Smart grid and system improvements help avoid more than 500,000 outages over the summer


powerlines

CSA Z463 Electrical Maintenance -

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

ComEd Smart Grid Reliability drives outage reduction across Illinois, leveraging smart switches, grid modernization, and peak demand programs to keep customers powered, improve power quality, and enhance energy savings during extreme weather and severe storms.

 

Key Points

ComEd's smart grid performance, cutting outages and improving power quality to enhance reliability and customer savings.

✅ Smart switches reroute power to avoid customer interruptions

✅ Fewer outages during extreme weather across northern Illinois

✅ Peak Time Savings rewards for reduced peak demand usage

 

While the summer of 2019 set records for heat and brought severe storms, ComEd customers stayed cool thanks to record-setting reliability during the season. These smart grid investments over the last seven years helped to set records in key reliability measurements, including frequency of outages metrics, and through smart switches that reroute power around potential problem areas, avoided more than 538,000 customer interruptions from June to August.

"In a summer where we were challenged by extreme weather, we saw our smart grid investments and our people continue to deliver the highest levels of reliability, backed by extensive disaster planning across utilities, for the families and businesses we serve," said Joe Dominguez, CEO of ComEd. "We're proud to deliver the most affordable, cleanest and, as we demonstrated this summer, most reliable energy to our customers. I want to thank our 6,000 employees who work around the clock in often challenging conditions to power our communities."

ComEd has avoided more than 13 million customer interruptions since 2012, due in part to smart grid and system improvements. The avoided outages have resulted in $2.4 billion in estimated savings to society. In addition to keeping energy flowing for residents, strong power reliability continues to help persuade industrial and commercial companies to expand in northern Illinois and Chicago. The GridWise Alliance recently recognized Illinois as the No. 2 state in the nation for its smart grid implementation.

"Our smart grid investments has vastly improved the infrastructure of our system," said Terry Donnelly, ComEd president and chief operating officer. "We review the system and our operations continually to make sure we're investing in areas that benefit the greatest number of customers, and to prepare for public-health emergencies as well. On a daily basis and during storms or to reduce wildfire risk when necessary, our customers are seeing fewer and fewer interruptions to their lives and businesses."

ComEd customers also set records for energy savings this summer. Through its Peak Time Savings program and other energy-efficiency programs offered by utilities, ComEd empowered nearly 300,000 families and individuals to lower their bills by a total of more than $4 million this summer for voluntarily reducing their energy use during times of peak demand. Since the Peak Time Savings program launched in 2015, participating customers have earned a total of more than $10 million in bill credits.

 

Related News

Related News

Funding Approved for Bruce C Project Exploration

Bruce C Project advances Ontario clean energy with NRCan funding for nuclear reactors, impact assessment, licensing, and Indigenous engagement, delivering reliable baseload power and low-carbon electricity through pre-development studies at Bruce Power.

 

Key Points

A proposed nuclear build at Bruce Power, backed by NRCan funding for studies, licensing, and impact assessment to expand clean power.

✅ Up to $50M NRCan support for pre-development

✅ Focus: feasibility, impact assessment, licensing

✅ Early Indigenous and community engagement

 

Canada's clean energy landscape received a significant boost recently with the announcement of federal funding for the Bruce Power's Bruce C Project. Natural Resources Canada (NRCan) pledged up to $50 million to support pre-development work for this potential new nuclear build on the Bruce Power site. This collaboration between federal and provincial governments signifies a shared commitment to a cleaner energy future for Ontario and Canada.

The Bruce C Project, if it comes to fruition, has the potential to be a significant addition to Ontario's clean energy grid. The project envisions constructing new nuclear reactors at the existing Bruce Power facility, located on the shores of Lake Huron. Nuclear energy is a reliable source of clean electricity generation, as evidenced by Bruce Power's operating record during the pandemic, producing minimal greenhouse gas emissions during operation.

The funding announced by NRCan will be used to conduct crucial pre-development studies. These studies will assess the feasibility of the project from various angles, including technical considerations, environmental impact assessments, and Indigenous and community engagement, informed by lessons from a major refurbishment that required a Bruce reactor to be taken offline, to ensure thorough planning. Obtaining a license to prepare the site and completing an impact assessment are also key objectives for this pre-development phase.

This financial support from the federal government aligns with both national and provincial clean energy goals. The "Powering Canada Forward" plan, spearheaded by NRCan, emphasizes building a clean, reliable, and affordable electricity system across the country. Ontario's "Powering Ontario's Growth" plan echoes these objectives, focusing on investment options, such as the province's first SMR project, to electrify the province's economy and meet its growing clean energy demand.

"Ontario has one of the cleanest electricity grids in the world and the nuclear industry is leading the way," stated Mike Rencheck, President and CEO of Bruce Power. He views this project as a prime example of collaboration between federal and provincial entities, along with the private sector, where recent manufacturing contracts underscore industry capacity.

Nuclear energy, however, remains a topic of debate. While proponents highlight its role in reducing greenhouse gas emissions and providing reliable baseload power, opponents raise concerns about nuclear waste disposal and potential safety risks. The pre-development studies funded by NRCan will need to thoroughly address these concerns as part of the project's evaluation.

Transparency and open communication with local communities and Indigenous groups will also be crucial for the project's success. Early engagement activities facilitated by the funding will allow for open dialogue and address any potential concerns these stakeholders might have.

The Bruce C Project is still in its early stages. The pre-development work funded by NRCan will provide valuable data to determine the project's viability. If the project moves forward, it has the potential to significantly contribute to Ontario's clean energy future, while also creating jobs and economic benefits for local communities and suppliers.

However, the project faces challenges. Public perception of nuclear energy and the lengthy regulatory process are hurdles that will need to be addressed, as debates around the Pickering B refurbishment have highlighted in Ontario. Additionally, ensuring cost-effectiveness and demonstrating the project's long-term economic viability will be critical for securing broader support.

The next few years will be crucial for the Bruce C Project. The pre-development work funded by NRCan will be instrumental in determining its feasibility. If successful, this project could be a game-changer for Ontario's clean energy future, building on the province's Pickering life extensions to strengthen system adequacy, offering a reliable, low-carbon source of electricity for the province and beyond.

 

Related News

View more

Iran to Become Regional Hub for Renewable Energies

Iran Renewable Energy Strategy targets productivity first, then wind power expansion, investment, and exports, overcoming US sanctions, banking and forex limits, via private sector partnerships, precise wind maps, and regional grid interconnections.

 

Key Points

A policy prioritizing efficiency, wind deployment, and investor access while navigating US sanctions and currency limits.

✅ Prioritize efficiency, then scale wind generation capacity

✅ Leverage private sector, rial contracts, attract foreign capital

✅ Map high-wind corridors: Zabol, Khaf, Doroud; target exports

 

Deputy Energy Minister on Renewable Energies Affairs says the U.S. sanctions have currently affected the economic, banking and forex sectors of the country as the country‘s medicine is under sanctions and it means renewable energies are also under sanctions, and, globally, pandemic disruptions have compounded pressures on supply chains.

Speaking in a press conference yesterday, Mohammad Satkin said leading countries first focus on productivity then they turn to electricity production and the ministry in the first step has focused on productivity then on renewables, noting that renewables are now the cheapest new power in many regions, reiterating that the ministry will use all existing potentials in this regard especially in utilizing wind.

He added that the ministry is doing its best that the country would become the hub in the region for rush of investors and those who want take advantage of Iran’s experience in renewables, as markets like the U.S. scale renewables to a quarter of generation in coming years.

Satkin added that in the eastern part, the country has the biggest windy fields with capacity over 40mw. So the ministry is doing its best with full support of the private sector in equipping and investing in this field to carry out new policies.

He noted that in the past 12 years, wind potentials of the country have been under study, noting that country has three special channels in the east as one of them is north of Zabol which is very valuable in terms of energy and it has capability for construction of 2 to 3mw power station.

Satkin further said Khaf channel is the other one which has one of the most unique winds in the world, while Saudi wind expansion underscores regional momentum, and it can be developed for over 1000mw station. The windy region of Doroud is the third channel where the 50mw project has been kicked off there and it has capability for construction of some thousand-megawatt wind power station.

He added that Iran has prepared one of the most precise maps and it has even identified the border regions like with Afghanistan and perhaps in the future, Iran and Afghanistan may launch a joint project as Iran has enough expertise to offer its neighboring countries and as IRENA's decarbonisation roadmap highlights wider socio-economic benefits.

On signing agreement with foreign companies, Satkin said the ministry pays the sum of all contracts with domestic companies is paid in national currency rial as it is unable to pay in dollar or other currencies but Iranian companies may enjoy having foreign backings, including initiatives like ADFD-IRENA funding that support developing markets, and the ministry tries to attract foreign capital.

He also pointed to exports of renewables, adding that the government has authorized export of renewable energy but it needs proper planning to be assured of electricity production in order to export it to the neighboring states whenever they need, especially as Ireland targets over one-third green power within a few years.

 

Related News

View more

FortisAlberta Takes Necessary Precautions to Provide Electricity Service for Alberta

FortisAlberta COVID-19 response delivers safe electricity distribution across Alberta, with remote monitoring, 24/7 support, outage alerts, dispersed crews, and business continuity measures to sustain essential services for customers and communities.

 

Key Points

Plan ensuring reliable electricity in Alberta through 24/7 support, remote monitoring, outage alerts, and dispersed crews.

✅ 24/7 customer support via 310-WIRE and mobile app

✅ Remote monitoring and rapid outage restoration

✅ Dispersed crews in 50 communities for faster response

 

As the COVID-19 pandemic continues to evolve in Alberta (and around the world), FortisAlberta is taking the necessary actions and precautions informed by utility disaster planning to protect the health and well-being of its employees and to provide electricity service to its customers. FortisAlberta serves more than half a million customers with the electricity they depend on to take care of their families and community members throughout our province.

"We recognize these are challenging times as while most Albertans are asked to stay home others continue to work in the community to provide essential services, including utility workers in Ontario demonstrating support efforts. As your electricity distribution provider, please be assured you can count on us to do what we do best – provide our customers with safe and reliable electricity service wherever and whenever they need it," says Michael Mosher, FortisAlberta President and CEO.

FortisAlberta is proud to be a part of the communities it serves and commits to keeping the lights on for its customers. The company is providing a full range of services for its customers and has instilled best practices within critical parts of its business. The company's control centre continues to remotely monitor, control, and restore, where possible, the delivery of power across the entire province, including during events such as an Alberta grid alert that stress the system. Early in March, FortisAlberta implemented its business continuity plan and the company remains fully accessible to customers 24/7 by phone at 310-WIRE (9473) or through its mobile app where customers can report outages online or view details of an outage. Customers can also sign up for outage alerts to their mobile phone and/or email address to let them know if an outage does occur.

FortisAlberta's power line employees are geographically dispersed across 50 different communities so they can quickly address any issues that may arise. The company has implemented work from home measures and isolation best practices, and is planning for potential on-site lockdowns where necessary to ensure no disruption to customers.

FortisAlberta will continue to remain in close communication with its stakeholders to provide updates to customers and with industry associations to share guidance specific to the electricity sector, including insights on the evolving U.S. grid response to COVID-19 from peer utilities. FortisAlberta will also continue to invest in and empower its communities by contributing to organizations that offer programs and services aligned with the greatest needs in the communities it serves.

With the Alberta Government's recent announcement to provide relief to eligible Albertans by deferring electricity and gas charges for up to 90 days, similar to some B.C. relief measures being implemented, FortisAlberta is committed to working with stakeholders and retail partners to ensure this option is available to customers quickly and efficiently, and to learn from initiatives like the Hydro One relief fund that support customers.

 

Related News

View more

National Grid warns of short supply of electricity over next few days

National Grid power supply warning highlights electricity shortage risks amid low wind output, generator outages, and cold weather, reducing capacity margins and grid stability; considering demand response and reserve power to avoid blackout risk.

 

Key Points

An alert that reduced capacity from low wind and outages requires actions to maintain UK grid stability.

✅ Low wind output and generator outages reduce capacity margins

✅ ESO exploring demand response and reserve generation options

✅ Aim: maintain grid stability and avoid blackout risk

 

National Grid has warned that Britain’s electricity will be in short supply over the next few days after a string of unplanned power plant outages and unusually low wind speeds this week, as cheap wind power wanes across the system.

The electricity system operator said it will take action to “make sure there is enough generation” during the cold weather spell, including virtual power plants and other demand-side measures, to prevent a second major blackout in as many years.

“Unusually low wind output coinciding with a number of generator outages means the cushion of spare capacity we operate the system with has been reduced,” the company told its Twitter followers.

“We’re exploring measures and actions to make sure there is enough generation available to increase our buffer of capacity.”

A spokeswoman for National Grid said the latest electricity supply squeeze was not expected to be as severe as recorded last month, following reports that the government’s emergency energy plan was not going ahead, and added that the company did not expect to issue an official warning in the next 24 hours.

“We’re monitoring how the situation develops,” she said.

The warning is the second from the electricity system operator in recent weeks. In mid-September the company issued an official warning to the electricity market as peak power prices climbed, that its ‘buffer’ of power reserves had fallen below 500MW and it may need to call on more power plants to help prevent a blackout. The notice was later withdrawn.

Concerns over National Grid’s electricity supplies have been relatively rare in recent years. It was forced in November 2015 to ask businesses to cut their demand as a “last resort” measure to keep the lights on after a string of coal plant breakdowns.

But since then, National Grid’s greater challenge has been an oversupply of electricity, partly due to record wind generation, which has threatened to overwhelm the grid during times of low electricity demand.

National Grid has already spent almost £1bn on extra measures to prevent blackouts over the first half of the year by paying generators to produce less electricity during the coronavirus lockdown, as daily demand fell.

The company paid wind farms to turn off, and EDF Energy to halve the nuclear generation from its Sizewell B nuclear plant, to avoid overwhelming the grid when demand for electricity fell by almost a quarter from last year.

The electricity supply squeeze comes a little over a year after National Grid left large parts of England and Wales without electricity after the biggest blackout in a decade left a million homes in the dark. National Grid blamed a lightning strike for the widespread power failure.

Similar supply strains have recently caused power cuts in China, underscoring how weather and generation mix can trigger blackouts.

 

Related News

View more

7 steps to make electricity systems more resilient to climate risks

Electricity System Climate Resilience underpins grid reliability amid heatwaves and drought, integrating solar, wind, hydropower, nuclear, storage, and demand response with efficient transmission, flexibility, and planning to secure power for homes, industry, and services.

 

Key Points

Power systems capacity to endure extreme weather and integrate clean energy, maintaining reliability and flexibility.

✅ Grid hardening, transmission upgrades, and digital forecasting.

✅ Flexible low-carbon supply: hydropower, nuclear, storage.

✅ Demand response, efficient cooling, and regional integration.

 

Summer is just half done in the northern hemisphere and yet we are already seeing electricity systems around the world struggling to cope with the severe strain of heatwaves and low rainfall.

These challenges highlight the urgent need for strong and well-planned policies and investments to improve the security of our electricity systems, which supply power to homes, offices, factories, hospitals, schools and other fundamental parts of our economies and societies. This means making our electricity systems more resilient to the effects of global warming – and more efficient and flexible as they incorporate rising levels of solar and wind power, as solar is now the cheapest electricity in history according to the IEA, which will be critical for reaching net-zero emissions in time to prevent even worse impacts from climate change.

A range of different countries, including the US, Canada and Iraq, have been hard hit by extreme weather recently in the form of unusually high temperatures. In North America, the heat soared to record levels in the Pacific Northwest. An electricity watchdog says that five US regions face elevated risks to the security of their electricity supplies this summer, underscoring US grid climate risks that could worsen, and that California’s risk level is even higher.

Heatwaves put pressure on electricity systems in multiple ways. They increase demand as people turn up air conditioning, driving higher US electricity bills for many households, and as some appliances work harder to maintain cool temperatures. At the same time, higher temperatures can also squeeze electricity supplies by reducing the efficiency and capacity of traditional thermal power plants, such as coal, natural gas and nuclear. Extreme heat can reduce the availability of water for cooling plants or transporting fuel, forcing operators to reduce their output. In some cases, it can result in power plants having to shut down, increasing the risk of outages. If the heat wave is spread over a wide geographic area, it also reduces the scope for one region to draw on spare capacity from its neighbours, since they have to devote their available resources to meeting local demand.

A recent heatwave in Texas forced the grid operator to call for customers to raise their thermostats’ temperatures to conserve energy. Power generating companies suffered outages at much higher rates than expected, providing an unwelcome reminder of February’s brutal cold snap when outages – primarily from natural gas power plants – left up to 5 million customers across the US without power over a period of four days.

At the same time, lower than average rainfall and prolonged dry weather conditions are raising concerns about hydropower’s electricity output in various parts of the world, including Brazil, China, India and North America. The risks that climate change brings in the form of droughts adds to the challenges faced by hydropower, the world’s largest source of clean electricity, highlighting the importance of developing hydropower resources sustainably and ensuring projects are climate resilient.

The recent spate of heatwaves and unusually long dry spells are fresh warnings of what lies ahead as our climate continues to heat up: an increase in the scale and frequency of extreme weather events, which will cause greater impacts and strains on our energy infrastructure.

Heatwaves will increase the challenge of meeting electricity demand while also decarbonizing the electricity supply. Today, the amount of energy used for cooling spaces – such as homes, shops, offices and factories – is responsible for around 1 billion tonnes of global CO2 emissions. In particular, energy for cooling can have a major impact on peak periods of electricity demand, intensifying the stress on the system. Since the energy demand used for air conditioners worldwide could triple by 2050, these strains are set to grow unless governments introduce stronger policy measures to improve the energy efficiency of air conditioning units.

Electricity security is crucial for smooth energy transitions
Many countries around the world have announced ambitious targets for reaching net-zero emissions by the middle of this century and are seeking to step up their clean energy transitions. The IEA’s recent Global Roadmap to Net Zero by 2050 makes it clear that achieving this formidable goal will require much more electricity, much cleaner electricity and for that electricity to be used in far more parts of our economies than it is today. This means electricity reaching much deeper into sectors such as transport (e.g. EVs), buildings (e.g. heat-pumps) and industry (e.g. electric-arc steel furnaces), and in countries like New Zealand's electrification plans it is accelerating broader efforts. As clean electricity’s role in the economy expands and that of fossil fuels declines, secure supplies of electricity become ever-more important. This is why the climate resilience of the electricity sector must be a top priority in governments’ policy agendas.

Changing climate patterns and more frequent extreme weather events can hit all types of power generation sources. Hydropower resources typically suffer in hot and dry conditions, but so do nuclear and fossil fuel power plants. These sources currently help ensure electricity systems have the flexibility and capacity to integrate rising shares of solar and wind power, whose output can vary depending on the weather and the time of day or year.

As governments and utilities pursue the decarbonization of electricity systems, mainly through growing levels of solar and wind, and carbon-free electricity options, they need to ensure they have sufficiently robust and diverse sources of flexibility to ensure secure supplies, including in the event of extreme weather events. This means that the possible decommissioning of existing power generation assets requires careful assessments that take into account the importance of climate resilience.

Ensuring electricity security requires long-term planning and stronger policy action and investment
The IEA is committed to helping governments make well-informed decisions as they seek to build a clean and secure energy future. With this in mind, here are seven areas for action for ensuring electricity systems are as resilient as possible to climate risks:

1. Invest in electricity grids to make them more resilient to extreme weather. Spending today is far below the levels needed to double the investment for cleaner, more electrified energy systems, particularly in emerging and developing economies. Economic recovery plans from the COVID-19 crisis offer clear opportunities for economies that have the resources to invest in enhancing grid infrastructure, but much greater international efforts are required to mobilize and channel the necessary spending in emerging and developing economies.

2. Improve the efficiency of cooling equipment. Cost-effective technology already exists in most markets to double or triple the efficiency of cooling equipment. Investing in higher efficiency could halve future energy demand and reduce investment and operating costs by $3 trillion between now and 2050. In advance of COP26, the Super-Efficient Equipment and Appliance Deployment (SEAD) initiative is encouraging countries to sign up to double the energy efficiency of equipment sold in their countries by 2030.

3. Enable the growth of flexible low-carbon power sources to support more solar and wind. These electricity generation sources include hydropower and nuclear, for countries who see a role for one or both of them in their energy transitions. Guaranteeing hydropower resilience in a warming climate will require sophisticated methods and tools – such as the ones implemented in Brazil – to calculate the necessary level of reserves and optimize management of reservoirs and hydropower output even in exceptional conditions. Batteries and other forms of storage, combined with solar or wind, can also provide important amounts of flexibility by storing power and releasing it when needed.

4. Increase other sources of electricity system flexibility. Demand-response and digital technologies can play an important role. The IEA estimates that only a small fraction of the huge potential for demand response in the buildings sector is actually tapped at the moment. New policies, which associate digitalization and financial behavioural incentives, could unlock more flexibility. Regional integration of electricity systems across national borders can also increase access to flexible resources.

5. Expedite the development and deployment of new technologies for managing extreme weather threats. The capabilities of electricity utilities in forecasting and situation awareness should be enhanced with the support of the latest information and communication technologies.

6. Make climate resilience a central part of policy-making and system planning. The interconnected nature of recent extreme weather events reminds us that we need to account for many contingencies when planning resilient power systems. Climate resilience should be integral to policy-making by governments and power system planning by utilities and relevant industries, and debates over Canadian climate policy underscore how grid implications must be considered. According to the recent IEA report on climate resilience, only nine out of 38 IEA member and association countries include concrete actions on climate adaptation and resilience for every segment of electricity systems.

7. Strengthen international cooperation on electricity security. Electricity underpins vital services and basic needs, such as health systems, water supplies and other energy industries. Maintaining a secure electricity supply is thus of critical importance. The costs of doing nothing in the face of growing climate threats are becoming abundantly clear. The IEA is working with all countries in the IEA family, as well as others around the world, by providing unrivalled data, analysis and policy advice on electricity security issues. It is also bringing governments together at various levels to share experiences and best practices, and identify how to hasten the shift to cleaner and more resilient energy systems.


 

 

Related News

View more

Utilities see benefits in energy storage, even without mandates

Utility Battery Storage Rankings measure grid-connected capacity, not ownership, highlighting MW, MWh, and watts per customer across PJM, MISO, and California IOUs, featuring Duke Energy, IPL, ancillary services, and frequency regulation benefits.

 

Key Points

Rankings that track energy storage connected to utility grids, comparing MW, MWh, and W/customer rather than ownership.

✅ Ranks by MW, MWh, and watts per customer, not asset ownership

✅ Highlights PJM, MISO cases and California IOUs' deployments

✅ Examples: Duke Energy, IPL, IID; ancillary services, frequency response

 

The rankings do not tally how much energy storage a utility built or owns, but how much was connected to their system. So while IPL built and owns the storage facility in its territory, Duke does not own the 16 MW of storage that connected to its system in 2016. Similarly, while California’s utilities are permitted to own some energy storage assets, they do not necessarily own all the storage facilities connected to their systems.

Measured by energy (MWh), IPL ranked fourth with 20 MWh, and Duke Energy Ohio ranked eighth with 6.1 MWh.

Ranked by energy storage watts per customer, IPL and Duke actually beat the California utilities, ranking fifth and sixth with 42 W/customer and 23 W/customer, respectively.

Duke ready for next step

Given Duke’s plans, including projects in Florida that are moving ahead, the utility is likely to stay high in the rankings and be more of a driving force in development. “Battery technology has matured, and we are ready to take the next step,” Duke spokesman Randy Wheeless told Utility Dive. “We can go to regulators and say this makes economic sense.”

Duke began exploring energy storage in 2012, and until now most of its energy storage efforts were focused on commercial projects in competitive markets where it was possible to earn revenues. Those included its 36 MW Notrees battery storage project developed in partnership with the Department of Energy in 2012 that provides frequency regulation for the Electric Reliability Council of Texas market and two 2 MW storage projects at its retired W.C. Beckjord plant in New Richmond, Ohio, that sells ancillary services into the PJM Interconnection market.

On the regulated side, most of Duke’s storage projects have had “an R&D slant to them,” Wheeless said, but “we are moving beyond the R&D concept in our regulated territory and are looking at storage more as a regulated asset.”

“We have done the demos, and they have proved out,” Wheeless said. Storage may not be ready for prime time everywhere, he said, but in certain locations, especially where it can it can be used to do more than one thing, it can make sense.

Wheeless said Duke would be making “a number of energy storage announcements in the next few months in our regulated states.” He could not provide details on those projects.

More flexible resources
Location can be a determining factor when building a storage facility. For IPL, serving the wholesale market was a driving factor in the rationale to build its 20 MW, 20 MWh storage facility in Indianapolis.

IPL built the project to address a need for more flexible resources in light of “recent changes in our resource mix,” including decreasing coal-fired generation and increasing renewables and natural gas-fired generation, as other regions plan to rely on battery storage to meet rising demand, Joan Soller, IPL’s director of resource planning, told Utility Dive in an email. The storage facility is used to provide primary frequency response necessary for grid stability.

The Harding Street storage facility in May. It was the first energy storage project in the Midcontinent ISO. But the regulatory path in MISO is not as clear as it is in PJM, whereas initiatives such as Ontario storage framework are clarifying participation. In November, IPL with the Federal Energy Regulatory Commission, asking the regulator to find that MISO’s rules for energy storage are deficient and should be revised.

Soller said IPL has “no imminent plans to install energy storage in the future but will continue to monitor battery costs and capabilities as potential resources in future Integrated Resource Plans.”

California legislative and regulatory push

In California, energy storage did not have to wait for regulations to catch up with technology. With legislative and regulatory mandates, including CEC long-duration storage funding announced recently, as a push, California’s IOUs took high places in SEPA’s rankings.

Southern California Edison and San Diego Gas & Electric were first and fourth (63.2 MW and 17.2 MW), respectively, in terms of capacity. SoCal Ed and SDG&E were first and second (104 MWh and 28.4 MWh), respectively, and Pacific Gas and Electric was fifth (17 MWh) in terms of energy.

But a public power utility, the Imperial Irrigation District (IID), ended up high in the rankings – second in capacity (30 MW) and third  in energy (20 MWh) – even though as a public power entity it is not subject to the state’s energy storage mandates.

But while IID was not under state mandate, it had a compelling regulatory reason to build the storage project. It was part of a settlement reached with FERC over a September 2011 outage, IID spokeswoman Marion Champion said.

IID agreed to a $12 million fine as part of the settlement, of which $9 million was applied to physical improvements of IID’s system.

IID ended up building a 30 MW, 20 MWh lithium-ion battery storage system at its El Centro generating station. The system went into service in October 2016 and in May, IID used the system’s 44 MW combined-cycle natural gas turbine at the generating station.

Passing savings to customers
The cost of the storage system was about $31 million, and based on its experience with the El Centro project, Champion said IID plans to add to the existing batteries. “We are continuing to see real savings and are passing those savings on to our customers,” she said.

Champion said the battery system gives IID the ability to provide ancillary services without having to run its larger generation units, such as El Centro Unit 4, at its minimum output. With gas prices at $3.59 per million British thermal units, it costs about $26,880 a day to run Unit 4, she said.

IID’s territory is in southeastern California, an area with a lot of renewable resources. IID is also not part of the California ISO and acts as its own balancing authority. The battery system gives the utility greater operational flexibility, in addition to the ability to use more of the surrounding renewable resources, Champion said.

In May, IID’s board gave the utility’s staff approval to enter into contract negotiations for a 7 MW, 4 MWh expansion of its El Centro storage facility. The negotiations are ongoing, but approval could come in the next couple months, Champion said.

The heart of the issue, though, is “the ability of the battery system to lower costs for our ratepayers,” Champion said. “Our planning section will continue to utilize the battery, and we are looking forward to its expansion,” she said.” I expect it will play an even more important role as we continue to increase our percentage of renewables.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified