When We Lean Into Clean Energy, Rural America Thrives


Clean Energy

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

USDA Rural Clean Energy Programs drive climate-smart infrastructure, energy efficiency, and smart grid upgrades, delivering REAP grants, renewable power, and cost savings that boost rural development, create jobs, and modernize electric systems nationwide.

 

Key Points

USDA programs funding renewable upgrades, efficiency projects, and grid resilience to cut costs and spur rural growth.

✅ REAP grants fund renewable and efficiency upgrades

✅ Smart grid loans strengthen rural electric resilience

✅ Projects cut energy costs and support good-paying jobs

 

When rural communities lean into clean energy, the path to economic prosperity is clear. Cleaner power options like solar and electric guided by decarbonization goals provide new market opportunities for producers and small businesses. They reduce energy costs for consumers and supports good-paying jobs in rural America.

USDA Rural Development programs have demonstrated strong success in the fight against climate change, as recent USDA grants for energy upgrades show while helping to lower energy costs and increase efficiency for people across the nation.

This week, as we celebrate Earth Day, we are proud to highlight some of the many ways USDA programs advance climate-smart infrastructure, including the first Clean Energy Community designation that showcases local leadership, to support economic development in rural areas.

Advancing Energy Efficiency in Rural Massachusetts

Prior to receiving a Rural Energy for America Program (REAP) grant from USDA, Little Leaf Farms in the town of Devens used a portable, air-cooled chiller to cool its greenhouses. The inefficient cooling system, lighting and heating accounted for roughly 20 percent of the farm's production costs.

USDA Rural Development awarded the farm a $38,471 REAP grant to purchase and install a more efficient air-cooled chiller. This project is expected to save Little Leaf Farms $51,341 per year and will replace 798,472 kilowatt-hours per year, which is enough energy to power 73 homes.

To learn more about this project, visit the success story: Little Leaf Farms Grows Green while Going Green | Rural Development (usda.gov).

In the Fight Against Climate Change, Students in New Hampshire Lead the Way

Students at White Mountains Regional High School designed a modern LED lighting retrofit informed by building upgrade initiatives to offset power costs and generate efficient energy for their school.

USDA Rural Development provided the school a $36,900 Economic Impact Initiative Grant under the Community Facilities Program to finance the project. Energy upgrades are projected to save 92,528 kilowatt-hours and $12,954 each year, and after maintenance reduction is factored in, total savings are estimated to be more than $20,000 annually.

As part of the project, the school is incorporating STEM (Science, Technology, Math and Engineering) into the curriculum to create long-term impacts for the students and community. Students will learn about the lighting retrofit, electricity, energy efficiency and wind energy as well as climate change.

Clean Energy Modernizes Power Grid in Rural Pennsylvania

USDA Rural Development is working to make rural electric infrastructure stronger, more sustainable and more resilient than ever before, and large-scale energy projects in New York reinforce this momentum nationwide as well. For instance, Central Electric Cooperative used a $20 million Electric Infrastructure Loan Program to build and improve 111 miles of line and connect 795 people.

The loan includes $115,153 in smart grid technologies to help utilities better manage the power grid, while grid modernization in Canada underscores North America's broader transition to cleaner, more resilient systems. Central Electric serves about 25,000 customers over 3,049 miles of line in seven counties in western Pennsylvania.

Agricultural Producers Upgrade to Clean Energy in New Jersey

Tuckahoe Turf Farms Inc. in Hammonton used a REAP grant to purchase and install a 150HP electric irrigation motor to replace a diesel motor. The project will generate 18.501 kilowatt-hours of energy.

In Asbury, North Jersey RCandD Inc. used a REAP grant to conduct energy assessments and provide technical assistance to small businesses and agricultural producers in collaboration with EnSave.

 

Related News

Related News

America's Largest Energy Customers Set a Bold New Ambition to Achieve a 90% Carbon-free U.S. Electricity System by 2030 and Accelerate Clean Energy Globally

Clean Energy Buyers Alliance 2030 Goal targets a 90% carbon-free U.S. grid, accelerating power-sector decarbonization via corporate renewable energy procurement, market and policy reforms, and customer demand to enable net-zero electrification across industries.

 

Key Points

The Alliance's plan to reach a 90% carbon-free U.S. electricity system by 2030 via customer-driven markets and policy.

✅ Corporate buyers scale renewable PPAs and aggregation

✅ Market and policy reforms unlock clean power access

✅ Goal aligns with net-zero and widespread electrification

 

The Clean Energy Buyers Association (CEBA) and the Clean Energy Buyers Institute (CEBI), which together make up the Clean Energy Buyers Alliance, have announced a profound new aspiration for impact: a 90% carbon-free U.S. electricity system by 2030 and a global community of energy customers driving the global energy transition forward.

Alongside the two organizations’ bold new vision of the future – customer-driven clean energy for all – the Alliance will super-charge the work of its predecessor organizations, the Renewable Energy Buyers Alliance (REBA) and the REBA Institute, which represent the most iconic global companies with more than $6 trillion dollars in annual revenues and 14 million employees.

“This is the decisive decade for climate action and especially for decarbonization of the power sector,” said Miranda Ballentine, CEO of CEBA and CEBI. “To achieve a net-zero economy worldwide by 2050, the United States must lead. And the power sector must accelerate toward a 2030 timeline as electrification of other industries will be driving up power use.”

In the U.S. alone, more than 60% of electricity is consumed by the commercial and industrial sectors. Institutional energy customers have accelerated the deployment of clean energy solutions over the last 10 years to achieve increasingly ambitious greenhouse gas reduction targets, even as a federal coal plan remains under debate, and further cement the critical role of customers in decarbonizing the energy system. The Clean Energy Buyers Association Deal Tracker shows that 7.9 GW of new corporate renewable energy project announcements in the first three quarters of this year are equivalent to 40% of all new carbon free energy capacity added in the U.S. so far in 2021.

“With our new vision of customer-driven clean energy for all, we are also unveiling new organization brands,” Ballentine continued. “I’m excited to announce that REBA will become CEBA—the Clean Energy Buyers Association—and will focus on activating our community of energy customers and partners to deploy market and policy solutions for a carbon-free energy system. The REBA Institute will become the Clean Energy Buyers Institute (CEBI) and will focus on solving the toughest market and policy barriers to achieving a carbon-free energy system in collaboration with policymakers, leading philanthropies, and energy market stakeholders. Together, CEBA and CEBI will make up the new Clean Energy Buyers Alliance.”

To decarbonize the U.S. electricity system 90% by 2030, a goal aligned with California's 100% carbon-free mandate efforts, and to activate a community of customers driving clean energy around the world, the Clean Energy Buyers Alliance will drive three critical transformations to:

Unlock markets so that energy customers can use their buying power and market-influence, building on a historic U.S. climate deal this year, to accelerate electricity decarbonization.

Catalyze communities of energy customers to actively choose clean energy through Mission Innovation collaborations and to do more together than they could on their own.

Decarbonize the grid for all, since not every energy customer can or will use their buying power to choose clean energy.

“The Clean Energy Buyers Alliance is setting the bar for what energy buyers, utilities and governments should and need to be doing to achieve a carbon-free energy future,” said Michael Terrell, CEBA board chair and Director of Energy at Google. “This ambitious approach is a critical step in tackling climate change. The time for meaningful climate action is now and we must collectively be bolder and more ambitious in our actions in both the public and private sectors – starting today.”

This new vision of customer-driven clean energy for all is an unprecedented opportunity for every member of the Clean Energy Buyers Alliance community – from energy customers to providers to manufacturers – to all parties up and down the energy supply chain to lead the evolution of a new energy economy, which will require incentives to double investment in clean energy to rise to $4 trillion by 2030.

 

Related News

View more

DOE Issues Two LNG Export Authorizations

DOE LNG Export Approvals expand flexibility for Cheniere's Sabine Pass and Corpus Christi to ship to non-FTA countries, boosting U.S. supply to Europe while advancing methane emissions reductions and strengthening global energy security.

 

Key Points

DOE LNG export approvals authorize Sabine Pass and Corpus Christi to sell full-capacity LNG to non-FTA markets.

✅ Exports allowed to any non-FTA country, including Europe

✅ Capacity covers Sabine Pass and Corpus Christi terminals

✅ DOE targets methane reductions across oil and gas

 

The U.S. Department of Energy (DOE) today issued two long-term orders authorizing liquefied natural gas (LNG) exports from two current operating LNG export projects, Cheniere Energy Inc.’s Sabine Pass in Louisiana and Corpus Christi in Texas, following a recent deep freeze that slammed the American energy sector.

The two orders allow Sabine Pass and Corpus Christi additional flexibility to export the equivalent of 0.72 billion cubic feet per day of natural gas as LNG to any country with which the U.S. does not have a free trade agreement, including all of Europe, such as the UK natural gas market as well.

While U.S. exporters are already exporting at or near their maximum capacity, with today's issuances, every operating U.S. LNG export project has approval from DOE to export its full capacity to any country where not prohibited by U.S. law or policy constraints in place.

The U.S. is now the top global exporter of LNG and exports are set to grow an additional 20% beyond current levels by the end of this year as additional capacity comes online, even as a domestic energy crisis influences electricity and gas markets.  In January 2022, U.S. LNG supplied more than half of the LNG imports into Europe for the month.

With the expected rise in LNG exports, DOE is particularly focused on driving down methane emissions in the oil and gas sector both domestically and abroad, leveraging the deep technical expertise of the Department, and supporting nuclear innovation as well.

U.S. LNG remains an important component to global energy security worldwide and DOE remains committed to finding ways to help our allies and trading partners, including support to Ukraine and others with the energy supplies they need while continuing to work to mitigate the impact of climate change.

 

Related News

View more

Should California accelerate its 100% carbon-free electricity mandate?

California 100% Clean Energy by 2030 proposes accelerating SB 100 with solar, wind, offshore wind, and battery storage to decarbonize the grid, enhance reliability, and reduce blackouts, leveraging transmission upgrades and long-duration storage solutions.

 

Key Points

Proposal to accelerate SB 100 to 2030, delivering a carbon-free grid via renewables, storage, and new transmission.

✅ Accelerates SB 100 to a 2030 carbon-free electricity target

✅ Scales solar, wind, offshore wind, and battery storage capacity

✅ Requires transmission build-out and demand response for reliability

 

Amid a spate of wildfires that have covered large portions of California with unhealthy air, an environmental group that frequently lobbies the Legislature in Sacramento is calling on the state to accelerate by 15 years California's commitment to derive 100 percent of its electricity from carbon-free sources.

But skeptics point to last month's pair of rolling blackouts and say moving up the mandate would be too risky.

"Once again, California is experiencing some of the worst that climate change has to offer, whether it's horrendous air quality, whether it's wildfires, whether it's scorching heat," said Dan Jacobson, state director of Environment California. "This should not be the new normal and we shouldn't allow this to become normal."

Signed by then-Gov. Jerry Brown in 2018, Senate Bill 100 commits California by 2045 to use only sources of energy that produce no greenhouse gas emissions to power the electric grid, a target that echoes Minnesota's 2050 carbon-free plan now under consideration.

Implemented through the state's Renewable Portfolio Standard, SB 100 mandates 60 percent of the state's power will come from renewable sources such as solar and wind within the next 10 years. By 2045, the remaining 40 percent can come from other zero-carbon sources, such as large hydroelectric dams, a strategy aligned with Canada's electricity decarbonization efforts toward climate pledges.

SB 100 also requires three state agencies _ the California Energy Commission, the California Public Utilities Commission and the California Air Resources Board _ to send a report to the Legislature reviewing various aspects of the legislation.

The topics include scenarios in which SB 100's requirements can be accelerated. Following an Energy Commission workshop earlier this month, Environment California sent a six-page note to all three agencies urging a 100 percent clean energy standard by 2030.

The group pointed to comments by Gov. Gavin Newsom after he toured the devastation in Butte County caused by the North Complex fire.

"Across the entire spectrum, our (state) goals are inadequate to the reality we are experiencing," Newsom said Sept. 11 at the Oroville State Recreation Area.

Newsom "wants to look at his climate policies and see what he can accelerate," Jacobson said. "And we want to encourage him to take a look at going to 100 percent by 2030."

Jacobson said Newsom cam change the policy by issuing an executive order but "it would probably take some legislative action" to codify it.

However, Assemblyman Jim Cooper, a Democrat from the Sacramento suburb of Elk Grove, is not on board.

"I think someday we're going to be there but we can't move to all renewable sources right now," Cooper said. "It doesn't work. We've got all these burned-out areas that depend upon electricity. How is that working out? They don't have it."

In mid-August, California experienced statewide rolling blackouts for the first time since 2001.

The California Independent System Operator _ which manages the electric grid for about 80 percent of the state _ ordered utilities to ratchet back power, fearing the grid did not have enough supply to match a surge in demand as people cranked up their air conditioners during a stubborn heat wave that lingered over the West.

The outages affected about 400,000 California homes and businesses for more than an hour on Aug. 14 and 200,000 customers for about 20 minutes on Aug. 15.

The grid operator, known as the CAISO for short, avoided two additional days of blackouts in August and two more in September thanks to household utility customers and large energy users scaling back demand.

CAISO Chief Executive Officer Steve Berberich said the outages were not due to renewable energy sources in California's power mix. "This was a matter of running out of capacity to serve load" across all hours, Berberich told the Los Angeles Times.

California has plenty of renewable resources _ especially solar power _ during the day. The challenge comes when solar production rapidly declines as the sun goes down, especially between 7 p.m. and 8 p.m. in what grid operators call the "net load peak."

The loss of those megawatts of generation has to be replaced by other sources. And in an electric grid, system operators have to balance supply and demand instantaneously, generating every kilowatt that is demanded by customers who expect their lighting/heating/air conditioning to come on the moment they flip a switch.

Two weeks after the rotating outages, the State Water Resources Control Board voted to extend the lives of four natural gas plants in the Los Angeles area. Natural gas accounts for the largest single source of California's power mix _ 34.23 percent. But natural gas is a fossil fuel, not a carbon-free resource.

Jacobson said moving the mandate to 2030 can be achieved by more rapid deployment of renewable sources across the state.

The Public Utilities Commission has already directed power companies to ramp up capacity for energy storage, such as lithium-ion batteries that can be used when solar production falls off.

Long-term storage is another option. That includes pumped hydro projects in which hydroelectric facilities pump water from one reservoir up to another and then release it. The ensuing rush of water generates electricity when the grid needs it.

Environment California also pointed to offshore wind projects along the coast of Central and Northern California that it estimates could generate as much as 3 gigawatts of power by 2030 and 10 gigawatts by 2040. Offshore wind supporters say its potential is much greater than land-based wind farms because ocean breezes are stronger and steadier.

Gary Ackerman, a utilities and energy consultant with more than four decades of experience in power issues affecting states in the West, said the 2045 mandate was "an unwise policy to begin with" and to accommodate a "swift transition (to 2030), you're going to put the entire grid and everybody in it at risk."

But Ackerman's larger concern is whether enough transmission lines can be constructed in California to bring the electricity where it needs to go.

"I believe Californians consider transmission lines in their backyard about the same way they think about low-income housing _ it's great to have, but not in my backyard," Ackerman said. "The state is not prepared to build the infrastructure that will allow this grandiose build-out."

Cooper said he worries about how much it will cost the average utility customer, especially low and middle-income households. The average retail price for electricity in California is 16.58 cents per kilowatt-hour, compared to 10.53 nationally, according to the U.S. Energy Information Administration.

"What's sad is, we've had 110-degree days and there are people up here in the Central Valley that never turned their air conditioners on because they can't afford that bill," Cooper said.

Jacobson said the utilities commission can intervene if costs get too high. He also pointed to a recent study from the Goldman School of Public Policy at UC Berkeley that predicted the U.S. can deliver 90 percent clean, carbon-free electric grid by 2035 that is reliable and at no extra cost in consumers' bills.

"Every time we wait and say, 'Oh, what about the cost? Is it going to be too expensive?' we're just making the cost unbearable for our kids and grandkids," Jacobson said. "They're the ones who are going to pay the billions of dollars for all the remediation that has to happen ... What's it going to cost if we do nothing, or don't go fast enough?"

The joint agency report on SB 100 from the Energy Commission, the Public Utilities Commission and the Air Resources Board is due at the beginning of next year.

 

Related News

View more

Four effective ways to meet US decarbonization goals

US Grid Decarbonization demands balancing renewables, reliability, and resilience with smart transmission, storage, siting, and demand response, leveraging digital asset management to modernize infrastructure while meeting climate goals and rising electricity consumption.

 

Key Points

Low-carbon power while maintaining reliability via renewables, storage, transmission, and digital operations.

✅ Siting wind and solar requires community engagement and environmental review

✅ Balance variable renewables with storage, flexible load, and firm capacity

✅ Modernize transmission and digitize asset data for reliable operations

 

Last week, over 13,000 energy and technology leaders arrived in Dallas for DISTRIBUTECH International to share knowledge, showcase new technology advancements, and discuss initiatives to prepare for the future of energy. Among the many topics discussed was the critical need to balance rising energy demands and environmental pressures while understanding why the grid isn't 100% renewable today alongside effective climate change solutions.

The most widespread source of energy consumption is electricity. According to The U.S. Energy Information Administration, 2020 electricity consumption rates were roughly 3.8 trillion kWh - 13 times higher than in 1950. With our ever-increasing reliance on electricity, renewables' share of generation is also rising and this number is sure to grow exponentially in the coming years.

How can the US achieve meaningful decarbonization goals without sacrificing reliable and stable energy? Here are 4 of the biggest challenges and practical ways to meet them:


Siting New Solar and Wind Farms
Building renewable energy sources is more difficult than it seems. Scouting for sites is fraught with issues such as community opposition due to local aesthetics and clean energy's hidden costs around disruption to the environment and recreation.

NIMBY (Not In My Backyard) is an influential source of opposition. Local residents join together in an effort to prevent shore front views in wealthy coastal areas from obstruction, which are needed to support offshore wind farms. These farms can also negatively impact local fisheries, while outdoor sports and entertainment activities such as sailing, waterskiing, fishing, or swimming may be disrupted, which are equally opposed by NIMBY advocates.

Utilities must take these concerns into account when scouting for renewable energy sites.

 

Maintaining Consistent Availability of Generation Capacity
The capacity to generate consistent, reliable electricity is both a regional and nationwide concern.

Wind and solar farms depend on a consistent level of wind velocity and sunny periods, yet wind and solar could meet 80% of U.S. demand and regional concerns must be considered. For example, the southwestern United States is an ideal location for large commercial solar arrays. Areas in the north are more problematic since fall and winter days are shorter, reducing their ability to consistently generate energy. The Midwest is a prime location for wind-based generation since it experiences a consistent level of wind throughout the year.

Nighttime periods and cloudy days virtually eliminate solar farms as a consistent energy source while loss of available winds impacts the reliability of wind as a base load supply of energy generation.

 

Pivoting From Current Energy Usage Models
Over the last 20 years, utilities have been heavily involved with normalizing consumer energy consumption curves, pursuing grid resilience strategies to manage variability. Due to the high cost of siting new fossil fuel facilities, building new electric grid interconnections, and the high commodity pricing for imported power, utilities were driven to modify their customers’ energy usage patterns.

These consumption regulating policies included:

  • Time of use metering to entice customers to use high energy devices at night
  • Installation of energy monitoring devices on high use customer equipment to enable the utility to reduce energy demand during peak use periods
  • Charging electric vehicles overnight

With fundamental changes occurring in how energy is generated, the availability of renewable power during low or no-sun periods and lower wind levels will require utilities to alter their energy consumption models.

 

Utilizing Government Support of New Electric Infrastructure
With the proposed government infusion of funds, including a rule to boost renewable transmission, to build and modernize infrastructures, utility leaders will be ideally positioned to drastically improve the reliability of the US electric grid.

Utilities will be involved in aggressive transmission line building projects to ensure the effective distribution of energy across multiple state lines, aligning with the U.S. grid overhaul for renewables underway today. This expansive build out of the US transmission and distribution system will create a dramatic increase in the need to accurately document the location and details of the new utility assets for current tracking and future analysis needs.

Energy leaders must seek advanced technology to provide them with solutions for precisely this purpose. Manual, paper-based field data collection must be replaced with digital workflows which automate and simplify asset data capture and analysis. Continued reliance on manual methods will cause them to lag behind the industry and impede their ability to support renewable energy for the modern era.

 

Related News

View more

Nova Scotia EV Charging Infrastructure Faces Urgent Upgrade Needs

Nova Scotia EV charging infrastructure remains limited, with only 14 fast chargers across the province. As electric vehicle adoption grows, urgent upgrades are needed to support long-distance travel and public charging convenience.

 

Nova Scotia EV charging infrastructure

Nova Scotia EV charging infrastructure refers to the province’s public and private network of stations that power electric vehicles (EVs).

✅ Limited availability of fast-charging stations for long-distance travel

✅ Growing demand as EV adoption increases province-wide

✅ Key factor in reducing range anxiety and promoting clean transportation

 

Nova Scotia’s EV charging network is struggling to keep pace with a growing fleet of electric vehicles. As of today, only 14 public DC fast chargers are operational across the province, a significant shortfall for drivers navigating long distances. This creates not only logistical hurdles but also growing consumer hesitation — particularly as EV sales continue to surge across Canada.

In response, the Canadian government has announced a $1.1 million (US$0.88 million) investment into a new smart-charging pilot program. Led by Nova Scotia Power, this initiative will explore how electric vehicles can better integrate with the local grid using a centralized, utility-managed control system. Up to 200 participants are expected to join the program, which aims to test both smart charging and vehicle-to-grid (V2G) technologies.

These systems allow EVs to act as distributed energy storage, helping to manage electricity demand and improve renewable energy integration — a strategy already being tested in other jurisdictions. For example, Ontario’s charging network expansion has provided a model for scaling fast-charging accessibility. Similarly, British Columbia has recently accelerated its rollout of faster charging stations to support mass EV adoption.

The Nova Scotia pilot will assess local EV charging behaviors, including drivers’ willingness to participate in V2G services based on incentives, driving patterns, and access to clean power. “We know customers want clean, affordable, reliable energy for their homes and businesses,” says Dave Landrigan, VP Commercial at Nova Scotia Power. “Through our electric vehicle smart charging pilot, we will test these technologies to learn how they can benefit all customers, creating clean, smarter options without changing a person’s driving habits.”

The funding comes through Natural Resources Canada’s Electric Vehicle Infrastructure Demonstration program, which supports the development of cutting-edge charging and hydrogen refueling solutions across the country. To date, the federal government has invested over $600 million to support EV affordability and infrastructure deployment, with a particular focus on a coast-to-coast fast-charging network.

At the same time, other provinces are stepping up their leadership roles. In Québec, Hydro-Québec is expanding its EV ecosystem through a strategic partnership with Propulsion Québec, a key industry cluster for sustainable mobility. Their focus includes reliable public charging, clean grid integration, and stakeholder collaboration — all essential factors for scalable transportation electrification.

“In Québec, we are fortunate to be able to make transportation electrification possible by easily replacing gas imported from outside with our clean energy,” said France Lampron, Director – Transportation Electrification at Hydro-Québec. “To do this, we need to develop synergies between various stakeholders in the sustainable mobility sector.”

While Nova Scotia’s current fast-charging availability is limited, the province now has an opportunity to follow a similar trajectory. With funding in place, stakeholder alignment, and public interest growing, the expansion of Nova Scotia EV charging infrastructure could soon match the pace of rising EV demand. As governments and utilities nationwide focus on electrification, Nova Scotia’s pilot may lay the groundwork for a more connected, cleaner transportation future.

 

Related News

 

 

View more

U.S. to work with allies to secure electric vehicle metals

US EV Battery Minerals Strategy prioritizes critical minerals with allies, lithium and copper sourcing, battery recycling, and domestic processing, leveraging the Development Finance Corporation to strengthen EV supply chains and reduce reliance on China.

 

Key Points

A US plan to secure critical minerals with allies, boost recycling, and expand domestic processing for EV batteries.

✅ DFC financing for allied lithium and copper projects

✅ Battery recycling to diversify critical mineral supply

✅ Domestic processing with strong environmental standards

 

The United States must work with allies to secure the minerals needed for electric vehicle batteries, addressing pressures on cobalt reserves that could influence supply, and process them domestically in light of environmental and other competing interests, the White House said on Tuesday.

The strategy, first reported by Reuters in late May, will include new funding to expand international investments in electric vehicles (EV) metal projects through the U.S. Development Finance Corporation, as well as new efforts to boost supply from EV battery recycling initiatives.

The U.S. has been working to secure minerals from allied countries, including Canada and Finland, with projects such as Alberta lithium development showing potential. The 250-page report outlining policy recommendations mentioned large lithium supplies in Chile and Australia, the world's two largest producers of the white battery metal.

President Joe Biden's administration will also launch a working group to identify where minerals used in EV batteries and other technologies can be produced and processed domestically.

Securing enough copper, lithium and other raw materials to make EV batteries, amid lithium supply concerns heightened by recent disruptions, is a major obstacle to Biden’s aggressive EV adoption plans, with domestic mines facing extensive regulatory hurdles and environmental opposition.

The White House acknowledged China's role as the world's largest processor of EV metals and said it would expand efforts, including a 100% EV tariff on certain imports, to lessen that dependency.

"The United States cannot and does not need to mine and process all critical battery inputs at home. It can and should work with allies and partners to expand global production and to ensure secure global supplies," it said in the report.

The White House also said the Department of the Interior and others agencies will work to identify gaps in mine permitting laws to ensure any new production "meets strong standards" in terms of both the environment and community input.

The report noted Native American opposition to Lithium Americas Corp's (LAC.TO) Thacker Pass lithium project in Nevada, as well as plans by automaker Tesla Inc (TSLA.O) to produce its own lithium.

The steps come after Biden, who has made fighting climate change and competing with China centerpieces of his agenda, ordered a 100-day review of gaps in supply chains in key areas, including EVs.

Democrats are pushing aggressive climate goals, as Canada EV manufacturing accelerates in parallel, to have a majority of U.S.-manufactured cars be electric by 2030 and every car on the road to be electric by 2040.

As part of the recommendations from four executive branch agencies, Biden is being advised to take steps to restore the country's strategic mineral stockpile and expand funding to map the mineral resources available domestically.

Some of those steps would require the support of Congress, where Biden's fellow Democrats have only slim majorities.

The Energy Department already has $17 billion in authority through its Advanced Technology Vehicles Manufacturing Loan program to fund some investments, and is also launching a lithium-battery workforce initiative to build critical skills.

The program’s administrators will focus on financing battery manufacturers and companies that refine, recycle and process critical minerals, the White House said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.