Why Electric Vehicles Are "Greener" Than Ever In All 50 States


ev states

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

UCS EV emissions study shows electric vehicles produce lower life-cycle emissions than gasoline cars across all states, factoring tailpipe, grid mix, power plant sources, and renewable energy, delivering mpg-equivalent advantages nationwide.

 

Key Points

UCS study comparing EV and gas life-cycle emissions, finding EVs cleaner than new gas cars in every U.S. region.

✅ Average EV equals 93 mpg gas car on emissions.

✅ Cleaner than 50 mpg gas cars in 97% of U.S.

✅ Regional grid mix included: tailpipe to power plant.

 

One of the cautions cited by electric vehicle (EV) naysayers is that they merely shift emissions from the tailpipe to the local grid’s power source, implicating state power grids as a whole, and some charging efficiency claims get the math wrong, too. And while there is a kernel of truth to this notion—they’re indeed more benign to the environment in states where renewable energy resources are prevalent—the average EV is cleaner to run than the average new gasoline vehicle in all 50 states. 

That’s according to a just-released study conducted the Union of Concerned Scientists (UCS), which determined that global warming emissions related to EVs has fallen by 15 percent since 2018. For 97 percent of the U.S., driving an electric car is equivalent or better for the planet than a gasoline-powered model that gets 50 mpg. 

In fact, the organization says the average EV currently on the market is now on a par, environmentally, with an internal combustion vehicle that’s rated at 93 mpg. The most efficient gas-driven model sold in the U.S. gets 59 mpg, and EV sales still trail gas cars despite such comparisons, with the average new petrol-powered car at 31 mpg.

For a gasoline car, the UCS considers a vehicle’s tailpipe emissions, as well as the effects of pumping crude oil from the ground, transporting it to a refinery, creating gasoline, and transporting it to filling stations. For electric vehicles, the UCS’ environmental estimates include both emissions from the power plants themselves, along with those created by the production of coal, natural gas or other fossil fuels used to generate electricity, and they are often mischaracterized by claims about battery manufacturing emissions that don’t hold up. 

Of course the degree to which an EV ultimately affects the atmosphere still varies from one part of the country to another, depending on the local power source. In some parts of the country, driving the average new gasoline car will produce four to eight times the emissions of the average EV, a fact worth noting for those wondering if it’s the time to buy an electric car today. The UCS says the average EV driven in upstate New York produces total emissions that would be equivalent to a gasoline car that gets an impossible 255-mpg. In even the dirtiest areas for generating electricity, EVs are responsible for as much emissions as a conventionally powered car that gets over 40 mpg.

 

Related News

Related News

Stiff EPA emission limits to boost US electric vehicle sales

EPA Auto Emissions Proposal 2027-2032 sets strict tailpipe emissions limits, accelerating electric vehicle adoption, cutting greenhouse gases, advancing climate policy, and reducing oil dependence through battery-electric cars and trucks across U.S. markets.

 

Key Points

An EPA plan setting strict tailpipe limits to drive EV adoption, cut greenhouse gases, and reduce oil use in vehicles.

✅ Cuts GHGs 56% vs. 2026 standards; improves national air quality.

✅ Targets up to two-thirds EV sales by 2032 nationwide.

✅ Reduces oil imports by about 20 billion barrels; lowers costs.

 

The Biden administration is proposing strict new automobile pollution limits that would require up to two-thirds of new vehicles sold in the U.S. to be electric by 2032, a nearly tenfold increase over current electric vehicle sales.

The proposed regulation, announced Wednesday by the Environmental Protection Agency, would set tailpipe emissions limits for the 2027 through 2032 model years that are the strictest ever imposed — and call for far more new EV sales than the auto industry agreed to less than two years ago, a shift aligned with U.S. EV sales momentum in early 2024.

If finalized next year as expected, the plan would represent the strongest push yet toward a once almost unthinkable shift from gasoline-powered cars and trucks to battery-powered vehicles, as the market approaches an inflection point in adoption.

The Biden administration is proposing strict new automobile pollution limits that would require up to two-thirds of new vehicles sold in the U.S. to be electric by 2032, a nearly tenfold increase over current electric vehicle sales.

The proposed regulation, announced Wednesday by the Environmental Protection Agency, would set tailpipe emissions limits for the 2027 through 2032 model years that are the strictest ever imposed — and call for far more new EV sales than the auto industry agreed to less than two years ago, a direction mirrored by Canada's EV sales regulations now being finalized.

If finalized next year as expected, the plan would represent the strongest push yet toward a once almost unthinkable shift from gasoline-powered cars and trucks to battery-powered vehicles, with many analysts forecasting widespread adoption within a decade among buyers.

Reaching half was always a “stretch goal," given that EVs still trail gas cars in market share and contingent on manufacturing incentives and tax credits to make EVs more affordable, he wrote.

“The question isn’t can this be done, it’s how fast can it be done,” Bozzella wrote. “How fast will depend almost exclusively on having the right policies and market conditions in place.”

European car maker Stellantis said that, amid broader EV mandate debates across North America, officials were “surprised that none of the alternatives” proposed by EPA "align with the president’s previously announced target of 50% EVs by 2030.''

Q. How will the proposal benefit the environment?

A. The proposed standards for light-duty cars and trucks are projected to result in a 56% reduction in projected greenhouse gas emissions compared with existing standards for model year 2026, the EPA said. The proposals would improve air quality for communities across the nation, and, with actual benefits influenced by grid mix — for example, Canada's fossil electricity share affects lifecycle emissions — avoiding nearly 10 billion tons of carbon dioxide emissions by 2055, more than twice the total U.S. CO2 emissions last year, the EPA said.

The plan also would save thousands of dollars over the lives of the vehicles sold and reduce U.S. reliance on approximately 20 billion barrels of oil imports, the agency said.

 

Related News

View more

Wind power grows despite Covid-19

Global Wind Power Growth will hit record installations, buoying renewable energy, offshore wind, onshore capacity, and economic recovery, as GWEC forecasts resilient post-Covid markets led by China and the US with strong investment and jobs.

 

Key Points

Global Wind Power Growth is the forecast rise in capacity driving renewable energy, jobs, and lower emissions.

✅ 71.3 GW installed in 2020; only 6% below pre-Covid forecast

✅ 348 GW added by 2024; nearly 1,000 GW total capacity

✅ Offshore wind resilient; 6.5 GW in 2020, China-led

 

Wind power will continue to show record growth, as renewables set to shatter records over the next five years despite the impacts of the Covid-19 crisis, and will make a crucial contribution to economic recovery... According to the latest market outlook by GWEC Market Intelligence, 71.3GW of wind power capacity is expected to be installed in 2020, which is only a 6% reduction from pre-Covid forecasts. This is a significant increase from original predictions that expected wind power installations to be reduced by up to 20 per cent due to the pandemic, demonstrating the resilience of the wind power industry across the globe.

From 2020 to 2024, the cumulative global wind energy market will grow at a compound annual rate of 8.5% and installing 348GW of new capacity, bringing total global wind power capacity to nearly 1,000GW by the end of 2024, which is an increase of 54% for total wind power installations compared to 2019. While some project completion dates have been pushed into 2021 due to the pandemic, next year is expected to be a record year for the wind industry with 78GW of new wind capacity forecasted to be installed in 2021. Over 50% of the onshore wind capacity added between 2020 to 2024 will be installed in China and the US, where U.S. solar and wind growth is supported by favourable government plans, led by installation rushes to meet subsidy deadlines.

The offshore wind sector has been largely shielded from the impacts of the Covid-19 crisis, GWEC Market Intelligence has indeed increased its forecast for offshore wind by 5 per cent to 6.5 GW of new installations in 2020, another record year for the industry, as offshore wind's $1 trillion outlook comes into focus, led by the installation rush in China. Up until 2024, over 48GW of new offshore wind capacity is expected to be installed, with another 157GW forecasted to be installed from 2025 to 2030 across key markets such as offshore wind in the UK and Asia.

“While the Covid-19 crisis has impacted every industry across the world, wind power has continued to grow and thrive. This is no surprise given the cost competitiveness of wind energy and the need to rapidly reproduce carbon emissions. Fossil fuel industries face market fluctuations and require bailouts to stay afloat, while wind turbines across the world have continued to spin and provide affordable, clean energy to citizens everywhere," says Ben Backwell, CEO of GWEC.

“Thanks to the localised nature of wind power supply chains and project construction, the sector has continued to generate billions in local investment and thousands of jobs to support economic recovery. However, in order to tap into the full potential of wind power to drive a green recovery, governments must ensure that energy markets and policies allow a continued ramp up in investment in wind and other renewables, and avoid unintended effects such as the Solar ITC extension impact on the US wind market, while disincentivising investment in expensive and declining fossil fuel industries," he says.

Biggest markets

China and the US will continue to be the two main markets driving growth over the next few years, with U.S. wind power surges underscoring the momentum. "We have increased or maintained our forecasts for onshore wind in regions such as Latin America, North America, Africa, and the Middle East over the next five years, with only minor decreases in Asia Pacific and Europe. However, these reductions are not necessarily a direct impact of Covid-19, but also a symptom of pre-existing regulatory issues, such as protracted permitting procedures, which are slowing down installations. In particular, offshore wind has demonstrated its resilience by exceeding our pre-pandemic forecasts for 2020, and will be an important source of growth in the decade ahead," Feng Zhao, strategy director at GWEC.

“We have seen a series of carbon neutrality commitments by major economies such as China, Japan and South Korea over the past few weeks. Since wind power is a key technology for decarbonisation, building on the evolution in 2016, these targets will increase the forecast for wind power over the next few decades. However, the right enabling regulatory and policy frameworks must be in place to accelerate renewable energy growth to meet these targets. China, the world’s largest wind power market and largest carbon emitter, has pledged to go carbon-neutral by 2060. To have a chance at achieving this target, we need to be installing 50GW of wind power per year in China from now until 2025, and then 60GW from 2026 onwards. It is crucial that governments firm up carbon neutrality targets with tangible actions to drive wind and other renewable energy growth at the levels needed to achieve these aims”, he says.

 

Related News

View more

Electricity or hydrogen - What is the future of vehicles?

Hydrogen vs Battery-Electric Vehicles compare FCEV and BEV tech for range, charging and refueling, zero-emissions, infrastructure in Canada, highlighting urban commuting, heavy-duty use, fast 5-minute fills, 30-minute fast charging, and renewable hydrogen from surplus wind.

 

Key Points

Hydrogen FCEVs suit long range and heavy-duty use; BEVs excel in urban commutes with overnight charging.

✅ FCEVs refuel in about 5 minutes; ideal for long range and heavy duty.

✅ BEVs fit urban commuting with home or night charging; fewer stops.

✅ Hydrogen enables energy storage from surplus wind and hydro power.

 

We’re constantly hearing that battery-electric cars are the future, as automakers pursue Canada-U.S. collaboration on EVs across the industry, so I was surprised to see that companies like Toyota, Honda and Hyundai are making hydrogen fuel-cell cars. Which technology is better? Could hydrogen still win? – Pete, Kingston

They’re both in their electric youth, relatively speaking, but the ultimate winner in the race between hydrogen and battery electric will likely be both.

“It’s not really a competition – they’ll both co-exist and there will also be plug-in hydrogen hybrids,” said Walter Merida, director of the Clean Energy Research Centre at the University of British Columbia. “Battery-electric vehicles [BEVs] are better for an urban environment where you have time to recharge and fuel-cell electric vehicles [FCEVs] are better-suited for long range and heavy duty.”

Last year, there were 9,840 BEVs sold in Canada, up from 5,130 the year before. If you include plug-in hybrids, the number sold in 2017 grows to 18,560, though many buyers now face EV shortages and wait times amid high gasoline prices.

And how many hydrogen vehicles were sold in Canada last year?

#google#

None – although Hyundai leased out about a half-dozen hydrogen Tucsons in British Columbia for $599 a month, which included fuel from Powertech labs in Surrey.

In January, Toyota announced it will be selling the Mirai in Quebec later this year. And Hyundai said it will offer about 25 Nexos for sale.

“It’s chicken or egg,” said Michael Fowler, a professor of chemical engineering at the University of Waterloo. “Car manufacturers won’t release cars into the market unless there’s a refuelling station and companies won’t build a refuelling station unless there are cars to fuel.”

Right now, there are no retail hydrogen refuelling stations in Canada. While there are plans under way to add stations in B.C., Ontario and Quebec, we’re still behind Japan, Europe and California, though experts outline how Canada can capitalize on the U.S. EV pivot to accelerate progress.

“In 2007, Ontario had a hydrogen strategy and they were starting to develop hydrogen vehicles and they dropped that in favour of the Green Energy Act and it was a complete disaster,” Fowler said. “The reality is the government of the day listened to the wrong people.”

It’s tough to pinpoint a single reason why governments focused on building charging stations instead of hydrogen stations, Merida said.

“It’s ironic, you know – the fuel cell was invented in Vancouver. Geoffrey Ballard was one of the pioneers of this technology,” Merida said. “And for a while, Canada was a global leader, but eventually government programs were discontinued and that was very disruptive to the sector.”

 

HYDROGEN FOR THE MASSES?

While we tend to think of BEVs when we think of electric cars, fuel-cell vehicles are electric, too; the hydrogen passes through a fuel cell stack, where it mixes with oxygen from the atmosphere to produce an electric current.

That current powers electric motors to drive the wheels and extra energy goes to a battery pack that’s used to boost acceleration (it’s also charged by regenerative braking).

Except for water that drips out of the hydrogen car, they’re both zero-emission on the road.

But a big advantage for hydrogen is that, if you can find a station, you can pull up to a pump and fill up in five minutes or less – the same way we do now at nearly 12,000 gas stations.

Compare that with fast-charging stations that can charge a battery to 80 per cent in 30 minutes – each station only handles one car at a time. What if you get there and it’s busy – or broken? And right now, there are only 139 of them in Canada.

And at slower, Level 2 stations, cars have to be plugged in for hours to recharge.

In a 2018 KPMG survey of auto executives, 55 per cent said that moves to switch entirely to pure battery-electric vehicles will fail because there won’t be enough charging stations, and some critics argue the 2035 EV mandate is delusional given infrastructure constraints.

“Ontario just invested $20-million in public charging stations and that’s going to service 100 or 200 cars a day,” Fowler said. “If you were to invest that in hydrogen stations, you’d be able to service thousands of cars a day.”

And when you do charge at a station, you might not be using clean power, as 18% of Canada’s 2019 electricity came from fossil fuels according to national data, Fowler said.

“At least in Ontario, in order to charge at a public station during the day, you have to rev up a natural-gas plant somewhere,” Fowler said. “So the only way you’re getting zero emissions is when you can charge at night using excess nuclear, hydro or wind that’s not being used.”

But hydrogen can be made when surplus green energy is stored, Fowler said.

“In Ontario, we have lots of wind in the spring and the fall, when we don’t need the electricity,” he said.

And eventually, you’ll be able to connect your fuel-cell vehicle to the grid and sell the power it produces, Merida said.

“The amount of power generation you have in these moving platforms is quite significant,” Merida said.

There are other strikes against battery-electric, including reduced range by 30 per cent or more in the winter and the need to upgrade infrastructure such as electrical transformers so they can handle more than just a handful of cars on each street charging at night, Fowler said.

In that KPMG survey, executives predicted a nearly equal split between BEVs, FCEVs, hybrids and gasoline engines by 2040.

“Battery-electric vehicles will serve a certain niche – they’ll be small commuter vehicles in certain cities,” Fowler said. “But for the way we use cars today – the family car, the suburban car, buses and probably trucks – it will be the fuel cell.”

 

Related News

View more

IEA: Clean energy investment significantly outpaces fossil fuels

Clean Energy Investment is surging as renewables, electric vehicles, grids, storage, and nuclear outpace fossil fuels, driven by energy security, affordability, and policies like the Inflation Reduction Act, the IEA's World Energy Investment report shows.

 

Key Points

Investment in renewables, EVs, grids, and storage now surpasses fossil fuels amid cost and security pressures.

✅ $1.7T to clean tech vs just over $1T to fossil fuels this year.

✅ For every $1 in fossil, about $1.7 goes to clean energy.

✅ Solar investment poised to overtake oil production spending.

 

Investment in clean energy technologies is significantly outpacing spending on fossil fuels as affordability and security concerns, underpinned by analyses showing renewables cheapest new power in many markets, triggered by the global energy crisis strengthen the momentum behind more sustainable options, according to the International Energy Agency's (IEA) latest World Energy Investment report.

About $2.8 trillion (€2.6 trillion) is set to be invested globally in energy this year, of which over $1.7 trillion (€1.59 trillion) is expected to go to clean technologies - including renewables, electric vehicles, nuclear power, grids, storage, low-emissions fuels, efficiency improvements and heat pumps – according to report.

The remainder, slightly more than $1 trillion (€937.7 billion), is going to coal, gas and oil, despite growing calls for a fossil fuel lockdown to meet climate goals.

Annual clean energy investment is expected to rise by 24% between 2021 and 2023, driven by renewables and electric vehicles, with renewables breaking records worldwide over the same period.

But more than 90% of this increase comes from advanced economies and China, which the IEA said presents a serious risk of new dividing lines in global energy if clean energy transitions don’t pick up elsewhere.

“Clean energy is moving fast – faster than many people realise. This is clear in the investment trends, where clean technologies are pulling away from fossil fuels,” said IEA executive director Fatih Birol. “For every dollar invested in fossil fuels, about 1.7 dollars are now going into clean energy. Five years ago, this ratio was one-to-one. One shining example is investment in solar, which is set to overtake the amount of investment going into oil production for the first time.”

Led by solar, low-emissions electricity technologies are expected to account for almost 90% of investment in power generation, reflecting the global renewables share above 30% in electricity markets.

Consumers are also investing in more electrified end-uses. Global heat pump sales have seen double-digit annual growth since 2021. Electric vehicle sales are expected to leap by a third this year after already surging in 2022.

Clean energy investments have been boosted by a variety of factors in recent years, including periods of strong economic growth and volatile fossil fuel prices that raised concerns about energy security, and insights from the IRENA decarbonisation report that underscore broader benefits, especially following Russia’s invasion of Ukraine.

Furthermore, enhanced policy support through major actions like the US Inflation Reduction Act and initiatives in Europe's green surge, Japan, China and elsewhere have played a role.

In Ireland, more than a third of electricity is expected to be green within four years, illustrating national progress.

The biggest shortfalls in clean energy investment are in emerging and developing economies, the IEA added. It pointed to some bright spots, such as dynamic investments in solar in India and in renewables in Brazil and parts of the Middle East. However, investment in many countries is being held back by factors including higher interest rates, unclear policy frameworks and market designs, weak grid infrastructure, financially strained utilities and a high cost of capital.

"Much more needs to be done by the international community, especially to drive investment in lower-income economies, where the private sector has been reluctant to venture," according to the IEA.

 

Related News

View more

Germany to Exempt Electric Cars from Vehicle Tax Until 2035

Germany is extending its vehicle tax exemption for electric cars until 2035, a federal move aimed at boosting EV sales, supporting the auto industry, and advancing the country’s transition to cleaner, more sustainable transportation.

 

Why is Germany Exempting EVs from Vehicle Tax Until 2035?

Germany is exempting electric vehicles from vehicle tax until 2035 to boost EV adoption, support its auto industry, and meet national climate targets.

✅ Encourages consumers to buy zero-emission cars

✅ Protects jobs in the automotive sector

✅ Advances Germany’s clean energy transition

Germany’s federal government has confirmed plans to extend the country’s vehicle tax exemption for electric cars until 2035, as part of a renewed push to accelerate the nation’s e-mobility transition and support its struggling automotive industry. The move, announced by Finance Minister Lars Klingbeil, comes just weeks before the existing exemption was set to expire.

“In order to get many more electric cars on the road in the coming years, we need to provide the right incentives now,” Klingbeil told the German Press Agency (DPA). “That is why we will continue to exempt electric cars from vehicle tax.”

Under the proposed law, the exemption will apply to new fully electric vehicles registered until December 31, 2030, with benefits lasting until the end of 2035. According to the Finance Ministry, the measure aims to “provide an incentive for the early purchase of a purely electric vehicle.” While popular among consumers and automakers, the plan is expected to cost the federal budget several hundred million euros in lost revenue.

Without the extension, the tax relief for new battery-electric vehicles (BEVs) would have ended on January 1, 2026, creating uncertainty for automakers and potential buyers. The urgency to pass the new legislation reflects the government’s goal to maintain Germany’s momentum toward electrification, even as the age of electric cars accelerates amid economic headwinds and fierce international competition.

The exemption’s renewal was originally included in the coalition agreement between the Christian Democratic Union (CDU), the Christian Social Union (CSU), and the Social Democratic Party (SPD). It follows two other measures from the government’s “investment booster” package—raising the maximum gross price for EV tax incentives to €100,000 and allowing special depreciation for electric vehicles. However, the vehicle tax measure was previously in jeopardy due to Germany’s tight fiscal situation. The Finance Ministry had cautioned that every proposal in the coalition deal was “subject to financing,” and a plan to end EV subsidies led to speculation that the EV tax break could be dropped altogether.

Klingbeil’s announcement coincides with an upcoming “automotive dialogue” summit at the Chancellery, hosted by Chancellor Friedrich Merz. The meeting will bring together representatives from federal ministries, regional governments, automakers advancing initiatives such as Daimler’s electrification plan across their portfolios, and trade unions to address both domestic and international challenges facing Germany’s car industry. Topics will include slowing EV sales growth in China, the ongoing tariff dispute with the United States, where EPA emissions rules are expected to boost EV sales, and strategies for strengthening Germany’s global competitiveness.

“We must now put together a strong package to lead the German automotive industry into the future and secure jobs,” Klingbeil said. “We want the best cars to continue to be built in Germany. Everyone knows that the future is electric.”

The government is also expected to revisit a proposed program to help low- and middle-income households access electric cars, addressing affordability concerns that persist across markets, modelled on France’s “social leasing” initiative. Though included in the coalition agreement, progress on that program has stalled, and few details have emerged since its announcement.

Germany’s latest tax policy move signals renewed confidence in its electric vehicle transition, despite budget constraints and a turbulent global market, as the 10-year EV outlook points to most cars being electric worldwide. Extending the exemption until 2035 sends a clear message to consumers and manufacturers alike: the country remains committed to building its clean transport future—one electric car at a time.

 

Related Articles

 

View more

N.W.T. will encourage more residents to drive electric vehicles

Northwest Territories EV Charging Corridor aims to link the Alberta boundary to Yellowknife with Level 3 fast chargers and Level 2 stations, boosting electric vehicle adoption in cold climates, cutting GHG emissions, supporting zero-emission targets.

 

Key Points

A planned corridor of Level 3 and Level 2 chargers linking Alberta and Yellowknife to boost EV uptake and cut GHGs.

✅ Level 3 fast charger funded for Behchoko by spring 2024.

✅ Up to 72 Level 2 chargers funded across N.W.T. communities.

✅ Supports Canada ZEV targets and reduces fuel use and CO2e.

 

Electric vehicles are a rare sight in Canada's North, with challenges such as frigid winter temperatures and limited infrastructure across remote regions.

The Northwest Territories is hoping to change that.

The territorial government plans to develop a vehicle-charging corridor between the Alberta boundary and Yellowknife to encourage more residents to buy electric vehicles to reduce their carbon footprint.

"There will soon be a time in which not having electric charging stations along the highway will be equivalent to not having gas stations," said Robert Sexton, director of energy with the territory’s Department of Infrastructure.

"Even though it does seem right now that there’s limited uptake of electric vehicles and some of the barriers seem sort of insurmountable, we have to plan to start doing this, because in five years' time, it’ll be too late."

The federal government has committed to a mandatory 100 per cent zero-emission vehicle sales target by 2035 for all new light-duty vehicles, though in Manitoba reaching EV targets is not smooth so progress may vary. It has set interim targets for at least 20 per cent of sales by 2026 and 60 per cent by 2030.

A study commissioned by the N.W.T. government forecasts electric vehicles could account for 2.9 to 11.3 per cent of all annual car and small truck sales in the territory in 2030.

The study estimates the planned charging corridor, alongside electric vehicle purchasing incentives, could reduce greenhouse gas emissions by between 260 and 1,016 tonnes of carbon dioxide equivalent in that year.

Sexton said it will likely take a few years before the charging corridor is complete. As a start, the territory recently awarded up to $480,000 to the Northwest Territories Power Corporation to install a Level 3 electric vehicle charger in Behchoko.

The N.W.T. government projects the charging station will reduce gasoline use by 61,000 litres and decrease carbon dioxide equivalent by up to 140 tonnes per year. It is scheduled to be complete by the spring of 2024.

The federal government earlier this month announced $414,000, along with $56,000 in territorial funding, to install up to 72 primarily Level 2 electric vehicle charges in public places, streets, multi-unit residential buildings, workplaces, and facilities with light-duty vehicle fleets in the N.W.T. by March 2024, while in New Brunswick new fast-charging stations are planned on the Trans-Canada.

In Yukon, the territory has pledged to develop electric vehicle infrastructure in all road-accessible communities by 2027. It has already installed 12 electric vehicle chargers with seven more planned, and in N.L. a fast-charging network signals early progress as well.

Just a few people in the N.W.T. currently own electric vehicles, and in Atlantic Canada EV adoption lags as well.

Patricia and Ken Wray in Hay River have owned a Tesla Model 3 for three years. Comparing added electricity costs with savings on gasoline, Patricia estimates they spend 60 per cent less to keep the Tesla running compared to a gas-powered vehicle.

“I don’t mind driving past the gas station,” she said.

Despite some initial hesitation about how the car would perform in the winter, Wray said she hasn’t had any issues with her Tesla when it’s -40 C, although it does take longer to charge. She added it “really hugs the road” in snowy and icy conditions.

“People in the North need to understand these cars are marvellous in the winter,” she said.

Wray said while she and her husband drive their Tesla regularly, it’s not feasible to drive long distances across the territory. As the number of electric vehicle charge stations increases across the N.W.T., however, that could change.

“I’m just very, very happy to hear that charging infrastructure is now starting to be put in place," she said.

Andrew Robinson with the YK Care Share Co-op is more skeptical about the potential success of a long-distance charging corridor. He said while government support for electric vehicles is positive, he believes there's a more immediate need to focus on uptake within N.W.T. communities. He pointed to local taxi services as an example.

"It’s a long stretch," he said of the drive from Alberta, where EVs are a hot topic, to Yellowknife. "It’s 17 hours of hardcore driving and when you throw in having to recharge, anything that makes that longer, people are not going to be really into that.”

The car sharing service, which has a 2016 Chevy Spark dubbed “Sparky,” states on its website that a Level 2 charger can usually recharge a vehicle within six to eight hours while a Level 3 charger takes approximately half an hour, as faster charging options roll out in B.C. and beyond.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified