Why Electric Vehicles Are "Greener" Than Ever In All 50 States


ev states

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

UCS EV emissions study shows electric vehicles produce lower life-cycle emissions than gasoline cars across all states, factoring tailpipe, grid mix, power plant sources, and renewable energy, delivering mpg-equivalent advantages nationwide.

 

Key Points

UCS study comparing EV and gas life-cycle emissions, finding EVs cleaner than new gas cars in every U.S. region.

✅ Average EV equals 93 mpg gas car on emissions.

✅ Cleaner than 50 mpg gas cars in 97% of U.S.

✅ Regional grid mix included: tailpipe to power plant.

 

One of the cautions cited by electric vehicle (EV) naysayers is that they merely shift emissions from the tailpipe to the local grid’s power source, implicating state power grids as a whole, and some charging efficiency claims get the math wrong, too. And while there is a kernel of truth to this notion—they’re indeed more benign to the environment in states where renewable energy resources are prevalent—the average EV is cleaner to run than the average new gasoline vehicle in all 50 states. 

That’s according to a just-released study conducted the Union of Concerned Scientists (UCS), which determined that global warming emissions related to EVs has fallen by 15 percent since 2018. For 97 percent of the U.S., driving an electric car is equivalent or better for the planet than a gasoline-powered model that gets 50 mpg. 

In fact, the organization says the average EV currently on the market is now on a par, environmentally, with an internal combustion vehicle that’s rated at 93 mpg. The most efficient gas-driven model sold in the U.S. gets 59 mpg, and EV sales still trail gas cars despite such comparisons, with the average new petrol-powered car at 31 mpg.

For a gasoline car, the UCS considers a vehicle’s tailpipe emissions, as well as the effects of pumping crude oil from the ground, transporting it to a refinery, creating gasoline, and transporting it to filling stations. For electric vehicles, the UCS’ environmental estimates include both emissions from the power plants themselves, along with those created by the production of coal, natural gas or other fossil fuels used to generate electricity, and they are often mischaracterized by claims about battery manufacturing emissions that don’t hold up. 

Of course the degree to which an EV ultimately affects the atmosphere still varies from one part of the country to another, depending on the local power source. In some parts of the country, driving the average new gasoline car will produce four to eight times the emissions of the average EV, a fact worth noting for those wondering if it’s the time to buy an electric car today. The UCS says the average EV driven in upstate New York produces total emissions that would be equivalent to a gasoline car that gets an impossible 255-mpg. In even the dirtiest areas for generating electricity, EVs are responsible for as much emissions as a conventionally powered car that gets over 40 mpg.

 

Related News

Related News

Total Cost of EV Ownership: New Data Reveals Long-Term Savings

Electric vehicles may cost more upfront but often save money long-term. A new MIT study shows the total cost of EV ownership is lower than gas cars when factoring in fuel, maintenance, and emissions.

 

Total cost of EV ownership is the focus of new MIT research showing electric vehicles offer both financial and environmental benefits over time.

✅ Electric vehicles cost more upfront but save money over their lifetime through lower fuel and maintenance costs

✅ MIT study confirms EVs have lower emissions and total ownership costs than most gas-powered cars

✅ New interactive tool helps consumers compare climate and cost impacts of EVs, hybrids, and traditional vehicles

Electric vehicles are better for the climate than gas‑powered cars, but many Americans are still reluctant to buy them. One reason: The larger upfront cost.

New data published Thursday shows that despite the higher sticker price, electric cars may actually save drivers money in the long-run.

To reach this conclusion, a team at the Massachusetts Institute of Technology calculated both the carbon dioxide emissions and full lifetime cost — including purchase price, maintenance and fuel — for nearly every new car model on the market.

They found electric cars were easily more climate friendly than gas-burning ones. Over a lifetime, they were often cheaper, too.

Jessika Trancik, an associate professor of energy studies at M.I.T. who led the research, said she hoped the data would “help people learn about how those upfront costs are spread over the lifetime of the car.”

For electric cars, lower maintenance costs and the lower costs of charging compared with gasoline prices tend to offset the higher upfront price over time. (Battery-electric engines have fewer moving parts that can break compared with gas-powered engines and they don’t require oil changes. Electric vehicles also use regenerative braking, which reduces wear and tear.)

As EV adoption continues to boom, more consumers are realizing the long-term savings and climate benefits. Ontario’s investment in EV charging stations reflects how infrastructure is beginning to catch up with demand. Despite regional energy pricing differences, EV charging costs remain lower than gasoline in nearly every U.S. city.

