Why Electric Vehicles Are "Greener" Than Ever In All 50 States


ev states

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

UCS EV emissions study shows electric vehicles produce lower life-cycle emissions than gasoline cars across all states, factoring tailpipe, grid mix, power plant sources, and renewable energy, delivering mpg-equivalent advantages nationwide.

 

Key Points

UCS study comparing EV and gas life-cycle emissions, finding EVs cleaner than new gas cars in every U.S. region.

✅ Average EV equals 93 mpg gas car on emissions.

✅ Cleaner than 50 mpg gas cars in 97% of U.S.

✅ Regional grid mix included: tailpipe to power plant.

 

One of the cautions cited by electric vehicle (EV) naysayers is that they merely shift emissions from the tailpipe to the local grid’s power source, implicating state power grids as a whole, and some charging efficiency claims get the math wrong, too. And while there is a kernel of truth to this notion—they’re indeed more benign to the environment in states where renewable energy resources are prevalent—the average EV is cleaner to run than the average new gasoline vehicle in all 50 states. 

That’s according to a just-released study conducted the Union of Concerned Scientists (UCS), which determined that global warming emissions related to EVs has fallen by 15 percent since 2018. For 97 percent of the U.S., driving an electric car is equivalent or better for the planet than a gasoline-powered model that gets 50 mpg. 

In fact, the organization says the average EV currently on the market is now on a par, environmentally, with an internal combustion vehicle that’s rated at 93 mpg. The most efficient gas-driven model sold in the U.S. gets 59 mpg, and EV sales still trail gas cars despite such comparisons, with the average new petrol-powered car at 31 mpg.

For a gasoline car, the UCS considers a vehicle’s tailpipe emissions, as well as the effects of pumping crude oil from the ground, transporting it to a refinery, creating gasoline, and transporting it to filling stations. For electric vehicles, the UCS’ environmental estimates include both emissions from the power plants themselves, along with those created by the production of coal, natural gas or other fossil fuels used to generate electricity, and they are often mischaracterized by claims about battery manufacturing emissions that don’t hold up. 

Of course the degree to which an EV ultimately affects the atmosphere still varies from one part of the country to another, depending on the local power source. In some parts of the country, driving the average new gasoline car will produce four to eight times the emissions of the average EV, a fact worth noting for those wondering if it’s the time to buy an electric car today. The UCS says the average EV driven in upstate New York produces total emissions that would be equivalent to a gasoline car that gets an impossible 255-mpg. In even the dirtiest areas for generating electricity, EVs are responsible for as much emissions as a conventionally powered car that gets over 40 mpg.

 

Related News

Related News

Reversing the charge - Battery power from evs to the grid could open a fast lane

Vehicle-to-Grid V2G unlocks EV charging flexibility and grid services, integrating renewable energy, demand response, and peak shaving to displace stationary storage and firm generation while lowering system costs and enhancing reliability.

 

Key Points

Vehicle-to-Grid V2G lets EV batteries discharge to grid, balancing renewables and cutting storage and firm generation.

✅ Displaces costly stationary storage and firm generation

✅ Enables demand response and peak shaving at scale

✅ Supports renewable integration and grid reliability

 

Owners of electric vehicles (EVs) are accustomed to plugging into charging stations at home and at work and filling up their batteries with electricity from the power grid. But someday soon, when these drivers plug in, their cars will also have the capacity to reverse the flow and send electrons back to the grid. As the number of EVs climbs, the fleet’s batteries could serve as a cost-effective, large-scale energy source, with potentially dramatic impacts on the energy transition, according to a new paper published by an MIT team in the journal Energy Advances.

“At scale, vehicle-to-grid (V2G) can boost renewable energy growth, displacing the need for stationary energy storage and decreasing reliance on firm [always-on] generators, such as natural gas, that are traditionally used to balance wind and solar intermittency,” says Jim Owens, lead author and a doctoral student in the MIT Department of Chemical Engineering. Additional authors include Emre Gençer, a principal research scientist at the MIT Energy Initiative (MITEI), and Ian Miller, a research specialist for MITEI at the time of the study.

The group’s work is the first comprehensive, systems-based analysis of future power systems, drawing on a novel mix of computational models integrating such factors as carbon emission goals, variable renewable energy (VRE) generation, and costs of building energy storage, production, and transmission infrastructure.

“We explored not just how EVs could provide service back to the grid — thinking of these vehicles almost like energy storage on wheels providing flexibility — but also the value of V2G applications to the entire energy system and if EVs could reduce the cost of decarbonizing the power system,” says Gençer. “The results were surprising; I personally didn’t believe we’d have so much potential here.”

Displacing new infrastructure

As the United States and other nations pursue stringent goals to limit carbon emissions, electrification of transportation has taken off, with the rate of EV adoption rapidly accelerating. (Some projections show EVs supplanting internal combustion vehicles over the next 30 years.) With the rise of emission-free driving, though, there will be increased demand for energy on already stressed state power grids nationwide. “The challenge is ensuring both that there’s enough electricity to charge the vehicles and that this electricity is coming from renewable sources,” says Gençer.

But solar and wind energy is intermittent. Without adequate backup for these sources, such as stationary energy storage facilities using lithium-ion batteries, for instance, or large-scale, natural gas- or hydrogen-fueled power plants, achieving clean energy goals will prove elusive. More vexing, costs for building the necessary new energy infrastructure runs to the hundreds of billions.

This is precisely where V2G can play a critical, and welcome, role, the researchers reported. In their case study of a theoretical New England power system meeting strict carbon constraints, for instance, the team found that participation from just 13.9 percent of the region’s 8 million light-duty (passenger) EVs displaced 14.7 gigawatts of stationary energy storage. This added up to $700 million in savings — the anticipated costs of building new storage capacity.

Their paper also described the role EV batteries could play at times of peak demand, such as hot summer days. “With proper grid coordination practices in place, V2G technology has the ability to inject electricity back into the system to cover these episodes, so we don’t need to install or invest in additional natural gas turbines,” says Owens. “The way that EVs and V2G can influence the future of our power systems is one of the most exciting and novel aspects of our study.”

Modeling power

To investigate the impacts of V2G on their hypothetical New England power system, the researchers integrated their EV travel and V2G service models with two of MITEI’s existing modeling tools: the Sustainable Energy System Analysis Modeling Environment (SESAME) to project vehicle fleet and electricity demand growth, and GenX, which models the investment and operation costs of electricity generation, storage, and transmission systems. They incorporated such inputs as different EV participation rates, costs of generation for conventional and renewable power suppliers, charging infrastructure upgrades, travel demand for vehicles, changes in electricity demand, and EV battery costs.

Their analysis found benefits from V2G applications in power systems (in terms of displacing energy storage and firm generation) at all levels of carbon emission restrictions, including one with no emissions caps at all. However, their models suggest that V2G delivers the greatest value to the power system when carbon constraints are most aggressive — at 10 grams of carbon dioxide per kilowatt hour load. Total system savings from V2G ranged from $183 million to $1,326 million, reflecting EV participation rates between 5 percent and 80 percent.

“Our study has begun to uncover the inherent value V2G has for a future power system, demonstrating that there is a lot of money we can save that would otherwise be spent on storage and firm generation,” says Owens.


Harnessing V2G

For scientists seeking ways to decarbonize the economy, the vision of millions of EVs parked in garages or in office spaces and plugged into the grid via vehicle-to-building charging for 90 percent of their operating lives proves an irresistible provocation. “There is all this storage sitting right there, a huge available capacity that will only grow, and it is wasted unless we take full advantage of it,” says Gençer.

This is not a distant prospect. Startup companies are currently testing software that would allow two-way communication between EVs and grid operators or other entities. With the right algorithms, EVs would charge from and dispatch energy to the grid according to profiles tailored to each car owner’s needs, never depleting the battery and endangering a commute.

“We don’t assume all vehicles will be available to send energy back to the grid at the same time, at 6 p.m. for instance, when most commuters return home in the early evening,” says Gençer. He believes that the vastly varied schedules of EV drivers will make enough battery power available to cover spikes in electricity use over an average 24-hour period. And there are other potential sources of battery power down the road, such as electric school buses that are employed only for short stints during the day and then sit idle, with the potential to power buildings during peak hours.

The MIT team acknowledges the challenges of V2G consumer buy-in. While EV owners relish a clean, green drive, they may not be as enthusiastic handing over access to their car’s battery to a utility or an aggregator working with power system operators. Policies and incentives would help.

“Since you’re providing a service to the grid, much as solar panel users do, you could get paid to sell electricity back for your participation, and paid at a premium when electricity prices are very high,” says Gençer.

“People may not be willing to participate ’round the clock, but as states like California explore EVs for grid stability programs and incentives, if we have blackout scenarios like in Texas last year, or hot-day congestion on transmission lines, maybe we can turn on these vehicles for 24 to 48 hours, sending energy back to the system,” adds Owens. “If there’s a power outage and people wave a bunch of money at you, you might be willing to talk.”

“Basically, I think this comes back to all of us being in this together, right?” says Gençer. “As you contribute to society by giving this service to the grid, you will get the full benefit of reducing system costs, and also help to decarbonize the system faster and to a greater extent.”


Actionable insights

Owens, who is building his dissertation on V2G research, is now investigating the potential impact of heavy-duty electric vehicles in decarbonizing the power system. “The last-mile delivery trucks of companies like Amazon and FedEx are likely to be the earliest adopters of EVs,” Owen says. “They are appealing because they have regularly scheduled routes during the day and go back to the depot at night, which makes them very useful for providing electricity and balancing services in the power system.”

Owens is committed to “providing insights that are actionable by system planners, operators, and to a certain extent, investors,” he says. His work might come into play in determining what kind of charging infrastructure should be built, and where.

“Our analysis is really timely because the EV market has not yet been developed,” says Gençer. “This means we can share our insights with vehicle manufacturers and system operators — potentially influencing them to invest in V2G technologies, avoiding the costs of building utility-scale storage, and enabling the transition to a cleaner future. It’s a huge win, within our grasp.”

 

Related News

View more

Will Electric Vehicles Crash The Grid?

EV Grid Readiness means utilities preparing the power grid for electric vehicles with smart charging, demand response, V2G, managed load, and renewable integration to maintain reliability, prevent outages, and optimize infrastructure investment.

 

Key Points

EV Grid Readiness is utilities' ability to support mass EV charging with smart load control, V2G, and grid upgrades.

✅ Managed charging shifts load off-peak to reduce stress and costs

✅ V2G enables EVs to supply power and balance renewables

✅ Utilities plan upgrades, rate design, and demand response

 

There's little doubt that the automobile industry is beginning the greatest transformation it has ever seen as the American EV boom gathers pace. The internal combustion engine, the heart of the automobile for over 100 years, is being phased out in favor of battery electric powered vehicles. 

Industry experts know that it's no longer a question of will electric vehicles take over, the only question remaining is how quickly will it happen. If electric vehicle adoption accelerates faster than many have predicted, can the power grid, and especially state power grids across the country, handle the additional load needed to "fuel" tens of millions of EVs?

There's been a lot of debate on this subject, with, not surprisingly, those opposed to EVs predicting doomsday scenarios including power outages, increased electricity rates, and frequent calls from utilities asking customers to stop charging their cars.

There have also been articles written that indicate the grid will be able to handle the increased power demand needed to fuel a fully electric transportation fleet. Some even explain how electric vehicles will actually help grid stability overall, not cause problems.

So we decided to go directly to the source to get answers. We reached out to two industry professionals that aren't just armchair experts. These are two of the many people in the country tasked with the assignment of making sure we don't have problems as more and more electric vehicles are added to the national fleet. 

"Let's be clear. No one is forcing anyone to stop charging their EV." - Eric Cahill, speaking about the recent request by a California utility to restrict unnecessary EV charging during peak demand hours when possible

Both Eric Cahill, who is the Strategic Business Planner for the Sacramento Municipal Utility District in California, and John Markowitz, the Senior Director and Head of eMobility for the New York Power Authority agreed to recorded interviews so we could ask them if the grid will be ready for millions of EVs.  

Both Cahill and Markowitz explained that, while there will be challenges, they are confident that their respective districts will be ready for the additional power demand that electric vehicles will require. It's also important to note that the states that they work in, California and New York, with California expected to need a much bigger grid to support the transition, have both banned the sale of combustion vehicles past 2035. 

That's important because those states have the most aggressive timelines to transition to an all-electric fleet, and internationally, whether the UK grid can cope is a parallel question, so if they can provide enough power to handle the increased demand, other states should be able to also. 

We spoke to both Cahill and Markowitz for about thirty minutes each, so the video is about an hour long. We've added chapters for those that want to skip around and watch select topics. 

We asked both guests to explain what they believe some of the biggest challenges are, including how energy storage and mobile chargers could help, if 2035 is too aggressive of a timeline to ban combustion vehicles, and a number of other EV charging and grid-related questions. 

Neither of our guests seemed to indicate that they were worried about the grid crashing, or that 2035 was too soon to ban combustion vehicles. In fact, they both indicated that, since they know this is coming, they have already begun the planning process, with proper management in place to ensure the lights stay on and there are no major electricity disruptions caused by people charging their cars. 

So check out the video and let us know your thoughts. This has been a hot topic of discussion for many years now. Now that we've heard from the people in charge of providing us the power to charge our EVs, can we finally put the concerns to rest now? As always, leave your comments below; we want to hear your opinions as well.

 

Related News

View more

Ontario Making it Easier to Build Electric Vehicle Charging Stations

Ontario EV Charger Streamlining accelerates public charging connections with OEB-led standardized forms, firm timelines, and utility coordination, leveraging Ontario’s clean electricity grid to expand reliable infrastructure across urban, rural, and northern communities.

 

Key Points

An OEB-led, provincewide procedure that standardizes EV charger connections and accelerates public charging.

✅ Standardized forms, data, and responsibilities across 58 utilities

✅ Firm timelines for studies, approvals, and grid connection upgrades

✅ Supports rural, northern, highway, and community charging expansion

 

The Ontario government is making it easier to build and connect new public electric vehicle (EV) chargers to the province’s world-class clean electricity grid. Starting May 27, 2024, all local utilities will follow a streamlined process for EV charging connections that will make it easier to set up new charging stations and, as network progress to date shows, support the adoption of electric vehicles in Ontario.

“As the number of EV owners in Ontario continues to grow, our government is making it easier to put shovels in the ground to build the critical infrastructure needed for drivers to charge their vehicles where and when they need to,” said Todd Smith, Minister of Energy. “This is just another step we are taking to reduce red tape, increase EV adoption, and use our clean electricity supply to support the electrification of Ontario’s transportation sector.”

Today, each of Ontario’s 58 local electricity utilities have different procedures for connecting new public EV charging stations, with different timelines, information requirements and responsibilities for customers.

In response to Minister Smith’s Letter of Direction, which called on the Ontario Energy Board (OEB) to take steps to facilitate the efficient integration of EV’s into the provincial electricity system, including vehicle-to-building charging applications, the OEB issued provincewide, streamlined procedures that all local utilities must follow for installing and connecting new EV charging infrastructure. This new procedure includes the implementation of standardized forms, timelines, and information requirements which will make it easier for EV charging providers to deploy chargers in all regions of the province.

“Our government is paving the way to an electric future by building the EV charging infrastructure drivers need, where they need it,” said Prabmeet Sarkaria, Minister of Transportation. “By increasing the accessibility of public EV charging stations across the province, including for rural and northern communities, we are providing more sustainable and convenient travel options for drivers.”

“Having attracted over $28 billion in automotive investments in the last three years, our province is a leading jurisdiction in the global production and development of EVs,” said Vic Fedeli, Minister of Economic Development, Job Creation and Trade. “By making it easier to build public charging infrastructure, our government is supporting Ontario’s growing end-to-end EV supply chain and ensuring EV drivers can confidently and conveniently power their journeys.”

This initiative is part of the government’s larger plan to support the adoption of electric vehicles and make EV charging infrastructure more accessible, which includes:

  • The EV ChargeON program – a $91 million investment to support the installation of public EV chargers, including emerging V1G chargers to support grid-friendly deployment, outside of Ontario’s large urban centres, including at community hubs, Ontario’s highway rest areas, carpool parking lots, and Ontario Parks.
  • The new Ultra-Low Overnight price plan which allows customers who use more electricity at night, including those charging their EV, to save up to $90 per year by shifting demand to the ultra-low overnight rate period when provincewide electricity demand is lower and to participate in programs that let them sell electricity back to the grid when appropriate.
  • Making it more convenient for electric vehicle (EV) owners to travel the province with EV fast chargers now installed at all 20 renovated ONroute stations along the province’s busiest highways, the 400 and 401.

The initiative also builds on the government’s Driving Prosperity: The Future of Ontario’s Automotive Sector plan which aims to create a domestic EV battery ecosystem in the province, expand energy storage capacity, and position Ontario as a North American automotive innovation hub by working to support the continued transition to electric, low carbon, connected and autonomous vehicles.

 

Related News

View more

US Moving Towards 30% Electricity From Wind & Solar

US Wind and Solar Outlook 2026 projects cheap renewables displacing coal and gas, with utility-scale additions, rooftop solar growth, improved grid reliability, and EV V2G integration accelerating decarbonization across the electricity market.

 

Key Points

An analysis forecasting wind and solar growth, displacing coal and gas as utility-scale and rooftop solar expand.

✅ Utility-scale solar installs avg 21 GW/yr through 2026.

✅ 37.7 GW wind in pipeline; 127.8 GW already online.

✅ Small-scale solar could near 100 TWh in 2026.

 

A recent report from the Institute for Energy Economics and Financial Analysis (IEEFA) predicts that cheap renewables in the form of wind and solar will push coal and gas out of the energy market space. Already at 9% of US generation, the report predicts that wind and solar will supply almost 30% of US electricity demand by 2026, consistent with renewables nearing one-fourth of U.S. generation projections for the near term.

“The Solar Energy Industries Association now expects utility-scale installations to average more than 21,000MW a year through 2026, following a year when U.S. solar generation rose 25% and with a peak of 25,000MW in 2023,” IEEFA writes. “Continued growth is also expected in U.S. wind generation, mirroring global trends where China's solar PV expansion outpaced all other fuels in 2016, with 37.7GW of new capacity already under construction or in advanced development, which would be added to 127.8GW in existing installed capacity.”

Meanwhile, with wind and solar growth booming, fossil fuels are declining, as renewables surpassed coal in 2022 nationwide. “Coal and natural gas are now locked into an essentially zero-sum game where increases in one fuel’s generation comes at the expense of the other. Together, they are not gaining market share, rather they are trading it back and forth, and the rapid growth in renewable generation will cut even deeper into the market share of both.”

And what of rooftop solar? Some states in Australia now have periods where the entire state grid is powered just by solar on the roofs of private citizens. As this revolution progresses in the USA, especially if a tenfold national solar push moves forward, what impact will it make on fossil fuel generators — which are expensive to build, expensive to maintain, expensive to fuel, and rely on an expensive distribution network.

“EIA estimates that this ‘small-scale solar’ produced 41.7 million MWh of power in 2020, when solar accounted for about 3% of U.S. electricity, a 19 percent increase from 2019. This growth will likely continue in the years ahead as costs continue to fall and concerns about grid reliability rise. Assuming a conservative 15 percent annual increase in small-scale solar going forward would push the sector’s generation to almost 100 million MWh in 2026.”

The Joker in the story might be the impact from electric vehicle adoption. Sales are set to surge and there’s more and more interest in V2G technology, even as wind and solar could provide 50% by 2050 in broader forecasts.

 

Related News

View more

Nova Scotia Power increases use of biomass for generating electricity

Nova Scotia Biomass Electricity Policy increases dispatchable renewable generation from Port Hawkesbury and Brooklyn Energy, raising MWh output while critics cite clearcutting, carbon emissions, high costs to ratepayers, and delays replacing Muskrat Falls hydro.

 

Key Points

Policy directing utilities to maximize biomass power as dispatchable renewable supply during hydro delays.

✅ Port Hawkesbury biomass output up 35% year over year

✅ Brooklyn Energy used as dispatchable renewable supply

✅ Critics cite clearcutting, emissions, high ratepayer costs

 

A boiler owned by Nova Scotia Power on the grounds of the Port Hawkesbury paper plant, whose discount power rate request has drawn attention, is burning 35% more woody biomass this year than last. 

The year-to-date figures show 126,810 megawatt hours (MWh) of electricity was generated over the first nine months of 2021 compared to 93,934 MWh for the same period in 2020 and 65,891 MWh in 2019. 

The information is contained in monthly fuel cost reports Nova Scotia Power must make to the Utility and Review Board, which regulates how much consumers ultimately pay for electricity and has received a call for major grid changes in Nova Scotia.

Burning biomass  — which includes everything from low-grade pulpwood to bark, shavings, and wood chip waste from sawmills — for the purpose of generating electricity is only about 22% efficient, even as some coal stations have switched to biomass abroad. Nova Scotia Power’s boiler at Port Hawkesbury supplies about 3% of the total electricity used in the province. 

Citizens concerned about climate change have for years opposed the government classifying biomass as “renewable energy” and have echoed calls to reduce biomass use for electricity, because clearcutting, which releases carbon from the ground, remains the dominant form of harvesting on Crown and private land. That’s despite ongoing work to begin implementing 2018 recommendations from Professor Bill Lahey to move toward a more ecological approach. 

In May 2020, after it became obvious renewable hydroelectricity from Muskrat Falls was going to be delayed yet again, the McNeil government passed an Order-in-Council extending until December 2022 the deadline to generate 40% of electricity from renewable sources as it moved to increase wind and solar projects across Nova Scotia. 

To help with the shortfall, Nova Scotia Power was told to “maximize” its use of biomass at both the facility it owns in Port Hawkesbury and another one in Brooklyn owned by its parent company, Emera.

In a letter to Nova Scotia Power dated May 15, then-Energy Minister Derek Mombourquette, amid debate over independent energy planning, added: “Nova Scotia Power shall also maximize the use of dispatchable renewable electricity from its own facilities, as well as those of renewable electricity power producers in Nova Scotia (excluding COMFIT generation sources).” 

By definition, “dispatchable” excludes wind and hydro sources, which are not available 24/7, though a new attempt to harness the Bay of Fundy's tides is underway. Nova Scotia Power claims the only “dispatchable renewable electricity power producer” in the province is Brooklyn Energy, the 35 MW biomass plant near Liverpool. 

The government capped at $7 million a year how much electricity Nova Scotia Power could buy from its affiliate company. Critics of the deal — such as auditors hired by the regulator and the province’s consumer advocate — say electricity generated by Brooklyn is the most expensive power and question why the province would burden ratepayers with its purchase.

The answer became apparent in September 2020 when then-Intergovernmental Affairs Minister Kelliann Dean appeared before the legislature’s standing committee on Natural Resources and Economic Development to praise the Order-in-Council for helping rescue the forestry industry four months after the closure of the Northern Pulp mill. 

“The change to Renewable Energy Standards (May,2020) is enabling Nova Scotia Power to generate more electricity from wood chips and sawmill residuals by operating two biomass plants at capacity until electricity from Muskrat Falls comes onstream,” she said. “We are using all the policy levers at our disposal to support the sector.”

Nova Scotia Power is not required to report to the UARB how much electricity is being produced or how much biomass is being burned at Brooklyn Energy. The company pleads “commercial confidentiality” when asked by The Halifax Examiner. 

Nova Scotia Power does report how much it spends each month to buy power from independent producers — a small group which includes Brooklyn but excludes all wind farms. That dollar amount has also increased over the past year — from $15.9 million for 10 months ending October 2020 compared to $23.3 million for 10 months ending October 2021. Unfortunately, the lack of transparency makes it impossible to know exactly how much of that increase is attributable to purchasing more biomass.

Radio silence
The current Minister of Natural Resources and Renewable Energy ,Tory Rushton, has the authority to reduce the amount of biomass being burned to generate electricity and by extension, the rate of clearcutting.

With a stroke of the pen, the PC government of Tim Houston could issue another Order-in-Council capping the amount of metric tonnes that could be used in the boilers, or, direct Nova Scotia Power to use biomass only when it is the most economical fuel choice. 

But so far, Rushton has not responded to the Halifax Examiner’s question about whether he intends to make any change to stop “maximizing” the use of biomass to produce electricity.

 The Examiner isn’t the only one pushing the Minister for answers to difficult issues. At noon today, Citizens opposed to a controversial clearcut on Crown land near Rocky Point Lake in Digby County will stage a demonstration outside the Department of Natural Resources and Renewable Energy on Hollis Street. The protest led by members of Extinction Rebellion and the Healthy Forest Coalition is to pressure the government to take action to protect the habitat of the mainland moose, an endangered species that ranges overs the Crown land currently being cut by the Westfor consortium. 

 

Related News

View more

Spain Breaks Gas Link with Wind and Solar

Spain has broken its reliance on fossil gas as soaring wind and solar energy drive Europe’s lowest wholesale electricity prices, reducing emissions, stabilizing the grid, and advancing renewable power, energy independence, and clean transition goals across the EU.

 

How Has Spain Broken the Gas Link with Wind and Solar??

Spain has broken the link between gas and power prices by rapidly expanding wind and solar generation, which now supplies nearly half its electricity, cutting fossil fuel influence by 75% since 2019 and reducing power costs 32% below the EU average.

✅ Wind and solar cut fossil influence by 75% since 2019

✅ Power prices 32% below EU average in 2025

✅ Renewables meet nearly half of national electricity demand

 

Spain has emerged as one of Europe’s most affordable electricity markets, largely due to its rapid expansion of wind and solar power. By decoupling its wholesale electricity prices from volatile fossil gas and coal, Spain has achieved a 32 percent lower average wholesale price than the EU average in the first half of 2025. This remarkable shift marks a dramatic turnaround from 2019, when Spain had some of the highest power prices in Europe.

According to new data, the influence of fossil fuels on Spain’s electricity prices has fallen by 75 percent since 2019, mirroring how renewables have surpassed fossil fuels in Europe over the same period, dropping from 75 percent of hours tied to gas costs to just 19 percent in early 2025. “Spain has broken the ruinous link between power prices and volatile fossil fuels, something its European neighbours are desperate to do,” said Dr. Chris Rosslowe, Senior Energy Analyst at Ember.

The change is driven by a surge in renewable generation. Between 2019 and mid-2025, Spain added more than 40 gigawatts of new solar and wind capacity—second only to Germany, whose power market is twice the size. Wind and solar now meet nearly half (46 percent) of Spain’s electricity demand, compared with 27 percent six years ago. As a result, fossil generation has fallen to 20 percent of total demand, well below the levels seen in other major economies such as Germany (41 percent) and Italy (43 percent).

This renewable growth has also cut Spain’s dependence on imported fuels. In the past five years, new solar and wind plants have avoided 26 billion cubic metres of gas imports, saving €13.5 billion—five times the amount the country invested in transmission infrastructure over the same period. The Central Bank of Spain estimated that wholesale electricity prices would have been 40 percent higher in 2024 if renewables had not displaced fossil generation, and neighboring France has seen negative prices during periods of renewable surplus.

August 2025 marked a historic milestone: Spain recorded a full month without coal-fired generation for the first time. A decade earlier, coal accounted for a quarter of the nation’s electricity supply. Gas use has also declined steadily, from 26% of demand in 2019 to 19% this year.

However, the system still faces challenges. Following the April 28th Iberian blackout, Spain has relied more heavily on gas-fired plants to stabilize the grid. These services—such as voltage control and balancing—have proven to be expensive, with costs doubling since the blackout and accounting for 57 percent of the average electricity price in May 2025, up from 14 percent the previous year. Curtailment of renewables has also tripled, reaching 7.2 percent of generation between May and July.

Despite being Europe’s fourth-largest electricity market, Spain ranks only 13th in battery storage capacity, underscoring the need for further investment in clean flexibility solutions, such as grid-scale batteries to provide flexibility and stronger interconnections. Post-blackout reforms aim to address this weakness and ensure the gains from renewable integration are not lost.

“Spain risks sliding back into costly gas reliance amid post-blackout fears,” warned Rosslowe. “Boosting grids and batteries will help Spain break free from fossil dependency for good.”

With record-low electricity prices and one of the fastest decoupling rates in Europe, Spain’s experience demonstrates how large-scale wind and solar adoption can reshape energy economics—and offers a roadmap for other nations seeking to escape the volatility of fossil fuels.

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified