Climate change, not renewables, threaten grid


solar panels

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

New Mexico Energy Transition Act advances renewable energy, battery storage, energy efficiency, and demand response to boost grid reliability during climate change-fueled heatwaves, reducing emissions while supporting solar and wind deployment.

 

Key Points

A state policy phasing out power emissions, scaling renewables and storage, bolstering grid reliability in extreme heat.

✅ Replaces coal generation with solar plus battery storage

✅ Enhances grid reliability during climate-driven heatwaves

✅ Promotes energy efficiency and demand response programs

 

While temperatures hit record highs across much of the West in recent weeks and California was forced to curb electricity service amid heat-driven grid strain that week, the power stayed on in New Mexico thanks to proactive energy efficiency and conservation measures.

Public Service Company of New Mexico on Aug. 19 did ask customers to cut back on power use during the peak demand time until 9 p.m., to offset energy supply issues due to the record-breaking heatwave that was one of the most severe to hit the West since 2006. But the Albuquerque Journal's Aug. 28 editorial, "PRC should see the light with record heat and blackouts," confuses the problem with the solution. Record temperatures fueled by climate change – not renewable energy – were to blame for the power challenges last month. And thanks to the Energy Transition Act, New Mexico is reducing climate change-causing pollution and better positioned to prevent the worst impacts of global warming.

During those August days, more than 80 million U.S. residents were under excessive heat warnings. As the Journal's editorial pointed out, California experienced blackouts on Aug. 14 and 15 as wildfires swept across the state and temperatures rose. In fact, a recent report by the University of Chicago's Climate Impact Lab found the world has experienced record heat this summer due to climate change, and heat-related deaths will continue to rise in the future.

As the recent California energy incidents show, climate change is a threat to a reliable electricity system and our health as soaring temperatures and heatwaves strain our grid, as seen in Texas grid challenges this year as well. Demand for electricity rises as people depend more on energy-intensive air conditioning. High temperatures also can decrease transmission line efficiency and cause power plant operators to scale back or even temporarily stop electricity generation.

Lobbyists for the fossil fuel industry may claim that the service interruptions and the conservation requests in New Mexico demonstrate the need for keeping fossil-fueled power generation for electricity reliability, echoing policy blame narratives in California that fault climate policies. But fossil fuel combustion still is subject to the factors that cause blackouts – while also driving climate change and making resulting heatwaves more common. After an investigation, California's own energy agencies found no substance to the claim that renewable energy use was a factor in the situation there, and it's not to blame in New Mexico, either.

New Mexico's Energy Transition Act is a bold, necessary step to limit the damage caused by climate change in the future. It creates a reasonable, cost-saving path to eliminating greenhouse gas emissions associated with generating electricity.

The New Mexico Public Regulation Commission properly applied this law when it recently voted unanimously to replace PNM's coal-fired generation at San Juan Generating Station with carbon-free solar energy and battery storage located in the Four Corners communities, a prudent step given California's looming electricity shortage warnings across the West. The development will create jobs and provide resources for the local school district and help ensure a stronger economy and a healthier future for the region.

As we expand solar and wind energy here in New Mexico, we can help ensure reliable electricity service by building out greater battery storage for renewable energy resources. Expanding regional energy markets that can dispatch the lowest-cost energy from across the region to places where it is needed most would make renewable energy more available and reduce costs, despite concerns over policy exports raised by some observers.

Energy efficiency and demand response are important when we are facing extraordinary conditions, and proven strategies to improve electricity reliability show how demand-side tools complement the grid, so it is unfortunate that the Albuquerque Journal made the unsubstantiated claim that a stray cloud will put out the lights. It was hot, supplies were tight on the electric grid, and in those moments, we should conserve. We should not use those moments to turn our back on progress.

 

Related News

Related News

New legislation will make it easier for strata owners to install EV charging stations

BC Strata EV Charging Reforms streamline approvals under the Strata Property Act, lowering the voting threshold and requiring an electrical planning report to expand EV charging stations in multi-unit strata buildings across British Columbia.

 

Key Points

BC reforms ease EV charger installs in stratas by lowering votes, requiring plans, and fast-tracking compliant requests.

✅ Vote threshold drops to 50% for EV infrastructure

✅ Electrical planning report required for stratas

✅ Stratas must approve compliant owner charging requests

 

Owning an electric vehicle (EV) will be a little easier for strata property owners, the province says, after announcing changes to legislation to facilitate the installation of charging stations in strata buildings.

On Thursday, the province said it would be making amendments to the Strata Property Act, the legal framework all strata corporations are required to follow, and align with practical steps for retrofitting condos with chargers in older buildings.

Three areas will improve access to EV charging stations in strata complexes, the province says, including lowering the voting threshold from 75 per cent to 50 per cent for approval of the costs, supported by EV charger rebates that can offset expenses, and changes to the property that are needed to install them, as well as requiring strata corporations to have an electrical planning report to make installation of these stations easier.

The amendments would mean stratas would have to approve owners' requests for such charging stations, even amid high-rise EV charging challenges reported across Canada, as long as "reasonable criteria are met."

Minister of Energy, Mines and Low Carbon Innovation Josie Osborne said people are more likely to buy an electric vehicle if they have the ability to charge it — something that's lacking for many British Columbians living in multi-unit residences, where Vancouver's EV-ready policy is setting a local example for multi-family buildings. 

"B.C. has one of the largest public electric vehicle charging networks in Canada, and leads the country in going electric, but we need to make it easier for more people to charge their EVs at home," Osborne said in a statement.

Tony Gioventu, the executive director of the Condominium Home Owners Association of B.C., said the new legislation strikes a balance between allowing people access to EV charging stations, as examples from Calgary apartments and condos demonstrate, while also ensuring stratas still have control over their properties. 

This is just the latest step in the B.C. government's move to get more EVs on the road: alongside rebates for home and workplace charging, the province passed the Zero-Emission Vehicles Act, which aims for 10 per cent of all new light-duty cars and trucks sold in B.C. to be zero emission by 2025. By 2040, they'll all need to be emission-free.

 

Related News

View more

Wind and solar power generated more electricity in the EU last year than gas. Here's how

EU Renewable Energy Transition accelerates as solar and wind overtake gas, cutting coal reliance and boosting REPowerEU goals; falling electricity demand, hydro and nuclear recovery, and grid upgrades drive a cleaner, secure power mix.

 

Key Points

It is the EU's shift to solar and wind, surpassing gas and curbing coal to meet REPowerEU targets.

✅ Solar and wind supplied 22% of EU electricity in 2022.

✅ Gas fell behind; coal stayed near 16% with no major rebound.

✅ Demand fell; hydro and nuclear expected to recover in 2023.

 

European countries were forced to accelerate their renewable energy capacity after Russia's invasion of Ukraine sparked a global energy crisis amid a surge in global power demand that exceeded pre-pandemic levels. The EU’s REPowerEU plan aims to increase the share of renewables in final energy consumption overall to 45 percent by the end of the decade.

However, a new report by energy think tank Ember shows that the EU’s green energy transition is already making a significant difference. Solar and wind power generated more than a fifth (22 percent) of its electricity in 2022, pulling ahead of fossil gas (20 percent) for the first time, according to the European Electricity Review 2023.

Europe also managed to avoid resorting to emissions-intensive coal power for electricity generation as a consequence of the energy crisis, even as renewables to eclipse coal globally by mid-decade. Coal generated just 16 percent of the EU’s electricity last year, an increase of just 1.5 percentage points.

“Europe has avoided the worst of the energy crisis,” says Ember’s Head of Data Insights, Dave Jones. “The shocks of 2022 only caused a minor ripple in coal power and a huge wave of support for renewables. Any fears of a coal rebound are now dead.”

Ember’s analysis reveals that the EU faced a "triple crisis" in the electricity sector in 2022, as stunted hydro and nuclear output compounded the shock. "Just as Europe scrambled to cut ties with its biggest supplier of fossil gas, it faced the lowest levels of hydro and nuclear (power) in at least two decades, which created a deficit equal to 7 percent of Europe’s total electricity demand in 2022," the report says. A severe drought across Europe, French nuclear outages as well as the closure of German nuclear outlets were responsible for the drop.

 

Solar power shines through
However, the record surge in solar and wind power generation helped compensate for the nuclear and hydropower deficit. Solar power rose the fastest, growing by a record 24 percent last year which almost doubled its previous record, with wind growing by 8.6 percent.

Forty-one gigawatts of solar power capacity was added in 2022, almost 50 percent more than the year before. Ember says that 20 EU countries achieved solar records in 2022, with Germany, Spain, Poland, the Netherlands and France adding the most solar capacity.

The Netherlands and Greece generated more power from solar than coal for the first time. Greece is also predicted to reach its 2030 solar capacity target by the end of this year.


EU electricity demand falls
A significant drop in electricity use in 2022 also helped lessen the impact of Europe’s energy crisis. Demand fell by 7.9 percent in the last quarter of the year, despite the continent heading into winter. This was close to the 9.6 percent fall experienced when Europe was in Covid-19 lockdown in mid-2020.

"Mild weather was a deciding factor, but affordability pressures likely played a role, alongside energy efficiency improvements and citizens acting in solidarity to cut energy demand in a time of crisis," the report says.

A ‘coal comeback’ fails to materialize
The almost 8 percent fall in electricity demand in the last three months of 2022 was the main factor in the 9 percent fall in gas and coal generation during that time. However, Ember says that had France’s nuclear plants been operating at the same capacity as 2021, the EU’s fossil fuel generation would have fallen twice as fast in the last quarter of 2022.

The report says: "Coal power in the EU fell in all four of the final months of 2022, down 6 percent year-on-year. The 26 coal units placed on emergency standby for winter ran at an average of just 18 percent capacity. Despite importing 22 million tonnes of extra coal throughout 2022, the EU only used a third of it."

Gas generation was very similar compared to 2021, up just 0.8 percent. It made up 20 percent of the EU electricity mix in 2022, up from 19 percent the year before.


Fossil fuel generation set to fall in 2023
Ember says low-emissions sources like solar and wind power will continue to accelerate in 2023 and hydropower and French nuclear capacity will also recover. With electricity demand likely to continue to fall, it estimates that fossil fuel-generation "could plummet" by 20 percent in 2023.

Gas generation will fall the fastest, Ember predicts, as it will remain more expensive than coal over the next few years. "The large fall in gas generation means the power sector is likely to be the fastest falling segment of gas demand during 2023, helping to bring calm to European gas markets as Europe adjusts to life without Russian gas."

In order to stick to the 2015 Paris Agreement target of limiting global warming to no more than 1.5 degrees Celsius compared to pre-industrial levels, Ember says Europe must fully decarbonize its power system by the mid-2030s. Its modeling shows that this is possible without compromising the security of supply.

However, the report says "making this vision a reality will require investment above and beyond existing plans, as well as immediate action to address barriers to the expansion of clean energy infrastructure. Such a mobilization would boost the European economy, cement the EU’s position as a climate leader and send a vital international message that these challenges can be overcome."

 

Related News

View more

IEA: Clean energy investment significantly outpaces fossil fuels

Clean Energy Investment is surging as renewables, electric vehicles, grids, storage, and nuclear outpace fossil fuels, driven by energy security, affordability, and policies like the Inflation Reduction Act, the IEA's World Energy Investment report shows.

 

Key Points

Investment in renewables, EVs, grids, and storage now surpasses fossil fuels amid cost and security pressures.

✅ $1.7T to clean tech vs just over $1T to fossil fuels this year.

✅ For every $1 in fossil, about $1.7 goes to clean energy.

✅ Solar investment poised to overtake oil production spending.

 

Investment in clean energy technologies is significantly outpacing spending on fossil fuels as affordability and security concerns, underpinned by analyses showing renewables cheapest new power in many markets, triggered by the global energy crisis strengthen the momentum behind more sustainable options, according to the International Energy Agency's (IEA) latest World Energy Investment report.

About $2.8 trillion (€2.6 trillion) is set to be invested globally in energy this year, of which over $1.7 trillion (€1.59 trillion) is expected to go to clean technologies - including renewables, electric vehicles, nuclear power, grids, storage, low-emissions fuels, efficiency improvements and heat pumps – according to report.

The remainder, slightly more than $1 trillion (€937.7 billion), is going to coal, gas and oil, despite growing calls for a fossil fuel lockdown to meet climate goals.

Annual clean energy investment is expected to rise by 24% between 2021 and 2023, driven by renewables and electric vehicles, with renewables breaking records worldwide over the same period.

But more than 90% of this increase comes from advanced economies and China, which the IEA said presents a serious risk of new dividing lines in global energy if clean energy transitions don’t pick up elsewhere.

“Clean energy is moving fast – faster than many people realise. This is clear in the investment trends, where clean technologies are pulling away from fossil fuels,” said IEA executive director Fatih Birol. “For every dollar invested in fossil fuels, about 1.7 dollars are now going into clean energy. Five years ago, this ratio was one-to-one. One shining example is investment in solar, which is set to overtake the amount of investment going into oil production for the first time.”

Led by solar, low-emissions electricity technologies are expected to account for almost 90% of investment in power generation, reflecting the global renewables share above 30% in electricity markets.

Consumers are also investing in more electrified end-uses. Global heat pump sales have seen double-digit annual growth since 2021. Electric vehicle sales are expected to leap by a third this year after already surging in 2022.

Clean energy investments have been boosted by a variety of factors in recent years, including periods of strong economic growth and volatile fossil fuel prices that raised concerns about energy security, and insights from the IRENA decarbonisation report that underscore broader benefits, especially following Russia’s invasion of Ukraine.

Furthermore, enhanced policy support through major actions like the US Inflation Reduction Act and initiatives in Europe's green surge, Japan, China and elsewhere have played a role.

In Ireland, more than a third of electricity is expected to be green within four years, illustrating national progress.

The biggest shortfalls in clean energy investment are in emerging and developing economies, the IEA added. It pointed to some bright spots, such as dynamic investments in solar in India and in renewables in Brazil and parts of the Middle East. However, investment in many countries is being held back by factors including higher interest rates, unclear policy frameworks and market designs, weak grid infrastructure, financially strained utilities and a high cost of capital.

"Much more needs to be done by the international community, especially to drive investment in lower-income economies, where the private sector has been reluctant to venture," according to the IEA.

 

Related News

View more

US Crosses the Electric-Car Tipping Point for Mass Adoption

EV Tipping Point signals the S-curve shift to mainstream adoption as new car sales pass 5%, with the US joining Europe and China; charging infrastructure, costs, and supply align to accelerate electric car market penetration.

 

Key Points

The EV tipping point is when fully electric cars reach about 5% of new sales, triggering rapid S-curve adoption.

✅ 5% of new car sales marks start of mass adoption

✅ Follows S-curve seen in phones, LEDs, internet

✅ Barriers ease: charging, cost declines, model availability

 

Many people of a certain age can recall the first time they held a smartphone. The devices were weird and expensive and novel enough to draw a crowd at parties. Then, less than a decade later, it became unusual not to own one.

That same society-altering shift is happening now with electric vehicles, according to a Bloomberg analysis of adoption rates around the world. The US is the latest country to pass what’s become a critical EV tipping point: an EV inflection point when 5% of new car sales are powered only by electricity. This threshold signals the start of mass EV adoption, the period when technological preferences rapidly flip, according to the analysis.

For the past six months, the US joined Europe and China — collectively the three largest car markets — in moving beyond the 5% tipping point, as recent U.S. EV sales indicate. If the US follows the trend established by 18 countries that came before it, a quarter of new car sales could be electric by the end of 2025. That would be a year or two ahead of most major forecasts.

How Fast Is the Switch to Electric Cars?
19 countries have reached the 5% tipping point, and an earlier-than-expected shift is underway—then everything changes

Why is 5% so important? 
Most successful new technologies — electricity, televisions, mobile phones, the internet, even LED lightbulbs — follow an S-shaped adoption curve, with EVs going from zero to 2 million in five years according to market data. Sales move at a crawl in the early-adopter phase, then surprisingly quickly once things go mainstream. (The top of the S curve represents the last holdouts who refuse to give up their old flip phones.)

Electric cars inline tout
In the case of electric vehicles, 5% seems to be the point when early adopters are overtaken by mainstream demand. Before then, sales tend to be slow and unpredictable, and still behind gas cars in most markets. Afterward, rapidly accelerating demand ensues.

It makes sense that countries around the world would follow similar patterns of EV adoption. Most impediments are universal: there aren’t enough public chargers, grid capacity concerns linger, the cars are expensive and in limited supply, buyers don’t know much about them. Once the road has been paved for the first 5%, the masses soon follow.

Thus the adoption curve followed by South Korea starting in 2021 ends up looking a lot like the one taken by China in 2018, which is similar to Norway after its first 5% quarter in 2013. The next major car markets approaching the tipping point this year include Canada, Australia, and Spain, suggesting that within a decade many drivers could be in EVs worldwide. 

 

Related News

View more

How France aims to discourage buying of Chinese EVs

France EV Bonus Eligibility Rules prioritize lifecycle carbon footprint, manufacturing emissions, battery sourcing, and transport impacts, reshaping electric car incentives and excluding many China-made EVs while aiming for WTO-compliant, low-emission industrial policy.

 

Key Points

France's EV bonus rules score lifecycle emissions to favor low-carbon models and limit incentives for China-made EVs.

✅ Scores energy, assembly, transport, and battery criteria

✅ Likely excludes China-made EVs with coal-heavy production

✅ Aims to align incentives with WTO-compliant climate goals

 

France has published new eligibility rules for electric car incentives to exclude EVs made in China, even though carmakers in Europe do not have more affordable rival models on the French market.


WHY IS FRANCE REVISING ITS EV BONUS ELIGIBILITY RULES?
The French government currently offers buyers a cash incentive of between 5,000 and 7,000 euros in cash for eligible models to get more electric cars on the road, at a total cost of 1 billion euros ($1.07 billion) per year.

However, in the absence of cheap European-made EVs, a third of all incentives are going to consumers buying EVs made in China, a French finance ministry source said. The trend has helped spur a Chinese EV push into Europe and a growing competitive gap with domestic producers.

The scheme will be revamped from Dec. 15 to take into account the carbon emitted in a model's manufacturing process.

President Emmanuel Macron and government ministers have made little secret that they want to make sure French state cash is not benefiting Chinese carmakers.


WHAT DO THE NEW RULES DO?
Under the new rules, car models will be scored against government-set thresholds for the amount of energy used to make their materials, in their assembly and transport to market, as well as what type of battery the vehicle has.

Because Chinese industry generally relies heavily on coal-generated electricity, the criteria are likely to put the bonus out of Chinese carmakers' reach.

The government, which is to publish in December the names of models meeting the new standards, says that the criteria are compliant with WTO rules because exemptions are allowed for health and environmental reasons, and similar Canada EV sales regulations are advancing as well.


WILL IT DO ANYTHING?
With Chinese cars estimated to cost 20% less than European-made competitors, the bonus could make a difference for vehicles with a price tag of less than 25,000 euros, amid an accelerating global transition to EVs that is reshaping price expectations.

But French car buyers will have to wait because Stellantis' (STLAM.MI) Slovakia-made e-C3 city car and Renault's (RENA.PA) France-made R5 are not due to hit the market until 2024.

Nonetheless, many EVs made in China will remain competitive even without the cash incentive, reflecting projections that within a decade many drivers could be in EVs.

With a starting price of 30,000 euros, SAIC group's (600104.SS) MG4 will be less expensive than Renault's equivalent Megane compact car, which starts at 38,000 euros - or 33,000 euros with a 5,000-euro incentive.

Since its 46,000-euro starting price is just below the 47,000-euro price threshold for the bonus, Tesla's (TSLA.O) Y model - one of the best selling electric vehicles in France - could in theory also be impacted by the new rules for vehicles made in China.

S&P Global Mobility analyst Lorraine Morard said that even if most Chinese cars are ineligible for the bonus they would probably get 7-8% of France's electric car market next year, even as the EU's EV share continues to rise, instead of 10% otherwise.

 

Related News

View more

Renewables became the second-most prevalent U.S. electricity source in 2020

2020 U.S. Renewable Electricity Generation set a record as wind, solar, hydro, biomass, and geothermal produced 834 billion kWh, surpassing coal and nuclear, second only to natural gas in nationwide power output.

 

Key Points

The record year when renewables made 834 billion kWh, topping coal and nuclear in U.S. electricity.

✅ Renewables supplied 21% of U.S. electricity in 2020

✅ Coal output fell 20% y/y; nuclear slipped 2% on retirements

✅ EIA forecasts renewables rise in 2021-2022; coal rebounds

 

In 2020, renewable energy sources (including wind, hydroelectric, solar, biomass, and geothermal energy) generated a record 834 billion kilowatthours (kWh) of electricity, or about 21% of all the electricity generated in the United States. Only natural gas (1,617 billion kWh) produced more electricity than renewables in the United States in 2020. Renewables surpassed both nuclear (790 billion kWh) and coal (774 billion kWh) for the first time on record. This outcome in 2020 was due mostly to significantly less coal use in U.S. electricity generation and steadily increased use of wind and solar generation over time, amid declining consumption trends nationwide.

In 2020, U.S. electricity generation from coal in all sectors declined 20% from 2019, while renewables, including small-scale solar, increased 9%. Wind, currently the most prevalent source of renewable electricity in the United States, grew 14% in 2020 from 2019, and the EIA expects solar and wind to be larger sources in summer 2022, reflecting continued growth. Utility-scale solar generation (from projects greater than 1 megawatt) increased 26%, and small-scale solar, such as grid-connected rooftop solar panels, increased 19%, while early 2021 January power generation jumped year over year.

Coal-fired electricity generation in the United States peaked at 2,016 billion kWh in 2007 and much of that capacity has been replaced by or converted to natural gas-fired generation since then. Coal was the largest source of electricity in the United States until 2016, and 2020 was the first year that more electricity was generated by renewables and by nuclear power than by coal (according to our data series that dates back to 1949). Nuclear electric power declined 2% from 2019 to 2020 because several nuclear power plants retired and other nuclear plants experienced slightly more maintenance-related outages.

We expect coal-fired generation to increase in the United States during 2021 as natural gas prices continue to rise and as coal becomes more economically competitive. Based on forecasts in our Short-Term Energy Outlook (STEO), we expect coal-fired electricity generation in all sectors in 2021 to increase 18% from 2020 levels before falling 2% in 2022. We expect U.S. renewable generation across all sectors to increase 7% in 2021 and 10% in 2022, and in 2021, non-fossil fuel sources accounted for about 40% of U.S. electricity. As a result, we forecast coal will be the second-most prevalent electricity source in 2021, and renewables will be the second-most prevalent source in 2022. We expect nuclear electric power to decline 2% in 2021 and 3% in 2022 as operators retire several generators.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.