The cars are greener over time, too, despite the more emissions-intensive battery manufacturing process. Dr. Trancik estimates that an electric vehicle’s production emissions would be offset in anywhere from six to 18 months, depending on how clean the energy grid is where the car is charging.

In some areas, EVs are even being used to power homes, enhancing their value as a sustainable investment. Recent EPA rules aim to boost EV sales, further signaling government support. California leads the nation in EV charging infrastructure, setting a model for nationwide adoption.

The new data showed hybrid cars, which run on a combination of fuel and battery power, and can sometimes be plugged in, had more mixed results for both emissions and costs. Some hybrids were cheaper and spewed less planet-warming carbon dioxide than regular cars, but others were in the same emissions and cost range as gas-only vehicles.

Traditional gas-burning cars were usually the least climate friendly option, though long-term costs and emissions spanned a wide range. Compact cars were usually cheaper and more efficient, while gas-powered SUVs and luxury sedans landed on the opposite end of the spectrum.

Dr. Trancik’s team released the data in an interactive online tool to help people quantify the true costs of their car-buying decisions — both for the planet and their budget. The new estimates update a study published in 2016 and add to a growing body of research underscoring the potential lifetime savings of electric cars.

Take the Tesla Model 3, the most popular electric car in the United States. The M.I.T. team estimated the lifetime cost of the most basic model as comparable to a Nissan Altima that sells for $11,000 less upfront. (That’s even though Tesla’s federal tax incentive for electric vehicles has ended.)

Toyota’s Hybrid RAV4 S.U.V. also ends up cheaper in the long run than a similar traditional RAV4, a national bestseller, despite a higher retail price.

Hawaii, Alaska and parts of New England have some of the highest average electricity costs, while parts of the Midwest, West and South tend to have lower rates. Gas prices are lower along the Gulf Coast and higher in California. But an analysis from the Union of Concerned Scientists still found that charging a vehicle was more cost effective than filling up at the pump across 50 major American cities. “We saw potential savings everywhere,” said David Reichmuth, a senior engineer for the group’s Clean Transportation Program.

Still, the upfront cost of an electric vehicle continues to be a barrier for many would-be owners.

The federal government offers a tax credit for some new electric vehicle purchases, but that does nothing to reduce the initial purchase price and does not apply to used cars. That means it disproportionately benefits wealthier Americans. Some states, like California, offer additional incentives. President-elect Joseph R. Biden Jr. has pledged to offer rebates that help consumers swap inefficient, old cars for cleaner new ones, and to create 500,000 more electric vehicle charging stations, too.

EV sales projections for 2024 suggest continued acceleration, especially as costs fall and policy support expands. Chris Gearhart, director of the Center for Integrated Mobility Sciences at the National Renewable Energy Laboratory, said electric cars will become more price competitive in coming years as battery prices drop. At the same time, new technologies to reduce exhaust emissions are making traditional cars more expensive. “With that trajectory, you can imagine that even immediately at the purchase price level, certain smaller sedans could reach purchase price parity in the next couple of years,” Dr. Gearhart said.

 

Related Pages:

EV Boom Unexpectedly Benefits All Electricity Customers

Ontario Invests in New EV Charging Stations

EV Charging Cost Still Beats Gasoline, Study Finds

EPA Rules Expected to Boost U.S. Electric Vehicle Sales

California Takes the Lead in Electric Vehicle and Charging Station Adoption

EVs to Power Homes: New Technology Turns Cars Into Backup Batteries

U.S. Electric Vehicle Sales Soar Into 2024

 

 

View more

Electric Cars Have Hit an Inflection Point

U.S. EV Manufacturing Expansion accelerates decarbonization as Ford and SK Innovation invest in lithium-ion batteries and truck assembly in Tennessee and Kentucky, building new factories, jobs, and supply chain infrastructure in right-to-work states.

 

Key Points

A rapid scale-up of U.S. electric vehicle production, battery plants, and assembly lines fueled by major investments.

✅ Ford and SK build battery and truck plants by 2025

✅ $11.4B investment, 11,000 jobs in TN and KY

✅ Right-to-work context reshapes union dynamics

 

One theme of this newsletter is that the world’s physical infrastructure will have to massively change if we want to decarbonize the economy by 2050, which the United Nations has said is necessary to avoid the worst effects of the climate crisis. This won’t be as simple as passing a carbon tax or a clean-electricity mandate: Wires will have to be strung as the power grid expands; solar farms will have to be erected; industries will have to be remade. And although that kind of change can be orchestrated only by the government (hence the importance of the infrastructure bills in Congress), consumers and companies will ultimately do most of the work to make it happen.

Take electric cars, for instance. An electric car is an expensive, highly specialized piece of technology, but building one takes even more expensive, specialized technology—tools that tend to be custom-made, large and heavy, and spread across a factory or the world. And if you want those tools to produce a car in a few years, you have to start planning now, as the EV timeline accelerates ahead.

That’s exactly what Ford is doing: Last night, the automaker and SK Innovation, a South Korean battery manufacturer, announced that they were spending $11.4 billion to build two new multi-factory centers in Tennessee and Kentucky that are scheduled to begin production in 2025. The facilities, which will hire a combined 11,000 employees, will manufacture EV batteries and assemble electric F-series pickup trucks. While Ford already has several factories in Kentucky, this will be its first plant in Tennessee in six decades. The 3,600-acre Tennessee facility, located an hour outside Memphis, will be Ford’s largest campus ever—and its first new American vehicle-assembly plant in decades.

The politics of this announcement are worth dwelling on. Ford and SK Innovation were lured to Tennessee with $500 million in incentives; Kentucky gave them $300 million and more than 1,500 acres of free land. Ford’s workers in Detroit have historically been unionized—and, indeed, a source of power in the national labor movement. But with these new factories, Ford is edging into a more anti-union environment: Both Tennessee and Kentucky are right-to-work states, meaning that local laws prevent unions from requiring that only unionized employees work in a certain facility. In an interview, Jim Farley, Ford’s CEO, played coy about whether either factory will be unionized. (Last week, the company announced that it was investing $250 million, a comparative pittance, to expand EV production at its unionized Michigan facilities.)

That news might depress those on the left who hope that old-school unions, such as the United Auto Workers, can enjoy the benefits of electrification. But you can see the outline of a potential political bargain here. Climate-concerned Democrats get to see EV production expand in the U.S., creating opportunities for Canada to capitalize as supply chains shift, while climate-wary Republicans get to add jobs in their home states. (And unions get shafted.) Whether that bargain can successfully grow support for more federal climate policy, further accelerating the financial-political-technological feedback loop that I’ve dubbed “the green vortex,” remains to be seen.

Read: How the U.S. made progress on climate change without ever passing a bill

More important than the announcement is what it portends. In the past, environmentalists have complained that even when the law has required that automakers make climate-friendly cars, they haven’t treated them as a major product. It’s easy to tune out climate-friendly announcements as so much corporate greenwashing, amid recurring EV hype, but Ford’s two new factories represent real money: The automaker’s share of the investment exceeds its 2019 annual earnings. This investment is sufficiently large that Ford will treat EVs as a serious business line.

And if you look around globally, you’ll see that Ford isn’t alone. EVs are no longer the neglected stepchild of the global car industry. Here are some recent headlines:

Nine percent of new cars sold globally this year will be EVs or plug-in hybrids, according to S&P Global. That’s up from 3 percent two years ago, a staggering, iPhone-like rise.

GM, Ford, Volkswagen, Toyota, BMW, and the parent company of Fiat-Chrysler have all pledged that by 2030, at least 40 percent of their new cars worldwide will run on a non-gasoline source, and there is scope for Canada-U.S. collaboration as companies turn to electric cars. A few years ago, the standard forecast was that half of new cars sold in the U.S. would be electric by 2050. That timeline has moved up significantly not only in America, but around the world. (In fact, counter to its high-tech self-image, America is the laggard in this global transition. The two largest markets for EVs worldwide are China and the European Union.)

More remarkably (and importantly), automakers are spending like they actually believe that goal: The auto industry as a whole will pump more than $500 billion into EV investment by 2030, and new assembly deals are putting Canada in the race. Ford’s investment in these two plants represents less than a third of its planned total $30 billion investment in EV production by 2025, and that’s relatively small compared with its peers’. Volkswagen has announced more than $60 billion in investment. Honda has committed $46 billion.

Norway could phase out gas cars ahead of schedule. The country has one of the world’s most robust pro-EV policies, and it is still outperforming its own mandates. In the most recent accounting period, eight out of 10 cars had some sort of electric drivetrain. If the current trend holds, Norway would sell its last gas car in April of next year—and while I doubt the demise will be that steep, consumer preferences are running well ahead of its schedule to ban new gas-car sales by 2025.

 

Related News

View more

BC Hydro Introduces 'Vehicle-to-Grid' Pilot Initiative

BC Hydro Vehicle-to-Grid Pilot enables EVs to deliver V2G power, using bidirectional charging to provide grid services, clean energy resilience, and emergency power for microgrids, critical infrastructure, and storm response.

 

Key Points

BC Hydro's V2G pilot uses parked EVs as mobile batteries, supplying bidirectional power to the grid for resilience.

✅ Medium- and heavy-duty EV integration via 60 kW charger

✅ Supports critical infrastructure and storm response

✅ Cleaner, faster alternative to diesel generators

 

BC Hydro has unveiled an innovative pilot project designed to enable electric vehicles (EVs) to contribute electricity back to the power grid, with some owners able to sell electricity back to the grid through managed programs, effectively transforming these vehicles into mobile energy storage units that function as capacity on wheels for the electricity system.

The utility company recently announced the successful trial of the vehicle-to-grid program, allowing for the transfer of electricity from the batteries of medium- and heavy-duty EVs back to the electrical grid. This surplus electricity can be utilized in various ways, including supporting emergency response efforts by energizing critical infrastructure and to power buildings during natural disasters or major storms. It offers a cleaner, faster, and more flexible alternative to conventional methods like the use of diesel generators.

BC Hydro's President and CEO, Chris O'Riley, highlighted the significance of this initiative, stating, "The average car is parked 95 per cent of the time, and with the evolution of technology solutions like vehicle-to-grid, stationary vehicles hold the potential to become mobile batteries, powered by clean and affordable electricity."

The successful test was conducted using a Lion Electric school bus provided by Lynch Bus Lines, which was connected to a 60-kilowatt charger, illustrating BC Hydro's rollout of faster electric vehicle charging across the province. BC Hydro pointed out that the typical bus battery holds 66 kilowatts of electricity, sufficient to power 24 single-family homes with electric heating for two hours. Therefore, if 1,000 of these buses were converted to electric power, they could collectively supply electricity to 24,000 homes for two hours.

This groundbreaking project is a collaborative effort between BC Hydro, Powertech, and Coast to Coast Experience, with funding support from the provincial government amid study findings that B.C. may need to double its power output to meet transport electrification.

While this pilot marks the first of its kind in Canada, similar technology has already been successfully implemented in Europe and the United States, including California's efforts to leverage EVs for grid stability that offer promising potential for enhancing the energy landscape and sustainability in the region.

Separately, Nova Scotia Power plans to pilot electric vehicle to grid integration in Atlantic Canada, underscoring growing national interest in V2G approaches.

 

Related News

View more

Wind power grows despite Covid-19

Global Wind Power Growth will hit record installations, buoying renewable energy, offshore wind, onshore capacity, and economic recovery, as GWEC forecasts resilient post-Covid markets led by China and the US with strong investment and jobs.

 

Key Points

Global Wind Power Growth is the forecast rise in capacity driving renewable energy, jobs, and lower emissions.

✅ 71.3 GW installed in 2020; only 6% below pre-Covid forecast

✅ 348 GW added by 2024; nearly 1,000 GW total capacity

✅ Offshore wind resilient; 6.5 GW in 2020, China-led

 

Wind power will continue to show record growth, as renewables set to shatter records over the next five years despite the impacts of the Covid-19 crisis, and will make a crucial contribution to economic recovery... According to the latest market outlook by GWEC Market Intelligence, 71.3GW of wind power capacity is expected to be installed in 2020, which is only a 6% reduction from pre-Covid forecasts. This is a significant increase from original predictions that expected wind power installations to be reduced by up to 20 per cent due to the pandemic, demonstrating the resilience of the wind power industry across the globe.

From 2020 to 2024, the cumulative global wind energy market will grow at a compound annual rate of 8.5% and installing 348GW of new capacity, bringing total global wind power capacity to nearly 1,000GW by the end of 2024, which is an increase of 54% for total wind power installations compared to 2019. While some project completion dates have been pushed into 2021 due to the pandemic, next year is expected to be a record year for the wind industry with 78GW of new wind capacity forecasted to be installed in 2021. Over 50% of the onshore wind capacity added between 2020 to 2024 will be installed in China and the US, where U.S. solar and wind growth is supported by favourable government plans, led by installation rushes to meet subsidy deadlines.

The offshore wind sector has been largely shielded from the impacts of the Covid-19 crisis, GWEC Market Intelligence has indeed increased its forecast for offshore wind by 5 per cent to 6.5 GW of new installations in 2020, another record year for the industry, as offshore wind's $1 trillion outlook comes into focus, led by the installation rush in China. Up until 2024, over 48GW of new offshore wind capacity is expected to be installed, with another 157GW forecasted to be installed from 2025 to 2030 across key markets such as offshore wind in the UK and Asia.

“While the Covid-19 crisis has impacted every industry across the world, wind power has continued to grow and thrive. This is no surprise given the cost competitiveness of wind energy and the need to rapidly reproduce carbon emissions. Fossil fuel industries face market fluctuations and require bailouts to stay afloat, while wind turbines across the world have continued to spin and provide affordable, clean energy to citizens everywhere," says Ben Backwell, CEO of GWEC.

“Thanks to the localised nature of wind power supply chains and project construction, the sector has continued to generate billions in local investment and thousands of jobs to support economic recovery. However, in order to tap into the full potential of wind power to drive a green recovery, governments must ensure that energy markets and policies allow a continued ramp up in investment in wind and other renewables, and avoid unintended effects such as the Solar ITC extension impact on the US wind market, while disincentivising investment in expensive and declining fossil fuel industries," he says.

Biggest markets

China and the US will continue to be the two main markets driving growth over the next few years, with U.S. wind power surges underscoring the momentum. "We have increased or maintained our forecasts for onshore wind in regions such as Latin America, North America, Africa, and the Middle East over the next five years, with only minor decreases in Asia Pacific and Europe. However, these reductions are not necessarily a direct impact of Covid-19, but also a symptom of pre-existing regulatory issues, such as protracted permitting procedures, which are slowing down installations. In particular, offshore wind has demonstrated its resilience by exceeding our pre-pandemic forecasts for 2020, and will be an important source of growth in the decade ahead," Feng Zhao, strategy director at GWEC.

“We have seen a series of carbon neutrality commitments by major economies such as China, Japan and South Korea over the past few weeks. Since wind power is a key technology for decarbonisation, building on the evolution in 2016, these targets will increase the forecast for wind power over the next few decades. However, the right enabling regulatory and policy frameworks must be in place to accelerate renewable energy growth to meet these targets. China, the world’s largest wind power market and largest carbon emitter, has pledged to go carbon-neutral by 2060. To have a chance at achieving this target, we need to be installing 50GW of wind power per year in China from now until 2025, and then 60GW from 2026 onwards. It is crucial that governments firm up carbon neutrality targets with tangible actions to drive wind and other renewable energy growth at the levels needed to achieve these aims”, he says.

 

Related News

View more

Cost is the main reason stopping Canadians from buying an electric car: Survey

Canada EV Incentives drive adoption toward the 2035 zero-emission target, with rebates, federal and provincial programs boosting affordability amid concerns over charging infrastructure, range anxiety, and battery life, according to a BNN Bloomberg-Leger survey.

 

Key Points

Canada EV incentives are rebates and tax credits reducing EV costs to accelerate zero-emission vehicle adoption nationwide.

✅ Federal and provincial rebates reduce EV purchase prices

✅ Incentives offset range, battery, and charging concerns

✅ Larger incentives correlate with higher adoption rates

 

If the federal government wants to meet its ambitious EV goals of having all cars and passenger trucks sold in Canada be zero emissions by 2035, it’s going to have to do something about the cost of these vehicles.

A new survey from BNN Bloomberg and RATESDOTCA has found that cost is the number one reason stopping Canadians from buying an electric car.

The survey, which was conducted by Leger Marketing earlier this month, asked 1,511 Canadians if they were planning to purchase a new electric vehicle in the near future. It found that just over one in four, or 26 per cent of Canadians, are planning to do so, with Atlantic Canada lagging other regions. On the other hand, 19 per cent of Canadians are planning to buy a gas/diesel/hybrid card for their next purchase. 

Those who aren’t planning on buying an EV were asked what the biggest reason for their decision was. By far, it was the price of these vehicles: 31 per cent of this group cited cost as the main reason for not electrifying their ride. Another 59 per cent of respondents cited it as a concern, but not the main one. Other reasons for not wanting to buy an electric vehicle included lack of infrastructure (18 per cent), range concerns (16 per cent), and battery life and replacement (13 per cent), and some report EV shortages and wait times too.

What’s interesting is that it’s clear that government incentives for EVs are the most powerful tool right now to drive adoption, though some argue subsidies are a bad idea for Canada. When asked if further government incentives would convince them to buy an electric vehicle, 78 per cent of those surveyed said yes.

That’s right. If more governments increased the incentives offered for buying electric vehicles, reaching the goal of only selling zero emission vehicles in Canada by 2035 would no longer be a pipe dream, despite 2035 mandate skepticism from some.

At the moment, only Quebec and B.C. offer government incentives to buy an electric vehicle, even as B.C. charging bottlenecks are predicted. The federal government offers up to a $5,000 incentive, with restrictions including a limit on the total price of the vehicle, and has signaled EV sales regulations are forthcoming. Ontario previously offered a rebate of up to $14,000, however, the popular program was cancelled when the Progress Conservative government was elected in 2018.

The cancellation led to a plunge in new electric vehicle sales in Ontario, falling more than 55 per cent in the first six months of 2019 when compared to the same time period in the previous year, according to Electric Mobility Canada.

It’s no surprise that the larger the incentive, the more Canadians will be swayed to buy an electric car. Perhaps what’s surprising is that the incentive doesn’t even have to be as large as the previous Ontario rebate was. The survey found that seven per cent of Canadians would buy an electric vehicle if they got an incentive ranging anywhere from $5,001-$7,250. A full 35 per cent said a $12,500 or higher incentive would convince them.

The majority of Canadians surveyed said they use their vehicles for leisure or commuting to work. Leisure uses include running errands and seeing friends and family, of which 43 per cent of respondents said was the primary way they used their vehicle. Meanwhile, 36 per cent said they primarily used their car to commute to work.

The survey also found that incentives were more effective at convincing younger people to buy an electric vehicle. Eighty-three per cent of those under the age of 55 could be swayed by new incentives. But for those over 55, only 66 per cent said they would change their mind. 

 

Related News

View more

Aboitiz receives another award for financing for its Tiwi and Makban geothermal plant

AP Renewables Inc. Climate Bond Award recognizes Asia-Pacific project finance, with ADB and CNBC citing the first Climate Bond, geothermal refinancing in local currency, and CGIF-backed credit enhancement for emerging markets.

 

Key Points

An award for APRI's certified Climate Bond, highlighting ADB-backed financing and geothermal assets across Asia-Pacific.

✅ First Climate Bond for a single project in an emerging market

✅ ADB credit enhancement and CGIF risk participation

✅ Refinanced Tiwi and MakBan geothermal assets via local currency

 

The Asian Development Bank (ADB) and CNBC report having given the Best Project For Corporate Finance Transaction award to a the renewable energy arm of Aboitiz Power, AP Renewables Inc. (APRI), for its innovative and impactful solutions to key development challenges.

In March 2016, APRI issued a local currency bond equivalent to $225 million to refinance sponsor equity in Tiwi and MakBan. ADB said it provided a partial credit enhancement for the bond as well as a direct loan of $37.7 million, a model also seen in EIB long-term financing for Indian solar projects.

The bond issuance was the first Climate Bond—certified by the Climate Bond Initiative—in Asia and the Pacific and the first ever Climate Bond for a single project in an emerging market.

“The project reflects APRI’s commitment to renewable energy, as outlined in the IRENA report on decarbonising energy in the region,” ADB said in a statement posted on its website.

The project also received the 2016 Bond Deal of the Year by the Project Finance International magazine of Thomson Reuters, Asia Pacific Bond Deal of the Year from IJGlobal and the Best Renewable Deal of the Year by Alpha Southeast Asia, reflecting momentum alongside large-scale energy projects in New York reported elsewhere.

ADB’s credit enhancement was risk-participated by the Credit Guarantee Investment Facility (CGIF), a multilateral facility established by Asean + 3 governments and ADB to develop bond markets in the region.

APRI is a subsidiary of AboitizPower, one of Philippines’ biggest geothermal energy producers, and the IRENA study on the Philippines' electricity crisis provides broader context as it owns and operates the Tiwi and Makiling Banahaw (MakBan) geothermal facilities, the seventh and fourth largest geothermal power stations in the world, respectively.

“The awards exemplify the ever-growing importance of the private sector in implementing development work in the region,” ADB’s Private Sector Operations Department Director General Michael Barrow said.

“Our partners in the private sector provide unique solutions to development challenges — from financing to technical expertise — and today’s winners are perfect examples of that,” he added.

The awarding ceremony took place in Yokohama, Japan during an event co-hosted by CNBC and ADB at the 50th Annual Meeting of ADB’s Board of Governors.

The awards focus on highly developmental transactions and underline the important work ADB clients undertake in developing countries in Asia and the Pacific.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified