Dewa in China to woo renewable energy firms


smart grid in china

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Dewa-China Renewable Energy Partnership advances solar, clean energy, smart grid, 5G, cloud, and Big Data, linking Dewa with Hanergy and Huawei for R&D, smart meters, demand management, and resilient network infrastructure.

 

Key Points

A Dewa collaboration with Hanergy and Huawei to co-develop solar, smart grid, 5G, cloud, and resilient utility networks.

✅ MoU expands solar PV and distributed generation in Dubai and China

✅ Smart grid R&D: smart meters, demand response, self-healing networks

✅ 5G, cloud, and Big Data enable secure, scalable smart city services

 

A high-level delegation from Dubai Electricity and Water Authority (Dewa) recently visited China in bid to build closer ties with Chinese renewable and clean energy and smart services and smart grid companies, amid broader power grid modernization in Asia trends.

The team led by the managing director and CEO Saeed Mohammed Al Tayer visited the headquarters of Hanergy Holding Group, one of the largest international companies in alternative and renewable energy, in Beijing.

The visit complements the co-operation between Dewa and Hanergy after the signing MoU between the two sides last May, said a statement from Dewa.

The two parties focused on renewable and clean energy and its development, including efforts to integrate solar into the grid through advanced programs, and enhancing opportunities for joint investment.

Al Tayer also visited the Exhibition Hall and Exhibition Centre of the Hanergy Clean Energy Exhibition spread over a 7,000-sq-m area at the Beijing Olympic Park.

He discussed solar power technologies and applications, which included integrated photovoltaic panels and their distribution on the roofs of industrial and residential buildings, residential and mobile power systems, micro-grid installations in remote regions, solar-powered vehicles, and various elements of the exhibition.

Al Tayer and the accompanying delegation later visited the Beijing R&D Centre, which is one of Huaweis largest research institutes, known for Huawei smart grid initiatives across global markets, that employs over 12,000 people. The centre covers the latest pre-5G solutions, Cloud, Big Data, as well as vertical solutions for a smart and safe city.

"The visit is part of a joint venture with Huawei, which includes R&D projects to develop smart network infrastructures and various mechanisms and technologies, aligned with recent U.S. grid improvement funding initiatives, such as smart meters for electricity and water services, energy demand management, and self-recovery mechanisms from errors and disasters," he added.

 

Related News

Related News

Electricity sales in the U.S. actually dropped over the past 7 years

US Electricity Sales Decline amid population growth and GDP gains, as DOE links reduced per capita consumption to energy efficiency, warmer winters, appliances, and bulbs, while hotter summers and rising AC demand may offset savings.

 

Key Points

US electricity sales fell 3% since 2010 despite population and GDP growth, driven by efficiency gains and warmer winters.

✅ DOE links drops to efficiency and warmer winters

✅ Per capita residential use fell about 7% since 2010

✅ Rising AC demand may offset winter heating savings

 

Since 2010, the United States has grown by 17 million people, and the gross domestic product (GDP) has increased by $3.6 trillion. Yet in that same time span, electricity sales in the United States actually declined by 3%, according to data released by the U.S. Department of Energy (DOE), even as electricity prices rose at a 41-year pace nationwide.

The U.S. decline in electricity sales is remarkable given that the U.S. population increased by 5.8% in that same time span. This means that per capita electricity use fell even more than that; indeed, the Department of Energy pegs residential electricity sales per capita as having declined by 7%, even as inflation-adjusted residential bills rose 5% in 2022 nationwide.

There are likely multiple reasons for this decline in electricity sales. Department of Energy analysts suggest that, at least in part, it is due to increased adoption of energy-efficient appliances and bulbs, like compact fluorescents. Indeed, the DOE notes that there is a correlation between consumer spending on “energy efficiency” and a reduction in per capita electricity sales, while utilities invest more in delivery infrastructure to modernize the grid.

Yet the DOE also notes that states with a greater increase in warm weather days had a corresponding decrease in electricity sales, as milder weather can reduce power demand across years. In southern states, the effect was most dramatic: for instance, from 2010 to 2016, Florida had a 56% decrease in cold weather days that would require heating and as a result, saw a 9% decrease in per capita electricity sales.

The moral is that warm winters save on electricity. But if global temperatures continue to rise, and summers become hotter, too, this decrease in winter heating spending may be offset by the increased need to run air conditioning in the summer, and given how electricity and natural gas prices interact, overall energy costs could shift. Indeed, it takes far more energy to cool a room than it does to heat it, for reasons related to the basic laws of thermodynamics. 

 

Related News

View more

Kaspersky Lab Discovers Russian Hacker Infrastructure

Crouching Yeti APT targets energy infrastructure with watering-hole attacks, compromising servers to steal credentials and stage intrusions; Kaspersky Lab links the Energetic Bear group to ICS threats across Russia, US, Europe, and Turkey.

 

Key Points

Crouching Yeti APT, aka Energetic Bear, is a threat group that targets energy firms using watering-hole attacks.

✅ Targets energy infrastructure via watering-hole compromises

✅ Uses open-source tools and backdoored sshd for persistence

✅ Scans global servers to stage intrusions and steal credentials

 

A hacker collective known for attacking industrial companies around the world have had some of their infrastructure identified by Russian security specialists.

Kaspersky Lab said that it has discovered a number of servers compromised by the group, belonging to different organisations based in Russia, the US, and Turkey, as well as European countries.

The Russian-speaking hackers, known as Crouching Yeti or Energetic Bear, mostly focus on energy facilities, as seen in reports of infiltration of the U.S. power grid targeting critical infrastructure, for the main purpose of stealing valuable data from victim systems.

 

Hacked servers

Crouching Yeti is described as an advanced persistent threat (APT) group that Kaspersky Lab has been tracking since 2010.

#google#

Kaspersky Lab said that the servers it has compromised are not just limited to industrial companies. The servers were hit in 2016 and 2017 with different intentions. Some were compromised to gain access to other resources or to be used as intermediaries to conduct attacks on other resources.

Others, including those hosting Russian websites, were used as watering holes.

It is a common tactic for Crouching Yeti to utilise watering hole attacks where the attackers inject websites with a link redirecting visitors to a malicious server.

“In the process of analysing infected servers, researchers identified numerous websites and servers used by organisations in Russia, US, Europe, Asia and Latin America that the attackers had scanned with various tools, possibly to find a server that could be used to establish a foothold for hosting the attackers’ tools and to subsequently develop an attack,” said the security specialists in a blog posting.

“The range of websites and servers that captured the attention of the intruders is extensive,” the firm said. “Kaspersky Lab researchers found that the attackers had scanned numerous websites of different types, including online stores and services, public organisations, NGOs, manufacturing, etc.

Kaspersky Lab said that the hackers used publicly available malicious tools, designed for analysing servers, and for seeking out and collecting information. The researchers also found a modified sshd file with a preinstalled backdoor. This was used to replace the original file and could be authorised with a ‘master password’.

“Crouching Yeti is a notorious Russian-speaking group that has been active for many years and is still successfully targeting industrial organisations through watering hole attacks, among other techniques,” explained Vladimir Dashchenko, head of vulnerability research group at Kaspersky Lab ICS CERT.

 

Russian government?

“Our findings show that the group compromised servers not only for establishing watering holes, but also for further scanning, and they actively used open-sourced tools that made it much harder to identify them afterwards,” he said.

“The group’s activities, such as initial data collection, the theft of authentication data, and the scanning of resources, are used to launch further attacks,” said Dashchenko. “The diversity of infected servers and scanned resources suggests the group may operate in the interests of the third parties.”

This may well tie into a similar conclusion from a rival security vendor.

In 2014 CrowdStrike claimed that the ‘Energetic Bear’ group was also tracked in Symantec's Dragonfly research and had been hacking foreign companies on behalf of the Russian state.

The security vendor had said the group had been carrying out attacks on foreign companies since 2012, with reports of breaches at U.S. power plants that underscored the campaign, and there was evidence that these operations were sanctioned by the Russian government.

Last month the United States for the first time publicly accused Russia in a condemnation of Russian grid hacking of attacks against the American power grid.

Symantec meanwhile warned last year of a resurgence in cyber attacks on European and US energy companies, including reports of access to U.S. utility control rooms that could result in widespread power outages.

And last July the UK’s National Cyber Security Centre (NCSC) acknowledged it was investigating a broad wave of attacks on companies in the British energy and manufacturing sectors.

 

Related News

View more

Four Major Types of Substation Integration Service Providers Account for More than $1 Billion in Annual Revenues

Substation Automation Services help electric utilities modernize through integration, EPC engineering, protective relaying, communications and security, with CAPEX and OPEX insights and a growing global market for third-party providers worldwide rapidly.

 

Key Points

Engineering, integration, and EPC support modernizing utility substations with protection, control, and secure communications

✅ Third-party engineering, EPC, and OEM services for utilities

✅ Integration of multi-vendor devices and platforms

✅ Focus on relays, communications, security, CAPEX-OPEX

 

The Newton-Evans Research Company has released additional findings from its newly published four volume research series entitled: The World Market for Substation Automation and Integration Programs in Electric Utilities: 2017-2020.

This report series has observed four major types of professional third-party service providers that assist electric utilities with substation modernization. These firms range from (1) smaller local or regional engineering consultancies with substation engineering resources to (2) major global participants in EPC work, to (3) the engineering services units of manufacturers of substation devices and platforms, to (4) substation integration specialist firms that source and integrate devices from multiple manufacturers for utility and industrial clients, and often provide substation automation training to support implementation.

2016 Global Share Estimates for Professional Services Providers of Electric Power Substation Integration and Automation Activities

The North American market report (Volume One) includes survey participation from 65 large and midsize US and Canadian electric utilities while the international market report (Volume Two) includes survey participation from 32 unique utilities in 20 countries around the world. In addition to the baseline survey questions, the report includes 2017 substation survey findings on four additional specific topics: communications issues; protective relaying trends; security topics and the CAPEX/OPEX outlook for substation modernization.

Volume Three is the detailed market synopsis and global outlook for substation automation and integration:

Section One of the report provides top-level views of substation modernization, automation & integration and the emerging digital grid landscape, and a narrative market synopsis.

Section Two provides mid-year 2017 estimates of population, electric power generation capacity, transmission substations, including the 2 GW UK substation commissioning as a benchmark, and primary MV distribution substations for more than 120 countries in eight world regions. Information on substation related expenditures and spending for protection and control for each major world region and several major countries is also provided.

Section Three provides information on NGO funding resources for substation modernization among developing nations.

Section Four of this report volume includes North American market share estimates for 2016 shipments of many substation automation-related devices and equipment, such as trends in the digital relay market for utilities.

The Supplier Profiles report (Volume Four) provides descriptive information on the substation modernization offerings of more than 90 product and services companies, covering leading players in the transformer market as well.

 

Related News

View more

The Implications of Decarbonizing Canada's Electricity Grid

Canada Electricity Grid Decarbonization advances net-zero goals by expanding renewable energy (wind, solar, hydro), boosting grid reliability with battery storage, and aligning policy, efficiency, and investment to cut emissions and strengthen energy security.

 

Key Points

Canada's shift to low-carbon power using renewables and storage to cut emissions and improve grid reliability.

✅ Invest in wind, solar, hydro, and transmission upgrades

✅ Deploy battery storage to balance intermittent generation

✅ Support just transition, jobs, and energy efficiency

 

As Canada moves towards a more sustainable future, decarbonizing its electricity grid has emerged as a pivotal goal. The transition aims to reduce greenhouse gas emissions, promote renewable energy sources, and ultimately support global climate targets, with cleaning up Canada's electricity widely viewed as critical to meeting those pledges. However, the implications of this transition are multifaceted, impacting the economy, energy reliability, and the lives of Canadians.

Understanding Decarbonization

Decarbonization refers to the process of reducing carbon emissions produced from various sources, primarily fossil fuels. In Canada, the electricity grid is heavily reliant on natural gas, coal, and oil, which contribute significantly to carbon emissions. The Canadian government has committed to achieving net-zero by 2050 through federal and provincial collaboration, with the electricity sector playing a crucial role in this initiative. The strategy includes increasing the use of renewable energy sources such as wind, solar, and hydroelectric power.

Economic Considerations

Transitioning to a decarbonized electricity grid presents both challenges and opportunities for Canada’s economy. On one hand, the initial costs of investing in renewable energy infrastructure can be substantial. This includes not only the construction of renewable energy plants but also the necessary upgrades to the grid to accommodate new technologies. According to the Fraser Institute analysis, these investments could lead to increased electricity prices, impacting consumers and businesses alike.

However, the shift to a decarbonized grid can also stimulate economic growth. The renewable energy sector is a rapidly growing industry that, as Canada’s race to net-zero accelerates, promises job creation in manufacturing, installation, and maintenance of renewable technologies. Moreover, as technological advancements reduce the cost of renewable energy, the long-term savings on fuel costs can benefit both consumers and businesses. The challenge lies in balancing these economic factors to ensure a smooth transition.

Reliability and Energy Security

A significant concern regarding the decarbonization of the electricity grid is maintaining reliability and energy security, especially as an IEA report indicates Canada will need substantially more electricity to achieve net-zero goals, requiring careful system planning.

To address this challenge, the implementation of energy storage solutions and grid enhancements will be essential. Advances in battery technology and energy storage systems can help manage supply and demand effectively, ensuring that energy remains available even during periods of low renewable output. Additionally, integrating a diverse mix of energy sources, including hydroelectric power, can enhance the reliability of the grid.

Social Impacts

The decarbonization process also carries significant social implications. Communities that currently depend on fossil fuel industries may face economic challenges as the transition progresses, and the Canadian Gas Association has warned of potential economy-wide costs for switching to electricity, underscoring the need for a just transition.

Furthermore, there is a need for public engagement and education on the benefits and challenges of decarbonization. Canadians must understand how changes in energy policy will affect their daily lives, from electricity prices to job opportunities. Fostering a sense of community involvement can help build support for renewable energy initiatives and ensure that diverse voices are heard in the planning process.

Policy Recommendations

For Canada to successfully decarbonize its electricity grid, and building on recent electricity progress across provinces nationwide, robust and forward-thinking policies must be implemented. This includes investment in research and development to advance renewable technologies and improve energy storage solutions. Additionally, policies should encourage public-private partnerships to share the financial burden of infrastructure investments.

Governments at all levels should also promote energy efficiency measures to reduce overall demand, making the transition more manageable. Incentives for consumers to adopt renewable energy solutions, such as solar panels, can further accelerate the shift towards a decarbonized grid.

Decarbonizing Canada's electricity grid presents a complex yet necessary challenge. While there are economic, reliability, and social considerations to navigate, the potential benefits of a cleaner, more sustainable energy future are substantial. By implementing thoughtful policies and fostering community engagement, Canada can lead the way in creating an electricity grid that not only meets the needs of its citizens but also contributes to global efforts in combating climate change.

 

Related News

View more

Russia-Ukraine Agreement on Power Plant Attacks Possible

Russia-Ukraine Energy Ceasefire explores halting strikes on power plants, safeguarding energy infrastructure and grids, easing humanitarian crises, stabilizing European markets, and advancing diplomatic talks on security, resilience, and critical infrastructure protection.

 

Key Points

A proposed pact to halt strikes on power plants, protect energy infrastructure, and stabilize grids and security.

✅ Shields power plants and grid infrastructure from attacks

✅ Eases humanitarian strain and improves winter resilience

✅ Supports European energy security and market stability

 

In a significant diplomatic development amid ongoing conflict, Russia and Ukraine are reportedly exploring the possibility of reaching an agreement to halt attacks on each other’s power plants. This potential cessation of hostilities could have far-reaching implications for the energy security and stability of both nations, as well as for the broader European energy landscape.

The Context of Energy Warfare

The conflict between Russia and Ukraine has escalated into what many analysts term "energy warfare," where both sides have targeted each other’s energy infrastructure. Such actions not only aim to undermine the adversary’s military capabilities but also have profound effects on civilian populations, leading to widespread power outages and humanitarian crises. Energy infrastructure has become a focal point in the conflict, with power plants and grids frequently damaged or destroyed.

The ongoing hostilities have raised concerns about energy security in Europe, with some warning of an energy nightmare if disruptions escalate, especially as many countries in the region rely on energy supplies from Russia. The attacks on power facilities exacerbate vulnerabilities in the energy supply chain, prompting calls for a ceasefire that encompasses energy infrastructure.

The Humanitarian Implications

The humanitarian impact of the conflict has been staggering, with millions of civilians affected by power outages, heating shortages, and disrupted access to essential services. The winter months, in particular, pose a grave challenge, as Ukraine prepares for winter amid ongoing energy constraints for vulnerable populations. A potential agreement to cease attacks on power plants could provide much-needed relief and stability for civilians caught in the crossfire.

International organizations, including the United Nations and various humanitarian NGOs, have been vocal in urging both parties to prioritize civilian safety and to protect critical infrastructure. Any agreement reached could facilitate aid efforts and enhance the overall humanitarian situation in affected areas.

Diplomatic Efforts and Negotiations

Reports indicate that diplomatic channels are being utilized to explore this potential agreement. While the specifics of the negotiations remain unclear, the idea of protecting energy infrastructure has been gaining traction among international diplomats. Key players, including European nations and the United States, with debates over U.S. energy security shaping positions, may play a pivotal role in mediating discussions.

Negotiating a ceasefire concerning energy infrastructure could serve as a preliminary step toward broader peace talks. By demonstrating goodwill through a tangible agreement, both parties might foster an environment conducive to further negotiations on other contentious issues in the conflict.

The Broader European Energy Landscape

The ramifications of an agreement between Russia and Ukraine extend beyond their borders. The stability of energy supplies in Europe is inextricably linked to the dynamics of the conflict, and the posture of certain EU states, such as Hungary's energy alliance with Russia, also shapes outcomes across the region. Many European nations have been grappling with rising energy prices and supply uncertainties, particularly in light of reduced gas supplies from Russia.

A halt to attacks on power plants could alleviate some of the strain on energy markets, which have experienced price hikes and instability in recent months, helping to stabilize prices and improve energy security for neighboring countries. Furthermore, it could pave the way for increased cooperation on energy issues, such as joint projects for renewable energy development or grid interconnections.

Future Considerations

While the prospect of an agreement is encouraging, skepticism remains about the willingness of both parties to adhere to such terms. The historical context of mistrust and previous violations of ceasefires, as both sides have accused each other of violations in recent months, raises questions about the durability of any potential pact. Continued dialogue and monitoring by international entities will be essential to ensure compliance and to build confidence between the parties.

Moreover, as discussions progress, it will be crucial to consider the long-term implications for energy policy in both Russia and Ukraine. The conflict has already prompted Ukraine to seek alternative energy sources and reduce its dependence on Russian gas, turning to electricity imports to keep the lights on, while Russia is exploring new markets for its energy exports.

The potential agreement between Russia and Ukraine to stop targeting each other’s power plants represents a glimmer of hope in a protracted conflict characterized by violence and humanitarian suffering. As both nations explore this diplomatic avenue, the implications for energy security, civilian safety, and the broader European energy landscape could be profound. Continued international support and monitoring will be vital to ensure that any agreement reached translates into real-world benefits for affected populations and contributes to a more stable energy future for the region.

 

Related News

View more

How IRENA Study Will Resolve Philippines’ Electricity Crisis

Philippines Renewable Energy Mini-Grids address rising electricity demand, rolling blackouts, off-grid electrification, and decentralized power in an archipelago, leveraging solar, wind, and hybrid systems to close the generation capacity gap and expand household access.

 

Key Points

Decentralized solar, wind, and hybrid systems powering off-grid areas to relieve shortages and expand access.

✅ Targets 2.3M unelectrified homes with reliable clean power

✅ Mitigates rolling blackouts via modular mini-grid deployments

✅ Supports energy access, resilience, and grid decentralization

 

The reason why IRENA made its study in the Philippines is because of the country’s demand for electricity is on a steady rise while the generating capacity lags behind. To provide households the electricity, the government is constrained to implement rolling blackouts in some regions. By 2030, the demand for electricity is projected to reach 30 million kilowatts as compared to 17 million kilowatts which is its current generating capacity.

One of the country’s biggest conglomerations, San Miguel Corporation is accountable for almost 20% of power output. It has power plants that has a 900,000-kW generation capacity. Another corporation in the energy sector, Aboitiz Power, has augmented its facilities as well to keep up with the demand. As a matter fact, even foreign players such as Tokyo Electric Power and Marubeni, as a result of the gradual privatization of the power industry which started in 2001, have built power plants in the country, a challenge mirrored in other regions where electricity for all demands greater investment, yet the power supply remains short.

And so, the IRENA came up with the study entitled “Accelerating the Deployment of Renewable Energy Mini-Grids for Off-Grid Electrification – A Study on the Philippines” to provide a clearer picture of what the current state of the crisis is and lay out possible solutions. It showed that as of 2016, a record year for renewables worldwide, the Philippines has approximately 2.3 million households without electricity. With only 89.6 percent of household electrification, that leaves about 2.36 million homes either with limited power of four to six hours each day or totally without electricity.

By the end of 2017, the Philippine government will have provided 90% of Philippine households with electricity. It is worth mentioning that in 2014, the National Capital Region together with two other regions had received 90 percent electrification. However, some areas are still unable to access power that’s within or above the national average. IRENA’s study has become a source of valuable information and analysis to the Philippines’ power systems and identified ways on how to surmount the challenges involving power systems decentralization, with renewable energy funding supporting those mini-grids which are either powered in parts or in full by renewable energy resources. This, however, does not discount the fact that providing electricity in every household still is an on-going struggle. Considering that the Philippines is an archipelago, providing enough, dependable, and clean modern energy to the entire country, including the remote and isolated islands is difficult. The onset of renewable energy is a viable and cost-effective option to support the implementation of mini-grids, as shown by Ireland's green electricity targets rising rapidly.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.