Trends in Electricity Prices in Europe: Expect More Volatility


Trends in Electricity Prices

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

EU Energy Outlook 2050 projects volatile electricity prices as wind, solar PV, and hydropower dominate capacity; natural gas supports dispatchable supply, CO2 prices rise, and e-mobility, storage, and national policy reforms reshape EU power markets.

 

Key Points

A modeled scenario of EU-28 power markets to 2050, analyzing capacity, prices, and policy impacts across technologies.

✅ Wind and solar dominate capacity; gas remains key dispatchable.

✅ CO2 costs and fuel trends drive price volatility and extremes.

✅ Storage, e-mobility, and policy reforms reshape national markets.

 

European electricity markets are constantly changing. Revisions of regulations and new laws, e.g. the Electricity Market Act in Germany, affect business decisions and market trends, reflecting Europe's push for electrification across sectors. In our EU Energy Outlook 2050 we provide non-weighted average values of a potential scenario for EU-28 countries (including Norway and Switzerland), based on the fundamental power market model developed by Energy Brainpool.

Power2Sim is a software tool that simulates the hourly electricity prices until the year 2050 for all countries of the European Union along with Norway and Switzerland. Most assumptions for the scenario are based on the IEA. The assumptions are adapted by Energy Brainpool according to national targets for Germany or for France. Results for individual countries vary strongly in some cases. For sound market assessments, solid modeling of individual national markets, including sensitivity analyses, is indispensable.
Supply side: Installed generating capacities in EU-28


 

Figure 1: Gross generation capacities in GW, source: Energy Brainpool

Generation capacity will be dominated by fluctuating renewable energies, in particular wind, solar PV and hydropower, as can be seen in figure 1. Wind energy is expected to expand to an estimated 30 per cent of overall generation capacity by 2050. With regard to dispatchable fossil fuel capacities, primarily natural gas power plants are planned to be built in Europe. The capacity of coal-fired power plants will fall to 4 per cent of total capacity by 2050. All in all, conventional dispatchable generation capacity will decline from 50 per cent to 30 per cent. Fluctuating capacity will dominate, which in turn will lead to more volatile prices.

  1. Demand side: coverage of the demand by energy sources in EU-28


 

Figure 2: Gross electricity production of generation technologies in TWh, source: Energy Brainpool

Electricity generation is expected to increase by 18 per cent till 2050 as a result of higher demand caused by increased electrification of the heat and transport sectors, as more drivers go electric across markets. While the production from coal-fired power plants will decline substantially, the production from natural gas fired power plants will double. In 2050, variable renewable energies will generate some 36 per cent of electricity while over 44 per cent will be produced by dispatchable conventional power plants. Remaining electricity production will come from renewable energy technologies such as biomass power plants.

  1. Commodity price development


 

Figure 3: Commodity prices (real EUR2015), source: Energy Brainpool

Commodity prices up to 2020 are based on the prices on the futures markets. The expected price trend of commodities between 2020 to 2050 in our model follows the 450ppm (2° C) scenario of the IEA’s “World Energy Outlook 2016”. The 2° C scenario is primarily achieved by a sharp increase of EUA prices (i.e. CO2 prices in the EU Emission Trading System). As high CO2 prices will lead to lower demand for fossil fuels in the power sector, prices of natural gas and hard coal will remain at a relatively constant level.

  1. Simulated annual power prices EU 28


 

Figure 4: Power prices (real EUR2015) and deviation range in national EU-28 markets, source: Energy Brainpool

Power prices until 2020 are influenced strongly by low prices for commodities on the futures markets. The development of electricity prices from 2020 to 2030 is influenced by increasing gas prices (due to higher demand, as more carbon-intensive generation is being shut-down) and CO₂-certificate prices, with U.S. DOE EV demand analysis illustrating how transport electrification can add load. From 2040 onwards electricity prices are expected to remain on a relative constant level despite rising prices for CO₂. The reason is that the high contribution of wind and solar power will increase the periods of low and even negative electricity prices. As we indicated above, these are average prices – they may vary considerably in individual countries.

  1. Average sales values and sales volumes for wind in EU-28


 

Figure 5: Sales values (real EUR2015) and volumes wind EU-28, source: Energy Brainpool

The sales value of wind energy will rise till 2040 and thereafter remain at a high level despite increasing installed capacities and simultaneous cannibalisation effects. Sales volumes (share of annual generation at positive spot market prices) will decrease only slightly. The few hours with extreme electricity prices benefit wind power plants which generate positive revenues in these hours.

Sales value is the average weighted price a technology (solar or wind) can achieve in the spot market in all hours during which the price is higher than or equal to 0 EUR/MWh. Sales value represents a more realistic picture of the revenue of renewable energy sources compared to other indices, because it discounts periods in which prices are zero or negative and the sources may be switched off.

  1. Average sales values and sales volumes for solar in EU-28


 

Figure 6: Sales value (real EUR2015) and volumes solar in EU-28, source: Energy Brainpool

The sales value of solar energy will rise till 2040 and remain at a high level thereafter, although still below the level of wind energy. This is because of the strong simultaneousness effect of solar power. This results in strong price declines at times of high solar feed-in. The sales volumes on EU average will only decrease slightly. However, in some countries the decline is much steeper.

  1. Extreme prices EU-28


 

Figure 7: Number of extreme prices, source: Energy Brainpool

Due to the high share of fluctuating generation capacities, electricity prices will become more volatile. Moreover, extremely high and extremely low prices will occur. Extreme prices are electricity prices equal to/below 0 EUR/MWh and those above 100 EUR/MWh. The anticipated ratio between the two extremes will create new opportunities for market newcomers and new technologies, e.g. storage systems. Extreme prices can be anticipated in Europe from 2026 on.

  1. E-mobility in the EU-28

 


 

Figure 8: Demand of e-mobility in EU-28, source: Energy Brainpool

The future development of e-mobility is a decisive factor for the European and national targets in terms of greenhouse gas emission reductions. If the decarbonisation of the transport sector will genuinely be implemented through e-mobility technologies, electricity demand from EVs will drastically increase. A share of 100 per cent e-mobility in the private transport sector in the EU28 by 2050 will result in an additional electricity demand of around 830 TWh/a, around a quarter of current total European electricity demand.

The development of e-mobility was not taken into account in the results presented above. If it were taken into account however, the increased demand from e-mobility would lead to higher electricity prices. This in turn would incentivise further investments in new generating capacities to cover for surplus demand. If climate goals are to be achieved, e-mobility needs to be powered by carbon free generating technologies. This would lead to a different technology mix than seen in Figure 1.

Related News

Why power companies should be investing in carbon-free electricity

Noncarbon Electricity Investment Strategy helps utilities hedge policy uncertainty, carbon tax risks, and emissions limits by scaling wind, solar, and CCS, avoiding stranded assets while balancing costs, reliability, and climate policy over decades.

 

Key Points

A strategy for utilities to invest 20-30 percent of capacity in low carbon sources to hedge emissions and carbon risks.

✅ Hedges future carbon tax and emissions limits

✅ Targets 20-30 percent of new generation from clean sources

✅ Reduces stranded asset risk and builds renewables capacity

 

When utility executives make decisions about building new power plants, a lot rides on their choices. Depending on their size and type, new generating facilities cost hundreds of millions or even billions of dollars. They typically will run for 40 or more years — 10 U.S. presidential terms. Much can change during that time.

Today one of the biggest dilemmas that regulators and electricity industry planners face is predicting how strict future limits on greenhouse gas emissions will be. Future policies will affect the profitability of today’s investments. For example, if the United States adopts a carbon tax 10 years from now, it could make power plants that burn fossil fuels less profitable, or even insolvent.

These investment choices also affect consumers. In South Carolina, utilities were allowed to charge their customers higher rates to cover construction costs for two new nuclear reactors, which have now been abandoned because of construction delays and weak electricity demand. Looking forward, if utilities are reliant on coal plants instead of solar and wind, it will be much harder and more expensive for them to meet future emissions targets, even as New Zealand's electrification push accelerates abroad. They will pass the costs of complying with these targets on to customers in the form of higher electricity prices.

With so much uncertainty about future policy, how much should we be investing in noncarbon electricity generation in the next decade? In a recent study, we proposed optimal near-term electricity investment strategies to hedge against risks and manage inherent uncertainties about the future.

We found that for a broad range of assumptions, 20 to 30 percent of new generation in the coming decade should be from noncarbon sources such as wind and solar energy across markets. For most U.S. electricity providers, this strategy would mean increasing their investments in noncarbon power sources, regardless of the current administration’s position on climate change.

Many noncarbon electricity sources — including wind, solar, nuclear power and coal or natural gas with carbon capture and storage — are more expensive than conventional coal and natural gas plants. Even wind power, which is often mentioned as competitive, is actually more costly when accounting for costs such as backup generation and energy storage to ensure that power is available when wind output is low.

Over the past decade, federal tax incentives and state policies designed to promote clean electricity sources spurred many utilities to invest in noncarbon sources. Now the Trump administration is shifting federal policy back toward promoting fossil fuels. But it can still make economic sense for power companies to invest in more expensive noncarbon technologies if we consider the potential impact of future policies.

How much should companies invest to hedge against the possibility of future greenhouse gas limits? On one hand, if they invest too much in noncarbon generation and the federal government adopts only weak climate policies throughout the investment period, utilities will overspend on expensive energy sources.

On the other hand, if they invest too little in noncarbon generation and future administrations adopt stringent emissions targets, utilities will have to replace high-carbon energy sources with cleaner substitutes, which could be extremely costly.

 

Economic modeling with uncertainty

We conducted a quantitative analysis to determine how to balance these two concerns and find an optimal investment strategy given uncertainty about future emissions limits. This is a core choice that power companies have to make when they decide what kinds of plants to build.

First we developed a computational model that represents the sectors of the U.S. economy, including electric power. Then we embedded it within a computer program that evaluates decisions in the electric power sector under policy uncertainty.

The model explores different electric power investment decisions under a wide range of future emissions limits with different probabilities of being implemented. For each decision/policy combination, it computes and compares economy-wide costs over two investment periods extending from 2015 to 2030.

We looked at costs across the economy because emissions policies impose costs on consumers and producers as well as power companies. For example, they may lead to higher electricity, fuel or product prices. By seeking to minimize economy-wide costs, our model identifies the investment decision that produces the greatest overall benefits to society.

 

More investments in clean generation make economic sense

We found that for a broad range of assumptions, the optimal investment strategy for the coming decade is for 20 to 30 percent of new generation to be from noncarbon sources. Our model identified this as the best level because it best positions the United States to meet a wide range of possible future policies at a low cost to the economy.

From 2005-2015, we calculated that about 19 percent of the new generation that came online was from noncarbon sources. Our findings indicate that power companies should put a larger share of their money into noncarbon investments in the coming decade.

While increasing noncarbon investments from a 19 percent share to a 20 to 30 percent share of new generation may seem like a modest change, it actually requires a considerable increase in noncarbon investment dollars. This is especially true since power companies will need to replace dozens of aging coal-fired power plants that are expected to be retired.

In general, society will bear greater costs if power companies underinvest in noncarbon technologies than if they overinvest. If utilities build too much noncarbon generation but end up not needing it to meet emissions limits, they can and will still use it fully. Sunshine and wind are free, so generators can produce electricity from these sources with low operating costs.

In contrast, if the United States adopts strict emissions limits within a decade or two, they could prevent carbon-intensive generation built today from being used. Those plants would become “stranded assets” — investments that are obsolete far earlier than expected, and are a drain on the economy.

Investing early in noncarbon technologies has another benefit: It helps develop the capacity and infrastructure needed to quickly expand noncarbon generation. This would allow energy companies to comply with future emissions policies at lower costs.

 

Seeing beyond one president

The Trump administration is working to roll back Obama-era climate policies such as the Clean Power Plan, and to implement policies that favor fossil generation. But these initiatives should alter the optimal strategy that we have proposed for power companies only if corporate leaders expect Trump’s policies to persist over the 40 years or more that these new generating plants can be expected to run.

Energy executives would need to be extremely confident that, despite investor pressure from shareholders, the United States will adopt only weak climate policies, or none at all, into future decades in order to see cutting investments in noncarbon generation as an optimal near-term strategy. Instead, they may well expect that the United States will eventually rejoin worldwide efforts to slow the pace of climate change and adopt strict emissions limits.

In that case, they should allocate their investments so that at least 20 to 30 percent of new generation over the next decade comes from noncarbon sources. Sustaining and increasing noncarbon investments in the coming decade is not just good for the environment — it’s also a smart business strategy that is good for the economy.

 

Related News

View more

CAA Quebec Shines at the Quebec Electric Vehicle Show

CAA Quebec Electric Mobility spotlights EV adoption, charging infrastructure, consumer education, and sustainability, highlighting policy collaboration, model showcases, and greener transport solutions from the Quebec Electric Vehicle Show to accelerate climate goals and practical ownership.

 

Key Points

CAA Quebec's program advancing EV education, charging network advocacy, and collaboration for sustainable transport.

✅ Consumer education demystifying EV range and charging

✅ Hands-on showcases of new EV models and safety tech

✅ Advocacy for faster, wider public charging networks

 

The Quebec Electric Vehicle Show has emerged as a significant event for the automotive industry, drawing attention from enthusiasts, industry experts, and consumers alike, similar to events like Everything Electric in Vancouver that amplify public interest. This year, CAA Quebec took center stage, showcasing its commitment to promoting electric vehicles (EVs) and sustainable transportation solutions.

A Strong Commitment to Electric Mobility

CAA Quebec’s participation in the show underscores its dedication to facilitating the transition to electric mobility. With the rising concerns over climate change and the increasing popularity of electric vehicles, as Canada pursues ambitious EV targets nationwide, organizations like CAA are pivotal in educating the public about the benefits and practicality of EV ownership. At the show, CAA Quebec offered valuable insights into the latest trends in electric mobility, including advancements in technology, charging infrastructure, and the overall impact on the environment.

Educational Initiatives

One of the highlights of CAA Quebec's presentation was its focus on education. The organization hosted informative sessions aimed at demystifying electric vehicles for the average consumer. Many potential buyers are still apprehensive about making the switch from traditional gasoline-powered cars. CAA Quebec addressed common misconceptions about EVs, such as range anxiety and charging challenges, providing attendees with the knowledge they need to make informed decisions.

The sessions included expert panels discussing the future of electric vehicles, with insights from automotive industry leaders and environmental experts, and addressing debates such as experts questioning Quebec's EV push that shape policy discussions.

Showcasing Innovative EVs

CAA Quebec also showcased a variety of electric vehicles from different manufacturers, giving attendees the chance to see and experience the latest models firsthand, similar to a popular EV event in Regina that drew strong community interest. This hands-on approach allowed potential buyers to explore the features of EVs, from performance metrics to safety technologies. By allowing consumers to interact with the vehicles, CAA Quebec helped to bridge the gap between interest and action, encouraging more people to consider an electric vehicle as their next purchase.

Addressing Infrastructure Challenges

A significant barrier to the widespread adoption of electric vehicles remains the availability of charging infrastructure. CAA Quebec took the opportunity to address this critical issue during the show. The organization has been actively involved in advocating for improved charging networks across Quebec, emphasizing the need for more public charging stations and faster charging options, where examples like BC's Electric Highway illustrate how corridor charging can ease long-distance travel concerns.

Collaboration with Government and Industry

CAA Quebec’s efforts are bolstered by collaboration with both government and industry stakeholders. The organization is working closely with provincial authorities to develop policies that support the growth of electric vehicle infrastructure. Additionally, partnerships with automotive manufacturers are paving the way for more sustainable practices in vehicle production and distribution, and utilities exploring vehicle-to-grid pilots in Nova Scotia to enhance grid resilience.

A Bright Future for Electric Vehicles

The Quebec Electric Vehicle Show highlighted not only the current state of electric mobility but also its promising future, reflected in growing interest in EVs in southern Alberta and other provinces. With the support of organizations like CAA Quebec, consumers are becoming more aware of the benefits of electric vehicles. This awareness is crucial as Quebec aims to achieve its ambitious climate goals, including a significant reduction in greenhouse gas emissions.

CAA Quebec's presence at the Quebec Electric Vehicle Show exemplifies its leadership in promoting electric vehicles and sustainable transportation. By focusing on education, showcasing innovative models, and advocating for improved infrastructure, CAA Quebec is helping to pave the way for a greener future. As the automotive landscape continues to evolve, the insights and initiatives presented at the show will play a vital role in guiding consumers towards embracing electric mobility. The future is electric, and with organizations like CAA Quebec at the helm, that future looks promising.

 

Related News

View more

Power Outage Affects 13,000 in North Seattle

North Seattle Power Outage disrupts 13,000 in Ballard, Northgate, and Lake City as Seattle City Light crews repair equipment failures. Aging infrastructure, smart grid upgrades, microgrids, and emergency preparedness highlight resilience and reliability challenges.

 

Key Points

A major outage affecting 13,000 in North Seattle from equipment failures and aging grid, prompting repairs and planning.

✅ 13,000 customers in Ballard, Northgate, Lake City affected

✅ Cause: equipment failures and aging infrastructure

✅ Crews, smart grid upgrades, and preparedness improve resilience

 

On a recent Wednesday morning, a significant power outage struck a large area of North Seattle, affecting approximately 13,000 residents and businesses. This incident not only disrupted daily routines, as seen in a recent London outage, but also raised questions about infrastructure reliability and emergency preparedness in urban settings.

Overview of the Outage

The outage began around 9 a.m., with initial reports indicating that neighborhoods including Ballard, Northgate, and parts of Lake City were impacted. Utility company Seattle City Light quickly dispatched crews to identify the cause of the outage and restore power as soon as possible. By noon, the utility reported that repairs were underway, with crews working diligently to restore service to those affected.

Such outages can occur for various reasons, including severe weather, such as windstorm-related failures, equipment failure, or accidents involving utility poles. In this instance, the utility confirmed that a series of equipment failures contributed to the widespread disruption. The situation was exacerbated by the age of some infrastructure in the area, highlighting ongoing concerns about the need for modernization and upgrades.

Community Impact

The power outage caused significant disruptions for residents and local businesses. Many households faced challenges as their morning routines were interrupted—everything from preparing breakfast to working from home became more complicated without electricity. Schools in the affected areas also faced challenges, as some had to adjust their schedules and operations.

Local businesses, particularly those dependent on refrigeration and electronic payment systems, felt the immediate impact. Restaurants struggled to serve customers without power, while grocery stores dealt with potential food spoilage, leading to concerns about lost inventory and revenue. The outage underscored the vulnerability of businesses to infrastructure failures, as recent Toronto outages have shown, prompting discussions about contingency plans and backup systems.

Emergency Response

Seattle City Light’s swift response was crucial in minimizing the outage's impact. Utility crews worked through the day to restore power, and the company provided regular updates to the community, keeping residents informed about progress and estimated restoration times. This transparent communication was essential in alleviating some of the frustration among those affected, and contrasts with extended outages in Houston that heightened public concern.

Furthermore, the outage served as a reminder of the importance of emergency preparedness for both individuals and local governments, and of utility disaster planning that supports resilience. Many residents were left unprepared for an extended outage, prompting discussions about personal emergency kits, alternative power sources, and community resources available during such incidents. Local officials encouraged residents to stay informed about power outages and to have a plan in place for emergencies.

Broader Implications for Infrastructure

This incident highlights the broader challenges facing urban infrastructure. Many cities, including Seattle, are grappling with aging power grids that struggle to keep up with modern demands, and power failures can disrupt transit systems like the London Underground during peak hours. Experts suggest that regular assessments and updates to infrastructure are critical to ensuring reliability and resilience against both natural and human-made disruptions.

In response to increasing frequency and severity of power outages, including widespread windstorm outages in Quebec, there is a growing call for investment in modern technologies and infrastructure. Smart grid technology, for instance, can enhance monitoring and maintenance, allowing utilities to respond more effectively to outages. Additionally, renewable energy sources and microgrid systems could offer more resilience and reduce reliance on centralized power sources.

The recent power outage in North Seattle was a significant event that affected thousands of residents and businesses. While the immediate response by Seattle City Light was commendable, the incident raised important questions about infrastructure reliability and emergency preparedness. As cities continue to grow and evolve, the need for modernized power systems and improved contingency planning will be crucial to ensuring that communities can withstand future disruptions.

As residents reflect on this experience, it serves as a reminder of the interconnectedness of urban living and the critical importance of reliable infrastructure in maintaining daily life. With proactive measures, cities can work towards minimizing the impact of such outages and building a more resilient future for their communities.

 

Related News

View more

'Electricity out of essentially nothing': Invention creates power from falling snow

Snow-powered nanogenerator harvests static electricity from falling snow using a silicone triboelectric design, enabling energy harvesting, solar panel support during snowfall, and dual-use sensing for weather monitoring and wearable winter sports analytics.

 

Key Points

A silicone triboelectric device that harvests snowDcharge to generate power and enable sensing.

✅ Triboelectric silicone layer captures charge from falling snow.

✅ Integrates with solar arrays to maintain power during snowfall.

✅ Functions as weather and motion sensor for winter sports.

 

Scientists from University of California, Los Angeles and McMaster University have invented a nanogenerator that creates electricity from falling snow.

Most Canadians have already seen a mini-version of this, McMaster Prof. Ravi Selvaganapathy told CTV’s Your Morning. “We find that we often get shocked in the winter when it’s dry when we come in into contact with a conductive surface like a doorknob.”

The thin device works by harnessing static electricity: positively-charged, falling snow collides with the negatively-charged silicone device, which produces a charge that’s captured by an electrode.

“You separate the charges and create electricity out of essentially nothing,” Richard Kaner, who holds UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation and whose lab has explored turning waste into graphene, said in a press release.

“The device can work in remote areas because it provides its own power and does not need batteries or reliance on home storage systems such as the Tesla Powerwall, which store energy for later use,” he said, explaining that the device was 3D printed, flexible and inexpensive to make because of the low cost of silicone.

“It’s also going to be useful in places like Canada, where we get a lot of snow and are pursuing a net-zero grid by 2050 to cut emissions. We can extract energy from the environment,” Selvaganapathy added.

The team, which also included scientists from the University of Toronto, published their findings in Nano Energy journal last year, but a few weeks ago, they revealed the device’s more practical uses.

About 30 per cent of the Earth’s surface is covered by snow each winter, which can significantly limit the energy generated by solar panels, including rooftop solar grids in cold climates.

So the team thought: why not simply harness electricity from the snow whenever the solar panels were covered?

Integrating their device into solar panel arrays could produce a continuous power supply whenever it snows, potentially as part of emerging virtual power plants that aggregate distributed resources, study co-author and UCLA assistant researcher Maher El-Kady explained.

The device also serves as a weather-monitoring station by recording how much snow is falling and from where; as well as the direction and speed of the wind.

The team said they also want to incorporate their device into weather sensors to help them better acquire and transmit electronic signals, supporting initiatives to use AI for energy savings across local grids. They said several Toronto-based companies -- which they couldn’t name -- have expressed interest in partnering with them.

Selvaganapathy said the device would hop on the trend of “sensors being incorporated into what we wear, into our homes and even to detect electricity theft in some markets in order to monitor a lot of the things that are important to us”

But the device’s arguably larger potential use is being integrated into technology to monitor athletes and their performances during winter sports, such as hiking, skiing and cross-country skiing.

Up to now, the movement patterns used during cross-country skiing couldn’t be detected by a smart watch, but this device may be able to.

Scientists such as Kaner believe the technology could usher in a new era of self-monitoring devices to assess an athlete’s performance while they’re running, walking or jumping.

The device is simply a proof of concept and the next step would be figuring out how to generate more electricity and integrate it into all of these potential devices, Selvaganapathy said.

 

Related News

View more

Hydro One wants to spend another $6-million to redesign bills

Hydro One Bill Redesign Spending sparks debate over Ontario Energy Board regulation, rate applications, privatization, and digital billing upgrades, as surveys cite confusing invoices under the Fair Hydro Plan for residential, commercial, and industrial customers.

 

Key Points

$15M project to simplify Hydro One bills, upgrade systems, and improve digital billing for commercial customers.

✅ $9M spent; $6M proposed for C&I and large-account changes.

✅ OEB to rule amid rate application and privatization scrutiny.

✅ Survey: 40% of customers struggled to understand bills.

 

Ontario's largest and recently privatized electricity utility has spent $9-million to redesign bills and is proposing to spend an additional $6-million on the project.

Hydro One has come under fire for spending since the Liberal government sold more than half of the company, notably for its CEO's $4.5-million pay.

Now, the NDP is raising concerns with the $15-million bill redesign expense contained in a rate application from the formerly public utility.

"I don't think the problem we face is a bill that people can't understand, I think the problem is rates that are too high," said energy critic Peter Tabuns. "Fifteen million dollars seems awfully expensive to me."

But Hydro One says a 2016 survey of its customers indicated about 40 per cent had trouble understanding their bills.

Ferio Pugliese, the company's executive vice-president of customer care and corporate affairs, said the redesign was aimed at giving customers a simpler bill.

"The new format is a format that when tested and put in front of our customers has been designed to give customers the four or five salient items they want to see on their bill," he said.

About $9-million has already gone into redesigning bills, mostly for residential customers, Pugliese said. Cosmetic changes to bills account for about 25 per cent of the cost, with the rest of the money going toward updating information systems and improving digital billing platforms, he said.

The additional $6-million Hydro One is looking to spend would go toward bill changes mostly for its commercial, industrial and large distribution account customers.

Energy Minister Glenn Thibeault noted in a statement that the Ontario Energy Board has yet to decide on the expense, but he suggested he sees the bill redesign as necessary alongside legislation to lower electricity rates introduced by the province.

"With Ontarians wanting clearer bills that are easier to understand, Hydro One's bill redesign project is a necessary improvement that will help customers," he wrote.

"Reductions from the Fair Hydro Plan (the government's 25 per cent cut to bills last year) are important information for both households and businesses, and it's our job to provide clear, helpful answers whenever possible."

The OEB recently ordered Hydro One to lower a rate increase it had been seeking for this year to 0.2 per cent down from 4.8 per cent.

The regulator also rejected a Hydro One proposal to give shareholders all of the tax savings generated by the IPO in 2015 when the Liberal government first began partially privatizing the utility. The OEB instead mandated shareholders receive 62 per cent of the savings while ratepayers receive the remaining 38 per cent.

 

 

Related News

View more

Russia to Ban Bitcoin Mining Amid Electricity Deficit

Russia Bitcoin Mining Ban highlights electricity deficits, grid stability concerns, and sustainability challenges, prompting stricter cryptocurrency regulation as mining operations in Siberia face shutdowns, relocations, and renewed focus on energy efficiency and resource allocation.

 

Key Points

Policy halting Bitcoin mining in key regions to ease electricity deficits, stabilize the grid, and prioritize energy.

✅ Targets high-load regions like Siberia facing electricity deficits

✅ Protects residential and industrial energy security, limits outages

✅ Prompts miner relocations, regulation, and potential renewables

 

In a significant shift in its stance on cryptocurrency, Russia has announced plans to ban Bitcoin mining in several key regions, primarily due to rising electricity deficits. This move highlights the ongoing tensions between energy management and the growing demand for cryptocurrency mining, which has sparked a robust debate about sustainability and resource allocation in the country.

Background on Bitcoin Mining in Russia

Russia has long been a major player in the global cryptocurrency landscape, particularly in Bitcoin mining. The country’s vast and diverse geography offers ample opportunities for mining, with several regions boasting low electricity costs and cooler climates that are conducive to operating the high-powered computers used for mining, similar to Iceland's mining boom in cold regions.

However, the boom in mining activities has put a strain on local electricity grids, as seen with BC Hydro suspensions in Canada, particularly as demand for energy continues to rise. This situation has become increasingly untenable, leading government officials to reconsider the viability of allowing large-scale mining operations.

Reasons for the Ban

The decision to ban Bitcoin mining in certain regions stems from a growing electricity deficit that has been exacerbated by both rising temperatures and increased energy consumption. Reports indicate that some regions are struggling to meet domestic energy needs, and jurisdictions like Manitoba's pause on crypto connections reflect similar grid concerns, particularly during peak consumption periods. Officials have expressed concern that continuing to support cryptocurrency mining could lead to blackouts and further strain on the electrical infrastructure.

Additionally, this ban is seen as a measure to redirect energy resources toward more critical sectors, including residential heating and industrial needs. By curbing Bitcoin mining, the government aims to prioritize the energy security of its citizens and maintain stability within its energy markets and the wider global electricity market dynamics.

Regional Impact

The regions targeted by the ban include areas that have seen a significant influx of mining operations, often attracted by the low costs of electricity. For instance, Siberia, known for its abundant natural resources and inexpensive power, has become a major center for miners. The ban is likely to have profound implications for local economies that have come to rely on the influx of investments from cryptocurrency companies.

Many miners are expected to be affected financially as they may have to halt operations or relocate to regions with more favorable regulations. This could lead to job losses and a decline in local business activities that have sprung up around the mining industry, such as hardware suppliers and tech services.

Broader Implications for Cryptocurrency in Russia

This ban reflects a broader trend within Russia’s approach to cryptocurrencies. While the government has been cautious about outright banning digital currencies, it has simultaneously sought to regulate the industry more stringently. Recent legislation has aimed to establish a legal framework for cryptocurrencies, focusing on taxation and oversight while navigating the balance between innovation and regulation.

As other countries around the world grapple with the implications of cryptocurrency mining, Russia’s decision adds to the narrative of the challenges associated with energy consumption in this sector. The international community is increasingly aware of the environmental impact of Bitcoin mining, which has come under fire for its significant energy use and carbon footprint.

Future of Mining in Russia

Looking ahead, the future of Bitcoin mining in Russia remains uncertain. While some regions may implement strict bans, others could potentially embrace a more regulated approach to mining, provided it aligns with energy availability and environmental considerations. The country’s vast landscape offers opportunities for innovative solutions, such as utilizing renewable energy sources, even as India's solar growth slows amid rising coal generation, to power mining operations.

As global attitudes toward cryptocurrency evolve, Russia will likely continue to adapt its policies in response to both domestic energy needs and international pressures, including Europe's shift away from Russian energy that influence policy choices. The balance between fostering a competitive cryptocurrency market and ensuring energy sustainability will be a key challenge for Russian policymakers moving forward.

Russia’s decision to ban Bitcoin mining in key regions marks a pivotal moment in the intersection of cryptocurrency and energy management. As the nation navigates its energy deficits, the implications for the mining industry and the broader cryptocurrency landscape will be significant. This move not only underscores the need for responsible energy consumption in the digital age but also reflects the complexities of integrating emerging technologies within existing frameworks of governance and infrastructure. As the situation unfolds, all eyes will be on how Russia balances innovation with sustainability in its approach to cryptocurrency.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.