed a project cooperation agreement on Megawatt Modular and High-Efficiency PEM Hydrogen Production Equipment and System Development, marking an important step forward for Shanghai Electric in the field of hydrogen energy.

As one of China's largest energy equipment manufacturers, Shanghai Electric is at the forefront in the development of green hydrogen as part of China's clean energy drive. During this year's Two Sessions, the 14th Five-Year Plan was actively discussed, in which green hydrogen features prominently, and Shell's 2060 electricity forecast underscores the scale of electrification. With strong government support and widespread industry interest, 2021 is emerging as Year Zero for the hydrogen energy industry.

Currently, Shanghai Electric and the Dalian Institute have reached a preliminary agreement on the industrial development path for new energy power generation and electrolyzed water hydrogen production. As part of the cooperation, both will also continue to enhance the transformational potential of PEM electrolyzed water hydrogen production, accelerate the development of competitive PEM electrolyzed hydrogen products, and promote industrial applications and scenarios, drawing on projects like Japan's large H2 energy system to inform deployment. Moreover, they will continue to carry out in-depth cooperation across the entire hydrogen energy industry chain to accelerate overall industrialization.

Hydrogen energy boasts the biggest potential of all the current forms of clean energy, and the key to its development lies in its production. At present, hydrogen production primarily stems from fossil fuels, industrial by-product hydrogen recovery and purification, and production by water electrolysis. These processes result in significant carbon emissions. The rapid development of PEM water electrolysis equipment worldwide in recent years has enabled current technologies to achieve zero carbon emissions, effectively realizing green, clean hydrogen. This breakthrough will be instrumental in helping China achieve its carbon peak and carbon-neutrality goals.

The market potential for hydrogen production from electrolyzed water is therefore massive. Forecasts indicate that, by 2050, hydrogen energy will account for approximately 10% of China's energy market, with demand reaching 60 million tons and annual output value exceeding RMB 10 trillion. The Hydrogen: Tracking Energy Integration report released by the International Energy Agency in June 2020 notes that the number of global electrolysis hydrogen production projects and installed capacity have both increased significantly, with output skyrocketing from 1 MW in 2010 to more than 25 MW in 2019. Much of the excitement comes from hydrogen's potential to join the ranks of natural gas as an energy resource that plays a pivotal role in international trade, as seen in Germany's call for hydrogen-ready power plants shaping future power systems, with the possibility of even replacing it one day. In PwC's 2020 The Dawn of Green Hydrogen report, the advisory predicts that experimental hydrogen will reach 530 million tons by mid-century.

Shanghai Electric set its focus on hydrogen energy years ago, given its major potential for growth as one of the new energy technologies of the future and, in particular, its ability to power new energy vehicles. In 2016, the Central Research Institute of Shanghai Electric began to invest in R&D for key fuel cell systems and stack technologies. In 2020, Shanghai Electric's independently-developed fuel cell engine, which boasts a power capacity of 66 kW and can start in cold temperature environments of as low as -30°C, passed the inspection test of the National Motor Vehicle Product Quality Inspection Center. It adopts Shanghai Electric's proprietary hydrogen circulation system, which delivers strong power and impressive endurance, with the potential to replace gasoline and diesel engines in commercial vehicles.

As the technology matures, hydrogen has entered a stage of accelerated industrialization, with international moves such as Egypt's hydrogen MoU with Eni signaling broader momentum. Shanghai Electric is leveraging the opportunities to propel its development and the green energy transformation. As part of these efforts, Shanghai Electric established a Hydrogen Energy Division in 2020 to further accelerate the development and bring about a new era of green, clean energy.

As one of the largest energy equipment manufacturing companies in China, Shanghai Electric, with its capability for project development, marketing, investment and financing and engineering, procurement and construction (EPC), continues to accelerate the development and innovation of new energy. The Company has a synergistic foundation and resource advantages across the industrial chain from upstream power generation, including China's nuclear energy development efforts, to downstream chemical metallurgy. The combined elements will accelerate the pace of Shanghai Electric's entry into the field of hydrogen production.

Currently, Shanghai Electric has deployed a number of leading green hydrogen integrated energy industry demonstration projects in Ningdong Base, one of China's four modern coal chemical industry demonstration zones. Among them, the Ningdong Energy Base "source-grid-load-storage-hydrogen" project integrates renewable energy generation, energy storage, hydrogen production from electrolysis, and the entire industrial chain of green chemical/metallurgy, where applications like green steel production in Germany illustrate heavy-industry decarbonization.

In December 2020, Shanghai Electric inked a cooperation agreement to develop a "source-grid-load-storage-hydrogen" energy project in Otog Front Banner, Inner Mongolia. Equipped with large-scale electrochemical energy storage and technologies such as compressed air energy storage options, the project will build a massive new energy power generation base and help the region to achieve efficient cold, heat, electricity, steam and hydrogen energy supply.

 

Related News

View more

Ukraine's Green Fightback: Rising from the Ashes with Renewable Energy

Ukraine Green Fightback advances renewable energy, energy independence, and EU integration, rebuilding war-damaged grids with solar, wind, and storage, exporting power to Europe, and scaling community microgrids for resilient, low-carbon recovery and REPowerEU alignment.

 

Key Points

Ukraine Green Fightback shifts to renewables and resilient grids, aiming 50% clean power by 2035 despite wartime damage.

✅ 50% renewable electricity target by 2035, up from 15% in 2021

✅ Community solar and microgrids secure hospitals and schools

✅ Wind and solar rebuild capacity; surplus exports to EU grids

 

Two years after severing ties with Russia's power grid, Ukraine stands defiant, rebuilding its energy infrastructure with a resolute focus on renewables. Amidst the ongoing war's devastation, a remarkable green fightback is taking shape, driven by a vision of a self-sufficient, climate-conscious future.

Energy Independence, Forged in Conflict:

Ukraine's decision to unplug from Russia's grid in 2022 was both a strategic move and a forced necessity, aligning with a wider pushback from Russian oil and gas across the continent. While it solidified energy independence aspirations, the full-scale invasion pushed the country into "island mode," highlighting vulnerabilities of centralized infrastructure.

Today, Ukraine remains deeply intertwined with Europe, inching towards EU accession and receiving global support, as Europe's green surge in clean energy gathers pace. This aligns perfectly with the country's commitment to environmental responsibility, further bolstered by the EU's own "REPowerEU" plan to ditch fossil fuels.

Rebuilding with Renewables:

The war's impact on energy infrastructure has been significant, with nearly half damaged or destroyed. Large-scale renewables have borne the brunt, with 30% of solar and 90% of wind farms facing disruption.

Yet, the spirit of resilience prevails. Surplus electricity generated by solar plants is exported to Poland, showcasing the potential of renewable sources and mirroring Germany's solar power boost across the region. Ambitious projects are underway, like the Tyligulska wind farm, Ukraine's first built in a conflict zone, already supplying clean energy to thousands.

The government's vision is bold: 50% renewable energy share by 2035, a significant leap from 2021's 15%, and informed by the fact that over 30% of global electricity already comes from renewables. This ambition is echoed by civil society groups who urge even higher targets, with calls for 100% renewable energy worldwide continuing to grow.

Community-Driven Green Initiatives:

Beyond large-scale projects, community-driven efforts are flourishing. Villages like Horenka and Irpin, scarred by the war, are rebuilding hospitals and schools with solar panels, ensuring energy security and educational continuity.

These "bright examples," as Svitlana Romanko, founder of Razom We Stand, calls them, pave the way for a broader green wave. Research suggests replacing all coal plants with renewables would cost a manageable $17 billion, paving the way for a future free from dependence on fossil fuels, with calls for a fossil fuel lockdown gaining traction.

Environmental Cost of War:

The war's ecological footprint is immense, with damages exceeding €56.7 billion. The Ministry of Environmental Protection and Natural Resources is meticulously documenting this damage, not just for accountability but for post-war restoration.

Their efforts extend beyond documentation. Ukraine's "EcoZagroza" app allows citizens to report environmental damage and monitor pollution levels, fostering a collaborative approach to environmental protection.

Striving for a Greener Future:

President Zelenskyy's peace plan highlights ecocide prevention and environmental restoration. The ministry itself is undergoing a digitalization push, tackling corruption and implementing EU-aligned reforms.

While the European Commission's recent progress report acknowledges Ukraine's strides, set against a Europe where renewable power has surpassed fossil fuels for the first time, the "crazy rhythm" of change, as Ecoaction's Anna Ackermann describes it, reflects the urgency of the situation. Finding the right balance between war efforts and green initiatives remains a crucial challenge.

Conclusion:

Ukraine's green fightback is a testament to its unwavering spirit. Amidst the darkness of war, hope shines through in the form of renewable energy projects and community-driven initiatives. By embracing a green future, Ukraine not only rebuilds but sets an example for the world, demonstrating that even in the face of adversity, sustainability can prevail.

 

Related News

View more

Canada unveils plan for regulating offshore wind

Canada Offshore Wind Amendments streamline offshore energy regulators in Nova Scotia and Newfoundland and Labrador, enabling green hydrogen, submerged land licences, regional assessments, MPAs standards, while raising fisheries compensation, navigation, and Indigenous consultation considerations.

 

Key Points

Reforms assign offshore wind to joint regulators, enable seabed licensing, and address fisheries and Indigenous issues.

✅ Assigns wind oversight to Canada-NS and Canada-NL offshore regulators

✅ Introduces single submerged land licence and regional assessments

✅ Addresses fisheries, navigation, MPAs, and Indigenous consultation

 

Canada's offshore accords with Nova Scotia and Newfoundland and Labrador are being updated to promote development of offshore wind farms, but it's not clear yet whether any compensation will be paid to fishermen displaced by wind farms.

Amendments introduced Tuesday in Ottawa by the federal government assign regulatory authority for wind power to jointly managed offshore boards — now renamed the Canada-Nova Scotia Offshore Energy Regulator and Canada-Newfoundland and Labrador Offshore Energy Regulator.

Previously the boards regulated only offshore oil and gas projects.

The industry association promoting offshore wind development, Marine Renewables Canada, called the changes a crucial step.

"The tabling of the accord act amendments marks the beginning of, really, a new industry, one that can play a significant role in our clean energy future," said  Lisen Bassett, a spokesperson for Marine Renewables Canada. 

Nova Scotia's lone member of the federal cabinet, Immigration Minister Sean Fraser, also talked up prospects at a news conference in Ottawa.


'We have lots of water'

"The potential that we have, particularly when it comes to offshore wind and hydrogen is extraordinary," said Fraser.

"There are real projects, like Vineyard Wind, with real investors talking about real jobs."

Sharing the stage with assembled Liberal MPs from Nova Scotia and Newfoundland and Labrador was Nova Scotia Environment Minister Tim Halman, representing a Progressive Conservative government in Halifax.

"If you've ever visited us or Newfoundland, you know we have lots of water, you know we have lots of wind, and we're gearing up to take advantage of those natural resources in a clean, sustainable way. We're paving the way for projects such as offshore wind, tidal energy in Nova Scotia, and green hydrogen production," said Halman.

Before a call for bids is issued, authorities will identify areas suitable for development, conservation or fishing.

The legislation does not outline compensation to fishermen excluded from offshore areas because of wind farm approvals.


Regional assessments

Federal officials said potential conflicts can be addressed in regional assessments underway in both provinces.

Minister of Natural Resources of Canada Jonathan Wilkinson said fisheries and navigation issues will have to be dealt with.

"Those are things that will have to be addressed in the context of each potential project. But the idea is obviously to ensure that those impacts are not significant," Wilkinson said.

Speaking after the event, Christine Bonnell-Eisnor, chair of what is still called the Canada Nova Scotia Offshore Petroleum Board, said what compensation — if any — will be paid to fishermen has yet to be determined.

"It is a question that we're asking as well. Governments are setting the policy and what terms and conditions would be associated with a sea bed licence. That is a question governments are working on and what compensation would look like for fishers."

Scott Tessier, who chairs  the Newfoundland Board, added "the experience has been the same next door in Nova Scotia, the petroleum sector and the fishing sector have an excellent history of cooperation and communication and I don't expect it look any different for offshore renewable energy projects."


Nova Scotia in a hurry to get going

The legislation says the offshore regulator would promote compensation schemes developed by industry and fishing groups linked to fishing gear.

Nova Scotia is in a hurry to get going.

The Houston government has set a target of issuing five gigawatts of licences for offshore wind by 2030, with leasing starting in 2025, reflecting momentum in the U.S. offshore wind market as well. It is intended largely for green hydrogen production. That's almost twice the province's peak electricity demand in winter, which is 2.2 gigawatts.

The amendments will streamline seabed approvals by creating a single "submerged land" licence, echoing B.C.'s streamlined process for clean energy projects, instead of the exploration, significant discovery and production licences used for petroleum development.

Federal and provincial ministers will issue calls for bids and approve licences, akin to BOEM lease requests seen in the U.S. market.

The amendments will ensure Marine Protected Area's  (MPAs) standards apply in all offshore areas governed by the regulations.


Marine protected areas

Wilkinson suggested, but declined, three times to explicitly state that offshore wind farms would be excluded from within Marine Protected Areas.

After this story was initially published on Tuesday, Natural Resources Canada sent CBC a statement indicating offshore wind farms may be permitted inside MPAs.

Spokesperson Barre Campbell noted that all MPAs established in Canada after April 25, 2019, will be subject to the Department of Fisheries and Oceans new standards that prohibit key industrial activities, including oil and gas exploration, development and production.

"Offshore renewable energy activities and infrastructure are not key industrial activities," Campbell said in a statement.

"Other activities may be prohibited, however, if they are not consistent with the conservation objectives that are established by the relevant department that has or that will establish a marine protected area."


Federal impact assessment process

The new federal impact assessment process will apply in offshore energy development, and recent legal rulings such as the Cornwall wind farm decision highlight how courts can influence project timelines.

For petroleum projects, future significant discovery licences will be limited to 25 years replacing the current indefinite term.

Existing significant discovery licences have been an ongoing exception and are not subject to the 25-year limit. Both offshore energy regulators will be given the authority to fulfil the Crown's duty to consult with Indigenous peoples

 

Related News

View more

Electric vehicle charging network will be only two thirds complete by Friday deadline, Ontario says

Ontario EV Charging Network Delay highlights permitting hurdles, grid limitations, and public-private rollout challenges across 250 sites, as two-thirds of 475 chargers go live while full provincewide infrastructure deployment slips to fall.

 

Key Points

A provincial rollout setback where permitting and grid issues delay full activation of Ontario's 475 public EV chargers.

✅ Two-thirds of 475 chargers live by the initial deadline

✅ Remaining stations expected online by fall

✅ Delays tied to permits, site conditions, and grid capacity

 

The Ontario government admitted Wednesday that it will fall short of meeting its deadline this Friday of creating a network of 475 electric vehicle charging stations in 250 locations across the province, and it's blaming unforeseen problems for the delay.

"We know some of our partners have encountered difficulties around permitting and some of the technical aspects of having some of the chargers up and running, even as we work to make it easier to build EV charging stations across Ontario," said Transportation Minister Steven Del Duca.

Two-thirds of the network will be live on Friday with the rest of the stations expected to be up and running by fall, according to the Ministry of Transportation. 

"Each of our partners' individual charging stations are subject to different site conditions, land ownership, municipal permitting, electrical grid limitations, as seen in regions where EV infrastructure lags, and other factors which have influenced timelines," said Bob Nichols, senior media liaison officer for the Transportation Ministry, in a statement. 

Because the stations are located in various community centres, retail outlets and other public spaces, Del Duca said the government's public and private sector partners are facing challenges in obtaining permits but are "motivated to get it right."

Cara Clairman, president and CEO of Plug'n Drive, an organization dedicated to accelerating the rollout of electric vehicles, says she isn't concerned about the delay.

"It was a pretty aggressive timeline. The EV community is pretty happy with the fact that it is going to happen. It might be slightly delayed but I think overall the mood is positive," she said.

Clairman said there are now more than 10,000 electric vehicles in the province and that more growth is expected as Ontario's next EV wave emerges in the market. She doesn't believe the delay in the rollout of charging stations will deter anyone from purchasing electric vehicles, even amid EV shortages and wait times in some segments.

"It certainly does help to persuade new folks to get on board but I think since they know it is coming, I don't see it having a big impact." 

Horwath not surprised

NDP Leader Andrea Horwath said she's not surprised the government didn't meet its target.

"You shouldn't be making these promises if you can't fulfil them, that's the bottom line," she said. "Let's be realistic with
what you're able to achieve."

Progressive Conservative transportation critic Michael Harris suggested the Liberals don't have their priorities straight when it comes to electric vehicles.

"I think the focus for Kathleen Wynne was handing out $14,000 rebates to owners of Teslas, while they really should have been focusing their time and energy on ensuring that the infrastructure for electric vehicles has actually been rolled out," Harris said.

Covering every corner

Del Duca said the ministry has seen "some fairly tremendous success" despite the delays but that there have been a few challenges in building a network that ranges across the province, even as N.L.'s first fast-charging network is touted as just the beginning elsewhere. 

"We definitely want to make sure we're building a network that covers every corner of Ontario. Yes, we have some challenges and we are slightly delayed," the minister said.

"We anticipate being able to provide more resources in the coming months to continue to deploy an even broader network of charging infrastructure, including in northern Ontario."

Del Duca said a map on the ministry's website showing where the charging stations are installed should be updated in the next few days.

Premier Wynne committed to building a charging network for electric vehicles across Ontario at the 2015 climate change talks in Paris.

The $20 million in funding for the charging stations comes from Ontario's $325 million Green Investment Fund, which supports projects that fight climate change.

 

Related News

View more

Feds announce $500M contract with Edmonton company for green electricity

Canada Renewable Energy Partnerships advance wind power and clean electricity in Alberta and Saskatchewan, cutting emissions and supporting net-zero goals through Capital Power and SaskPower agreements with Indigenous participation and 25-year supply contracts.

 

Key Points

Government-backed deals with Capital Power and SaskPower to deliver clean electricity and reduce emissions.

✅ 25-year renewable supply for federal facilities

✅ New Halkirk 2 Wind project in Alberta

✅ Emissions cuts with Indigenous participation

 

The Government of Canada has partnered with two major energy providers in Western Canada (Prairie provinces) on renewable energy projects.

Tourism Minister Randy Boissonnault appeared in Edmonton on Friday to announce a new Alberta wind-generation facility in partnership with Capital Power.

It's one of two new energy partnerships in Western Canada as part of the 2030 emissions reduction plan by Public Services and Procurement Canada.

On Jan. 1, the federal government awarded a contract worth up to $500 million to Capital Power to provide all federal facilities in Alberta with renewable electricity as part of Alberta's renewable energy surge for 25 years.

"We're proud to partner with the government of Canada to help them reach their 100 per cent clean electricity by 2025 goal," said Jason Comandante, Capital Power vice president of commercial services.

The agreement also includes opportunities for Indigenous participation, including facility development partnerships and employment and training opportunities.

"At Capital Power, we are committed to net-zero by 2045, and are proud to take action against climate change. Collaborative agreements like this help support our net-zero goals, provide us opportunities to meaningfully engage Indigenous communities, and help decarbonize Alberta's power grid," Comandante said.

Capital Power will provide around 250,000 megawatt-hours of electricity each year through existing renewable energy credits while the new Capital Power Halkirk 2 Wind facility is being developed.

Located near Paintearth, Alta., the proposed wind farm will have up to 35 turbines and generate enough power for the average yearly electricity needs of more than 70,000 Alberta homes.

The project is currently awaiting regulatory approval, within Alberta's energy landscape, with construction projected to begin this summer. When complete, it will supply 49 per cent of its output to the federal government.

"Through the agreement, the federal government is supporting the ongoing development of renewable energy infrastructure development within the province," Boissonnault said.

The new partnership will join another in Saskatchewan and complement Alberta solar facilities that have been contracted at lower cost than natural gas.

In 2022, the federal government signed an agreement with SaskPower to supply clean electricity to the approximately 600 federal facilities in Saskatchewan. That wind project is expected to come online by 2024.

Boissonnault said the two initiatives combined will reduce carbon dioxide emissions in Alberta and Saskatchewan by about 166 kilotonnes.

"That is the equivalent of the emissions from more than 50,000 cars driven for one year. So, if you think about that, that's a great reduction right here in Alberta and Saskatchewan," he said.

"These are concrete steps to ensuring that Canada remains a leader of renewable energy on the global stage and grid modernization projects to help the fight against climate change." 

 

Related News

View more

Space-based solar power, once for science fiction, is gaining interest.

Space-Based Solar Power enables wireless energy transfer from orbital solar arrays, using microwave beaming to rectennas on Earth, delivering clean baseload power beyond weather and night limits, as demonstrated by Caltech and NASA.

 

Key Points

Space-based solar power beams microwaves from arrays to rectennas, delivering clean electricity beyond weather and night.

✅ Caltech demo proved wireless power transfer in space.

✅ Microwaves beam to rectennas for grid-scale clean energy.

✅ Operates above clouds, enabling continuous baseload supply.

 

Ali Hajimiri thinks there’s a better way to power the planet — one that’s not getting the attention it deserves. The Caltech professor of electrical engineering envisages thousands of solar panels floating in space, unobstructed by clouds and unhindered by day-night cycles, effectively generating electricity from the night sky for continuous delivery, wirelessly transmitting massive amounts of energy to receivers on Earth.

This year, that vision moved closer to reality when Mr. Hajimiri, together with a team of Caltech researchers, proved that wireless power transfer in space was possible: Solar panels they had attached to a Caltech prototype in space successfully converted electricity into microwaves and beamed those microwaves to receivers, as a demonstration of beaming power from space to devices about a foot away, lighting up two LEDs.

The prototype also beamed a tiny but detectable amount of energy to a receiver on top of their lab’s building in Pasadena, Calif. The demonstration marks a first step in the wireless transfer of usable power from space to Earth, and advances in low-cost solar batteries could help store and smooth that power flow — a power source that Mr. Hajimiri believes will be safer than direct sun rays. “The beam intensity is to be kept less than solar intensity on earth,” he said.

Finding alternative energy sources is one of the topics that will be discussed by leaders in business, science and public policy, including wave energy, during The New York Times Climate Forward event on Thursday. The Caltech demonstration was a significant moment in the quest to realize space-based solar power, amid policy moves such as a proposed tenfold increase in U.S. solar that would remake the U.S. electricity system — a clean energy technology that has long been overshadowed by other long-shot clean energy ideas, such as nuclear fusion and low-cost clean hydrogen.

If space-based solar can be made to work on a commercial scale, said Nikolai Joseph, a NASA Goddard Space Flight Center senior technology analyst, and integrate with peer-to-peer energy sharing networks, such stations could contribute as much as 10 percent of global power by 2050.

The idea of space-based solar energy has been around since at least 1941, when the science-fiction writer Isaac Asimov set one of his short stories, “Reason,” on a solar station that beamed energy by microwaves to Earth and other planets.

In the 1970s, when a fivefold increase in oil prices sparked interest in alternative energy, NASA and the Department of Energy conducted the first significant study on the topic. In 1995, under the direction of the physicist John C. Mankins, NASA took another look and concluded that investments in space-launch technology were needed to lower the cost and move closer to cheap abundant electricity before space-based solar power could be realized.

“There was never any doubt about it being technically feasible,” said Mr. Mankins, now president of Artemis Innovation Management Solutions, a technology consulting group. “The cost was too prohibitive.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.