First Clean Energy Community Officially Designated


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Ulster County Clean Energy Community highlights NYSERDA-led progress: EV charging stations, benchmarking of municipal buildings, climate-smart certification, and Energize NY finance driving emissions reductions, renewable energy adoption, and sustainable infrastructure.

 

Key Points

A NYSERDA-recognized status earned by Ulster County for completing four high-impact clean energy actions.

✅ Completed 4 high-impact actions under NYSERDA program

✅ Eligible for up to $250,000 for clean energy projects

✅ EV chargers, benchmarking, climate certification, financing

 

The New York State Energy Research and Development Authority (NYSERDA), an NYSSGC member, announced that Ulster County completed the steps required to become a Clean Energy Community and will be eligible to apply for up to $250,000 toward additional clean energy projects across New York. Ulster County completed four high-impact clean energy actions: establishing an Energize NY finance program; installing nine electric vehicle charging stations; earning a Climate Smart Communities “Bronze” certification; and adopting benchmarking policies to track and report energy use in municipal buildings. To become a Clean Energy Community, cities, counties, towns, and villages must complete four of 10 high-impact clean energy actions, as renewable project contracts expand statewide;

  1. Benchmarking - Adopt a policy to track progress and report the energy use of buildings.
  2. Clean Energy Upgrades - Achieve 10% reduction in greenhouse gas emissions from buildings.
  3. LED Street Lights - Convert street lights to energy efficient LED technology.
  4. Clean Fleets - Install electric vehicle charging stations or deploy alternative fuel vehicles.
  5. Solarize - Undertake a local solarize campaign to increase the number of solar installations on rooftops.
  6. Energy Code Enforcement Training - Train compliance officers in energy code best practices.
  7. Climate Smart Communities Certification - Get certified by the NYS Department of Environmental Conservation.
  8. Community Choice Aggregation - Put energy supply choices in your community’s hands, including rural communities across the region.
  9. Energize New York Finance - Offer energy upgrade financing to businesses and non-profits.

Source: Smart Grid Consortium

Related News

EU Smart Meters Spur Growth in the Customer Analytics Market

EU Smart Meter Analytics integrates AMI data with grid edge platforms, enabling back-office efficiency, revenue assurance, and customer insights via cloud and PaaS solutions, while system integration cuts costs and improves utility performance.

 

Key Points

EU smart meter analytics uses AMI data and cloud to improve utility performance, revenue assurance, and outcomes.

✅ AMI underpins grid edge analytics and utility IT/OT integration

✅ Cloud and PaaS reduce costs and scale data-driven applications

✅ Focus shifts from meter rollout to back-office and revenue analytics

 

Europe's investment in smart meters has begun to open up the market for analytics that benefit both utilities and customers.

Two new reports from GTM Research demonstrate the substantial investment in both advanced metering infrastructure (AMI) and specific customer analytics segments -- the first report analyzes the progress of AMI deployment in Europe, while the second is a comprehensive assessment of analytics use cases, including AI in utility operations, enabled by or interacting with AMI.

The Third Energy Package mandated EU member states to perform a cost-benefit analysis to evaluate the economic viability of deploying smart meters and broader grid modernization costs across member states. Two-thirds of the member states found there was a net positive result, while seven members found negative or inconclusive results.

“The mandate spurred AMI deployment in the EU, but all member states are deploying some AMI. Even without an overall positive cost-benefit outcome, utilities found pockets of customers where there is a positive business case for AMI,” said Paulina Tarrant, research associate at GTM Research and lead author of “Racing to 2020: European Policy, Deployment and Market Share Primer.”

Annual AMI contracting peaked in 2013 -- two years after the mandate -- with 29 million contracted that year. Today, 100 million meters have been contracted overall. As member states reach their respective targets, the AMI market will cool in Europe and spending on analytics and applications will continue to ramp up, aligning with efforts to invest in smarter infrastructure across the sector, Tarrant noted.

Between 2017 and 2021, more than $30 billion will be spent on utility back-office and revenue-assurance analytics in the EU, reflecting the shift toward the digital grid architecture, according to GTM Research’s Grid Edge Customer Utility Analytics Ecosystems: Competitive Analysis, Forecasts and Case Studies.

The report examines the broad landscape of customer analytics showing how AMI interacts with the larger IT/OT environment of a utility.

“The benefits of AMI expand beyond revenue assurance -- in fact, AMI represents the backbone of many customer utility analytics and grid edge solutions,” said Timotej Gavrilovic, author of the Grid Edge Customer Utility Ecosystems report.

Integration is key, according to the report.

“Technology providers are integrating data sets, solutions and systems and partnering with others to provide a one-stop shop serving broad utility needs, increasing efficiencies and reducing costs,” Gavrilovic said. “Cloud-based deployments and platform-as-a-service offerings are becoming commonplace, creating an opportunity for utilities to balance the cost versus performance tradeoff to optimize their analytics systems and applications.”

A diverse array of customer analytics applications is a critical foundation for demonstrating the positive cost-benefit of AMI.

“Advanced analytics and applications are key to ensuring that AMI investments provide a positive return after smart meters are initiated,” said Tarrant. “Improved billing and revenue assurance was not enough everywhere to show customer benefit -- these analytics packages will leverage the distributed network infrastructure, including advanced inverters used with distributed energy resources, and subsequent increased data access, uniting the electricity markets of the EU.”

 

Related News

View more

Electricity distributors warn excess solar power in network could cause blackouts, damage infrastructure

Australian Rooftop Solar Grid Constraints are driving debates over voltage rise, export limits, inverter curtailment, DER integration, and network reliability, amid concerns about localized blackouts, infrastructure protection, tariff reform, and battery storage adoption.

 

Key Points

Limits on solar exports to curb voltage rise, protect equipment, and keep the distribution grid reliable.

✅ Voltage rise triggers transformer protection and local outages.

✅ Export limits and smart inverter curtailment manage midday backfeed.

✅ Tariff reform and DER orchestration defer costly network upgrades.

 

With almost 1.8 million Australian homes and businesses relying on power from rooftop solar panels, there is a fight brewing over the impact of solar energy on the national electricity grid.

Electricity distributors are warning that as solar uptake continues to increase, there is a risk excess solar power could flow into the network, elevating power outage risks, causing blackouts and damaging infrastructure.

But is it the network businesses that are actually at risk, as customers turn away from centrally produced electricity?

This is what three different parties have to say:

Andrew Dillon of the network industry peak body, Energy Networks Australia (ENA), told 7.30 the way customers are charged for electricity has to change, or expensive grid upgrades to poles and wires will be needed to keep solar customers on the grid.

"The engineering reality is once we get too much solar in a certain space it does start to cause technical issues," he said.

"If there is too much energy coming back up the system in the middle of the day, it can cause frequency voltage disturbances in the system, which can lead to transformers tripping off to protect themselves from being damaged and that will cause localised blackouts.

"There are pockets of the grid already where we have significant penetration and we are starting to see technical issues."

However, he acknowledges that excess solar power has yet to cause any blackouts, or damage electricity infrastructure.

"I don't buy that at all," he said.

"It can be that in some suburbs or parts of suburbs a high penetration of solar on the point of use can raise voltage, these issues generally can be dealt with quickly.

"The critical issue is think where you are getting that perspective from. It is from an industry whose underlying market is threatened by customers doing it for themselves through peer-to-peer energy models. So, think with some critical insight to these claims."

He said when too many people rely on solar it threatens the very business model of the companies that own Australia's poles and wires.

"When the customers use the network less to buy centrally produced electricity, they ship less product," he said.

"When they ship less product, their underlying business is undermined, they need to charge more to the customers left and that leads to what has been called a death spiral.

"We are seeing rapid reductions in consumption at the point of use per household."

But Mr Dillon denies the distributors are acting out of self-interest.

"I absolutely reject that claim," he said.

"[What] we, as networks, have an interest in is running a safe network, running a reliable network, enabling the transition to a low carbon future and doing all that while keeping costs down as much as possible."

Solar installers say the networks are holding back business

Around Australia the poles and wires companies can decide which solar systems can connect to the grid.

Small systems can connect automatically, but in some areas, those wanting a larger system can find themselves caught up in red tape.

The vice-president of the Australian Solar Council, Glen Morris, said these limitations were holding back solar installation businesses and preventing the take-up of new battery storage technology.

"If you've already got a five kilowatt system, your house is full as far as the network is concerned," Mr Morris said.

"You go to add a battery, that's another five kilowatts and so they say no you're already full … so you can't add storage to your solar system."

The powers that be are stumbling in the dark to prevent a looming energy crisis, as the grid seeks to balance renewables' hidden challenges and competing demands.

Mr Morris also said the networks had the capacity to solve the problem of any excess solar flows into the grid, and infrastructure upgrades were not necessary.

"They already have the capability to turn off your solar invertor whenever they feel like it," he said.

"If they choose to connect that functionality, it's there in the inverter. The customer already has it."

ENA has acknowledged there is frustration with rooftop system size limits in the solar industry.

"What we are seeing is solar installers and others slightly frustrated at different requirements for different networks and sometimes they are unclear on the reasons for that," Mr Dillon said.

"Limitations are in place across the country to keep the lights on and make sure the network stays safe and we don't have sudden rushes of people connecting to the grid that causes outage issues."

But Mr Mountain is unconvinced, calling the limitations "somewhat spurious".

"The published, documented, critically reviewed analyses are few and far between, so it is very easy for engineers to make these arguments and those in policy circles only have so much tolerance for the detail," he said.

 

Related News

View more

Electricity sales in the U.S. actually dropped over the past 7 years

US Electricity Sales Decline amid population growth and GDP gains, as DOE links reduced per capita consumption to energy efficiency, warmer winters, appliances, and bulbs, while hotter summers and rising AC demand may offset savings.

 

Key Points

US electricity sales fell 3% since 2010 despite population and GDP growth, driven by efficiency gains and warmer winters.

✅ DOE links drops to efficiency and warmer winters

✅ Per capita residential use fell about 7% since 2010

✅ Rising AC demand may offset winter heating savings

 

Since 2010, the United States has grown by 17 million people, and the gross domestic product (GDP) has increased by $3.6 trillion. Yet in that same time span, electricity sales in the United States actually declined by 3%, according to data released by the U.S. Department of Energy (DOE), even as electricity prices rose at a 41-year pace nationwide.

The U.S. decline in electricity sales is remarkable given that the U.S. population increased by 5.8% in that same time span. This means that per capita electricity use fell even more than that; indeed, the Department of Energy pegs residential electricity sales per capita as having declined by 7%, even as inflation-adjusted residential bills rose 5% in 2022 nationwide.

There are likely multiple reasons for this decline in electricity sales. Department of Energy analysts suggest that, at least in part, it is due to increased adoption of energy-efficient appliances and bulbs, like compact fluorescents. Indeed, the DOE notes that there is a correlation between consumer spending on “energy efficiency” and a reduction in per capita electricity sales, while utilities invest more in delivery infrastructure to modernize the grid.

Yet the DOE also notes that states with a greater increase in warm weather days had a corresponding decrease in electricity sales, as milder weather can reduce power demand across years. In southern states, the effect was most dramatic: for instance, from 2010 to 2016, Florida had a 56% decrease in cold weather days that would require heating and as a result, saw a 9% decrease in per capita electricity sales.

The moral is that warm winters save on electricity. But if global temperatures continue to rise, and summers become hotter, too, this decrease in winter heating spending may be offset by the increased need to run air conditioning in the summer, and given how electricity and natural gas prices interact, overall energy costs could shift. Indeed, it takes far more energy to cool a room than it does to heat it, for reasons related to the basic laws of thermodynamics. 

 

Related News

View more

How Synchrophasors are Bringing the Grid into the 21st Century

Synchrophasors deliver PMU-based, real-time monitoring for the smart grid, helping NYISO prevent blackouts, cut costs, and integrate renewables, with DOE-backed deployments boosting reliability, situational awareness, and data sharing across regional partners.

 

Key Points

Synchrophasors, or PMUs, are grid sensors that measure synced voltage, current, and frequency to enhance reliability.

✅ Real-time grid visibility and situational awareness

✅ Early fault detection to prevent cascading outages

✅ Supports renewable integration and lowers operating costs

 

Have you ever heard of a synchrophasor? It may sound like a word out of science fiction, but these mailbox-sized devices are already changing the electrical grid as we know it.

The grid was born over a century ago, at a time when our needs were simpler and our demand much lower. More complex needs are putting a heavy strain on the aging infrastructure, which is why we need to innovate and update our grid with investments in a smarter electricity infrastructure so it’s ready for the demands of today.

That’s where synchrophasors come in.

A synchrophasor is a sophisticated monitoring device that can measure the instantaneous voltage, current and frequency at specific locations on the grid. This gives operators a near-real-time picture of what is happening on the system, including insights into power grid vulnerabilities that allow them to make decisions to prevent power outages.

Just yesterday I attended the dedication of the New York Independent System Operator's smart grid control center, a $75 million project that will use these devices to locate grid problems at an early stage and share these data with their regional partners. This should mean fewer blackouts for the State of New York. I would like to congratulate NYISO for being a technology leader.

And not only will these synchrophasors help prevent outages, but they also save money. By providing more accurate and timely data on system limits, synchrophasors make the grid more reliable and efficient, thereby reducing planning and operations costs and addressing grid modernization affordability concerns for utilities.

The Department has worked with utilities across the country to increase the number of synchrophasors five-fold -- from less than 200 in 2009 to over 1,700 today. And this is just a part of our commitment to making a smarter, more resilient grid a reality, reinforced by grid improvement funding from DOE.

In September 2013, the US Department of Energy announced up to $9 million in funding to facilitate rapid response to unusual grid conditions. As a result, utilities will be able to better detect and head off potential blackouts, while improving day-to-day grid reliability and helping with the integration of solar into the grid and other clean renewable sources.

If you’d like to learn more about our investments in the smart grid and how they are improving our electrical infrastructure, please visit the Office of Electricity Delivery and Energy Reliability’s www.smartgrid.gov.

Patricia Hoffman is Assistant Secretary, Office of Electricity Delivery & Energy Reliability

 

Related News

View more

Windstorm Causes Significant Power Outages

Vancouver October 2024 Windstorm brought extreme weather to British Columbia, causing power outages, storm damage, and downed lines as BC Hydro crews led emergency response and restoration, highlighting climate change resilience and community preparedness.

 

Key Points

A severe storm with 100 km/h gusts that caused outages and damage in Vancouver, prompting wide power restoration.

✅ 100 km/h gusts toppled trees and downed power lines

✅ Over 200,000 BC Hydro customers lost electricity

✅ Crews and communities coordinated emergency response

 

In October 2024, a powerful windstorm swept through the Vancouver area, resulting in widespread power outages and disruption across the region. The storm, characterized by fierce winds and heavy rainfall, reflected conditions seen when strong winds in the Miami Valley knocked out power earlier this year, and was part of a larger weather pattern that affected much of British Columbia. Residents braced for the impacts, with local authorities and utility companies preparing for the worst.

The Storm's Impact

The windstorm hit Vancouver with wind gusts exceeding 100 km/h, toppling trees, and downing power lines. As the storm progressed, reports of damaged properties and fallen trees began to flood in. Many neighborhoods experienced significant power outages, mirroring widespread outages in Quebec earlier in the season, with thousands of residents left without electricity for extended periods. The areas hardest hit included the West End, Kitsilano, and parts of the North Shore, where the impact of the storm was particularly severe.

Utility companies, including BC Hydro operations, mobilized their crews quickly in response to the storm's aftermath. Emergency response teams worked tirelessly to restore power, often facing challenging conditions. The restoration efforts were complicated by the sheer number of outages reported—over 200,000 customers were affected at the height of the storm. Crews encountered not only downed lines but also hazardous conditions as they navigated through debris-laden streets.

Community Response and Resilience

In the wake of the storm, the community showcased remarkable resilience. Local residents rallied together to assist one another, sharing resources and providing support to those most affected. Many community centers opened their doors as emergency shelters, offering warmth and safety to those without power, a step also taken when a London power outage disrupted mornings for thousands across the city.

Authorities also emphasized the importance of preparedness in such situations. They urged residents to have emergency kits ready, including food, water, and essential supplies, noting that nearby areas like North Seattle can face sudden outages with little warning. Local officials highlighted the value of staying informed through weather updates and alerts, allowing residents to make informed decisions during extreme weather events.

The Role of Climate Change

The October windstorm serves as a stark reminder of the increasing frequency and intensity of extreme weather events, a trend often linked to climate change. Experts have noted that rising global temperatures are contributing to more severe weather patterns, including stronger storms and increased Toronto flooding events. As cities like Vancouver face the reality of climate change, discussions about infrastructure resilience and adaptation strategies have gained urgency.

City planners and environmental advocates are pushing for initiatives that enhance the city's ability to withstand extreme weather. This includes improving stormwater management systems, increasing green spaces to absorb rainfall, and investing in renewable energy sources. By addressing these challenges proactively, Vancouver aims to mitigate the impacts of future storms and protect its residents.

Moving Forward

As recovery efforts continue, the focus now shifts to restoring normalcy and preparing for future weather events. Residents are encouraged to report any ongoing outages or hazards to local authorities and to stay updated through reliable news sources. BC Hydro and other utility companies are committed to transparency, providing regular updates on power restoration efforts, even as outages can persist for days as seen in Toronto after a spring storm.

The October 2024 windstorm will be remembered not only for its immediate impacts but also as a catalyst for discussions on resilience and community preparedness. As Vancouver looks ahead, the lessons learned from this storm will shape strategies for better handling extreme weather, ensuring that the city is equipped to face the challenges posed by a changing climate.

In conclusion, while the windstorm caused significant disruption and hardship for many, it also highlighted the strength of community spirit and the importance of proactive planning in the face of climate challenges. Vancouver's response and recovery will be crucial in building a more resilient future for all its residents.

 

Related News

View more

‘Tsunami of data’ could consume one fifth of global electricity by 2025

ICT Electricity Demand is surging as data centers, 5G, IoT, and server farms expand, straining grids, boosting carbon emissions, and challenging climate targets unless efficiency, renewable energy, and smarter cooling dramatically improve.

 

Key Points

ICT electricity demand is power used by networks, devices, and data centers across the global communications sector.

✅ Projected to reach up to 20 percent of global electricity by 2025

✅ Driven by data centers, 5G traffic, IoT, and high-res streaming

✅ Mitigation: efficiency, renewable PPAs, advanced cooling, workload shifts

 

The communications industry could use 20% of all the world’s electricity by 2025, hampering attempts to meet climate change targets, even as countries like New Zealand's electrification plans seek broader decarbonization, and straining grids as demand by power-hungry server farms storing digital data from billions of smartphones, tablets and internet-connected devices grows exponentially.

The industry has long argued that it can considerably reduce carbon emissions by increasing efficiency and reducing waste, but academics are challenging industry assumptions. A new paper, due to be published by US researchers later this month, will forecast that information and communications technology could create up to 3.5% of global emissions by 2020 – surpassing aviation and shipping – and up to 14% 2040, around the same proportion as the US today.

Global computing power demand from internet-connected devices, high resolution video streaming, emails, surveillance cameras and a new generation of smart TVs is increasing 20% a year, consuming roughly 3-5% of the world’s electricity in 2015, says Swedish researcher Anders Andrae.

In an update o a 2016 peer-reviewed study, Andrae found that without dramatic increases in efficiency, the ICT industry could use 20% of all electricity and emit up to 5.5% of the world’s carbon emissions by 2025. This would be more than any country, except China, India and the USA, where China's data center electricity use is drawing scrutiny.

He expects industry power demand to increase from 200-300 terawatt hours (TWh) of electricity a year now, to 1,200 or even 3,000TWh by 2025. Data centres on their own could produce 1.9 gigatonnes (Gt) (or 3.2% of the global total) of carbon emissions, he says.

“The situation is alarming,” said Andrae, who works for the Chinese communications technology firm Huawei. “We have a tsunami of data approaching. Everything which can be is being digitalised. It is a perfect storm. 5G [the fifth generation of mobile technology] is coming, IP [internet protocol] traffic is much higher than estimated, and all cars and machines, robots and artificial intelligence are being digitalised, producing huge amounts of data which is stored in data centres.”

US researchers expect power consumption to triple in the next five years as one billion more people come online in developing countries, and the “internet of things” (IoT), driverless cars, robots, video surveillance and artificial intelligence grows exponentially in rich countries.

The industry has encouraged the idea that the digital transformation of economies and large-scale energy efficiencies will slash global emissions by 20% or more, but the scale and speed of the revolution has been a surprise.

Global internet traffic will increase nearly threefold in the next five years says the latest Cisco Visual Networking Index, a leading industry tracker of internet use.

“More than one billion new internet users are expected, growing from three billion in 2015 to 4.1bn by 2020. Over the next five years global IP networks will support up to 10bn new devices and connections, increasing from 16.3bn in 2015 to 26bn by 2020,” says Cisco.

A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

Data centre capacity is also rocketing in Europe, where the EU's plan to double electricity use by 2050 could compound demand, and Asia with London, Frankfurt, Paris and Amsterdam expected to add nearly 200MW of consumption in 2017, or the power equivalent of a medium size power station.

“We are seeing massive growth of data centres in all regions. Trends that started in the US are now standard in Europe. Asia is taking off massively,” says Mitual Patel, head of EMEA data centre research at global investment firm CBRE.

“The volume of data being handled by such centres is growing at unprecedented rates. They are seen as a key element in the next stage of growth for the ICT industry”, says Peter Corcoran, a researcher at the university of Ireland, Galway.

Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions

Ireland, which with Denmark is becoming a data base for the world’s biggest tech companies, has 350MW connected to data centres but this is expected to triple to over 1,000MW, or the equivalent of a nuclear power station size plant, in the next five years.

Permission has been given for a further 550MW to be connected and 750MW more is in the pipeline, says Eirgrid, the country’s main grid operator.

“If all enquiries connect, the data centre load could account for 20% of Ireland’s peak demand,” says Eirgrid in its All-Island Generation Capacity Statement 2017-2026  report.

The data will be stored in vast new one million square feet or larger “hyper-scale” server farms, which companies are now building. The scale of these farms is huge; a single $1bn Apple data centre planned for Athenry in Co Galway, expects to eventually use 300MW of electricity, or over 8% of the national capacity and more than the daily entire usage of Dublin. It will require 144 large diesel generators as back up for when the wind does not blow.

 Facebook’s Lulea data centre in Sweden, located on the edge of the Arctic circle, uses outside air for cooling rather than air conditioning and runs on hydroelectic power generated on the nearby Lule River. Photograph: David Levene for the Guardian

Pressed by Greenpeace and other environment groups, large tech companies with a public face , including Google, Facebook, Apple, Intel and Amazon, have promised to use renewable energy to power data centres. In most cases they are buying it off grid but some are planning to build solar and wind farms close to their centres.

Greenpeace IT analyst Gary Cook says only about 20% of the electricity used in the world’s data centres is so far renewable, with 80% of the power still coming from fossil fuels.

“The good news is that some companies have certainly embraced their responsibility, and are moving quite aggressively to meet their rapid growth with renewable energy. Others are just growing aggressively,” he says.

Architect David Hughes, who has challenged Apple’s new centre in Ireland, says the government should not be taken in by the promises.

“Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions. Data centres … have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target. They are just adding to demand and reducing our percentage. They are getting a free ride at the Irish citizens’ expense,” says Hughes.

Eirgrid estimates indicate that by 2025, one in every 3kWh generated in Ireland could be going to a data centre, he added. “We have sleepwalked our way into a 10% increase in electricity consumption.”

Fossil fuel plants may have to be kept open longer to power other parts of the country, and manage issues like SF6 use in electrical equipment, and the costs will fall on the consumer, he says. “We will have to upgrade our grid and build more power generation both wind and backup generation for when the wind isn’t there and this all goes onto people’s bills.”

Under a best case scenario, says Andrae, there will be massive continuous improvements of power saving, as the global energy transition gathers pace, renewable energy will become the norm and the explosive growth in demand for data will slow.

But equally, he says, demand could continue to rise dramatically if the industry keeps growing at 20% a year, driverless cars each with dozens of embedded sensors, and cypto-currencies like Bitcoin which need vast amounts of computer power become mainstream.

“There is a real risk that it all gets out of control. Policy makers need to keep a close eye on this,” says Andrae.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified