Trends in Electricity Prices in Europe: Expect More Volatility


Trends in Electricity Prices

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

EU Energy Outlook 2050 projects volatile electricity prices as wind, solar PV, and hydropower dominate capacity; natural gas supports dispatchable supply, CO2 prices rise, and e-mobility, storage, and national policy reforms reshape EU power markets.

 

Key Points

A modeled scenario of EU-28 power markets to 2050, analyzing capacity, prices, and policy impacts across technologies.

✅ Wind and solar dominate capacity; gas remains key dispatchable.

✅ CO2 costs and fuel trends drive price volatility and extremes.

✅ Storage, e-mobility, and policy reforms reshape national markets.

 

European electricity markets are constantly changing. Revisions of regulations and new laws, e.g. the Electricity Market Act in Germany, affect business decisions and market trends, reflecting Europe's push for electrification across sectors. In our EU Energy Outlook 2050 we provide non-weighted average values of a potential scenario for EU-28 countries (including Norway and Switzerland), based on the fundamental power market model developed by Energy Brainpool.

Power2Sim is a software tool that simulates the hourly electricity prices until the year 2050 for all countries of the European Union along with Norway and Switzerland. Most assumptions for the scenario are based on the IEA. The assumptions are adapted by Energy Brainpool according to national targets for Germany or for France. Results for individual countries vary strongly in some cases. For sound market assessments, solid modeling of individual national markets, including sensitivity analyses, is indispensable.
Supply side: Installed generating capacities in EU-28


 

Figure 1: Gross generation capacities in GW, source: Energy Brainpool

Generation capacity will be dominated by fluctuating renewable energies, in particular wind, solar PV and hydropower, as can be seen in figure 1. Wind energy is expected to expand to an estimated 30 per cent of overall generation capacity by 2050. With regard to dispatchable fossil fuel capacities, primarily natural gas power plants are planned to be built in Europe. The capacity of coal-fired power plants will fall to 4 per cent of total capacity by 2050. All in all, conventional dispatchable generation capacity will decline from 50 per cent to 30 per cent. Fluctuating capacity will dominate, which in turn will lead to more volatile prices.

  1. Demand side: coverage of the demand by energy sources in EU-28


 

Figure 2: Gross electricity production of generation technologies in TWh, source: Energy Brainpool

Electricity generation is expected to increase by 18 per cent till 2050 as a result of higher demand caused by increased electrification of the heat and transport sectors, as more drivers go electric across markets. While the production from coal-fired power plants will decline substantially, the production from natural gas fired power plants will double. In 2050, variable renewable energies will generate some 36 per cent of electricity while over 44 per cent will be produced by dispatchable conventional power plants. Remaining electricity production will come from renewable energy technologies such as biomass power plants.

  1. Commodity price development


 

Figure 3: Commodity prices (real EUR2015), source: Energy Brainpool

Commodity prices up to 2020 are based on the prices on the futures markets. The expected price trend of commodities between 2020 to 2050 in our model follows the 450ppm (2° C) scenario of the IEA’s “World Energy Outlook 2016”. The 2° C scenario is primarily achieved by a sharp increase of EUA prices (i.e. CO2 prices in the EU Emission Trading System). As high CO2 prices will lead to lower demand for fossil fuels in the power sector, prices of natural gas and hard coal will remain at a relatively constant level.

  1. Simulated annual power prices EU 28


 

Figure 4: Power prices (real EUR2015) and deviation range in national EU-28 markets, source: Energy Brainpool

Power prices until 2020 are influenced strongly by low prices for commodities on the futures markets. The development of electricity prices from 2020 to 2030 is influenced by increasing gas prices (due to higher demand, as more carbon-intensive generation is being shut-down) and CO₂-certificate prices, with U.S. DOE EV demand analysis illustrating how transport electrification can add load. From 2040 onwards electricity prices are expected to remain on a relative constant level despite rising prices for CO₂. The reason is that the high contribution of wind and solar power will increase the periods of low and even negative electricity prices. As we indicated above, these are average prices – they may vary considerably in individual countries.

  1. Average sales values and sales volumes for wind in EU-28


 

Figure 5: Sales values (real EUR2015) and volumes wind EU-28, source: Energy Brainpool

The sales value of wind energy will rise till 2040 and thereafter remain at a high level despite increasing installed capacities and simultaneous cannibalisation effects. Sales volumes (share of annual generation at positive spot market prices) will decrease only slightly. The few hours with extreme electricity prices benefit wind power plants which generate positive revenues in these hours.

Sales value is the average weighted price a technology (solar or wind) can achieve in the spot market in all hours during which the price is higher than or equal to 0 EUR/MWh. Sales value represents a more realistic picture of the revenue of renewable energy sources compared to other indices, because it discounts periods in which prices are zero or negative and the sources may be switched off.

  1. Average sales values and sales volumes for solar in EU-28


 

Figure 6: Sales value (real EUR2015) and volumes solar in EU-28, source: Energy Brainpool

The sales value of solar energy will rise till 2040 and remain at a high level thereafter, although still below the level of wind energy. This is because of the strong simultaneousness effect of solar power. This results in strong price declines at times of high solar feed-in. The sales volumes on EU average will only decrease slightly. However, in some countries the decline is much steeper.

  1. Extreme prices EU-28


 

Figure 7: Number of extreme prices, source: Energy Brainpool

Due to the high share of fluctuating generation capacities, electricity prices will become more volatile. Moreover, extremely high and extremely low prices will occur. Extreme prices are electricity prices equal to/below 0 EUR/MWh and those above 100 EUR/MWh. The anticipated ratio between the two extremes will create new opportunities for market newcomers and new technologies, e.g. storage systems. Extreme prices can be anticipated in Europe from 2026 on.

  1. E-mobility in the EU-28

 


 

Figure 8: Demand of e-mobility in EU-28, source: Energy Brainpool

The future development of e-mobility is a decisive factor for the European and national targets in terms of greenhouse gas emission reductions. If the decarbonisation of the transport sector will genuinely be implemented through e-mobility technologies, electricity demand from EVs will drastically increase. A share of 100 per cent e-mobility in the private transport sector in the EU28 by 2050 will result in an additional electricity demand of around 830 TWh/a, around a quarter of current total European electricity demand.

The development of e-mobility was not taken into account in the results presented above. If it were taken into account however, the increased demand from e-mobility would lead to higher electricity prices. This in turn would incentivise further investments in new generating capacities to cover for surplus demand. If climate goals are to be achieved, e-mobility needs to be powered by carbon free generating technologies. This would lead to a different technology mix than seen in Figure 1.

 

Related News

Related News

Manitoba Hydro hikes face opposition as hearings begin

Manitoba Hydro rate hikes face public hearings over electricity rates, utility bills, and debt, with impacts on low-income households, Indigenous communities, and Winnipeg services amid credit rating pressure and rising energy costs.

 

Key Points

Manitoba Hydro seeks 7.9% annual increases to stabilize finances and debt, impacting electricity costs for households.

✅ Proposed hikes: 7.9% yearly through 2023/24

✅ Driven by debt, credit rating declines, rising interest

✅ Disproportionate impact on low-income and Indigenous communities

 

Hearings began Monday into Manitoba Hydro’s request for consecutive annual rate hikes of 7.9 per cent.  The crown corporation is asking for the steep hikes to commence April 1, 2018.

The increases would continue through 2023/2024, under a multi-year rate plan before dropping to what Hydro calls “sustainable” levels.

Patti Ramage, legal counsel for Hydro, said while she understands no one welcomes the “exceptional” rate increases, the company is dealing with exceptional circumstances.

It’s the largest rate increase Hydro has ever asked for, though a scaled-back increase was discussed later, saying rising debt and declining credit ratings are affecting its financial stability.

President and CEO Kelvin Shepherd said Hydro is borrowing money to fund its interest payments, and acknowledged that isn’t an effective business model.

Hydro’s application states that it will be spending up to 63 per cent of its revenue on paying financial expenses if the current request for rate hikes is not approved.

If it does get the increase it wants, that number could shrink to 45 per cent – which Ramage says is still quite high, but preferable to the alternative.

She cited the need to take immediate action to fix Hydro’s finances instead of simply hoping for the best.

“The worst thing we can do is defer action… that’s why we need to get this right,” Ramage said.

A number of intervenors presented varying responses to Hydro’s push for increased rates, with many focusing on how the hikes would affect Manitobans with lower incomes.

Senwung Luk spoke on behalf of the Assembly of Manitoba Chiefs, and said the proposed rates would hit First Nations reserves particularly hard.

He noted that 44.2 per cent of housing on reserves in the province needs significant improvement, which means electricity use tends to be higher to compensate for the lower quality of infrastructure.

Luk says this problem is compounded by the higher rates of poverty in Indigenous populations, with 76 per cent of children on reserves in Manitoba living below the poverty line.

If the increase goes forward, he said the AMC hopes to see a reduced rate for those living on reserves, despite a recent appeal court ruling on such pricing.

Byron Williams, speaking on behalf of the Consumers Coalition, said the 7.9 per cent increase unreasonably favours the interests of Hydro, and is unjustly biased against virtually everyone else.

In Saskatchewan, the NDP criticized an SaskPower 8 per cent rate hike as unfair to customers, highlighting regional concerns.

Williams said customers using electric space heating would be more heavily targeted by the rate increase, facing an extra $13.14 a month as opposed to the $6.88 that would be tacked onto the bills of those not using electric space heating.

Williams also called Hydro’s financial forecasts unreliable, bringing the 7.9 per cent figure into question.

Lawyer George Orle, speaking for the Manitoba Keewatinowi Okimakanak, said the proposed rate hikes would “make a mockery” of the sacrifices made by First Nations across the province, given that so much of Hydro’s infrastructure is on Indigenous land.

The city of Winnipeg also spoke out against the jump, saying property taxes could rise or services could be cut if the hikes go ahead to compensate for increased, unsustainable electricity costs.

In British Columbia, a BC Hydro 3 per cent increase also moved forward, drawing attention to affordability.

A common theme at the hearing was that Hydro’s request was not backed by facts, and that it was heading towards fear-mongering.

Manitoba Hydro’s CEO begged to differ as he plead his case during the first hearing of a process that is expected to take 10 weeks.

 

Related News

View more

BC Hydro hoping to be able to charge customers time of use rates

BC Hydro Time-of-Use Rates propose off-peak credits and peak surcharges, with 5 cent/kWh differentials, encouraging demand shifting, EV charging at night, and smart meter adoption, pending BC Utilities Commission review in an optional opt-in program.

 

Key Points

Optional pricing that credits 5 cents/kWh off-peak and adds 5 cents/kWh during 4-9 p.m. peak to encourage load shifting.

✅ Off-peak credit: 11 p.m.-7 a.m., 5 cents/kWh savings

✅ Peak surcharge: 4-9 p.m., additional 5 cents/kWh

✅ Opt-in only; BCUC review; suits EV charging and flexible loads

 

BC Hydro is looking to charge customers less for electricity during off peak hours and more during the busiest times of the day, reflecting holiday electricity demand as well.

The BC Utilities Commission is currently reviewing the application that if approved would see customers receive a credit of 5 cents per kilowatt hour for electricity used from 11 p.m. to 7 a.m.

Customers would be charged an additional 5 cents per kWh for electricity used during the on-peak period from 4 p.m. to 9 p.m., and in Ontario, there were no peak-rate cuts for self-isolating customers during early pandemic response.

There would be no credit or additional charge will be applied to usage during the off-peak period from 7 a.m. to 4 p.m. and 9 p.m. to 11 p.m.

“We know the way our customers are using power is changing and they want more options,” BC Hydro spokesperson Susie Rieder said.

“It is optional and we know it may not work for everyone.”

For example, if a customer has an electric vehicle it will be cheaper to plug the car in after 9 p.m., similar to Ontario's ultra-low overnight plan offerings, rather than immediately after returning home from a standard work day.

If approved, the time of use rates would only apply to customers who opt in to the program, whereas Ontario provided electricity relief during COVID-19.

During the pandemic, Ontario extended off-peak electricity rates to help households and small businesses.

The regulatory review process is expected to take about one year.

Other jurisdictions, including Ontario's ultra-low overnight pricing, currently offer off peak rates. One of the challenges is that consumers change in hopes of altering their behaviour, but in reality, end up paying more.

“The cheapest electrical grid system is one with consistent demand and the issue of course is our consumption is not flat,” energyrates.ca founder Joel MacDonald said.

“There is a 5 cent reduction in off peak times, there is a 5 cent increase in peak times, you would have to switch 50 per cent of your load.”

 

Related News

View more

Electricity distributors warn excess solar power in network could cause blackouts, damage infrastructure

Australian Rooftop Solar Grid Constraints are driving debates over voltage rise, export limits, inverter curtailment, DER integration, and network reliability, amid concerns about localized blackouts, infrastructure protection, tariff reform, and battery storage adoption.

 

Key Points

Limits on solar exports to curb voltage rise, protect equipment, and keep the distribution grid reliable.

✅ Voltage rise triggers transformer protection and local outages.

✅ Export limits and smart inverter curtailment manage midday backfeed.

✅ Tariff reform and DER orchestration defer costly network upgrades.

 

With almost 1.8 million Australian homes and businesses relying on power from rooftop solar panels, there is a fight brewing over the impact of solar energy on the national electricity grid.

Electricity distributors are warning that as solar uptake continues to increase, there is a risk excess solar power could flow into the network, elevating power outage risks, causing blackouts and damaging infrastructure.

But is it the network businesses that are actually at risk, as customers turn away from centrally produced electricity?

This is what three different parties have to say:

Andrew Dillon of the network industry peak body, Energy Networks Australia (ENA), told 7.30 the way customers are charged for electricity has to change, or expensive grid upgrades to poles and wires will be needed to keep solar customers on the grid.

"The engineering reality is once we get too much solar in a certain space it does start to cause technical issues," he said.

"If there is too much energy coming back up the system in the middle of the day, it can cause frequency voltage disturbances in the system, which can lead to transformers tripping off to protect themselves from being damaged and that will cause localised blackouts.

"There are pockets of the grid already where we have significant penetration and we are starting to see technical issues."

However, he acknowledges that excess solar power has yet to cause any blackouts, or damage electricity infrastructure.

"I don't buy that at all," he said.

"It can be that in some suburbs or parts of suburbs a high penetration of solar on the point of use can raise voltage, these issues generally can be dealt with quickly.

"The critical issue is think where you are getting that perspective from. It is from an industry whose underlying market is threatened by customers doing it for themselves through peer-to-peer energy models. So, think with some critical insight to these claims."

He said when too many people rely on solar it threatens the very business model of the companies that own Australia's poles and wires.

"When the customers use the network less to buy centrally produced electricity, they ship less product," he said.

"When they ship less product, their underlying business is undermined, they need to charge more to the customers left and that leads to what has been called a death spiral.

"We are seeing rapid reductions in consumption at the point of use per household."

But Mr Dillon denies the distributors are acting out of self-interest.

"I absolutely reject that claim," he said.

"[What] we, as networks, have an interest in is running a safe network, running a reliable network, enabling the transition to a low carbon future and doing all that while keeping costs down as much as possible."

Solar installers say the networks are holding back business

Around Australia the poles and wires companies can decide which solar systems can connect to the grid.

Small systems can connect automatically, but in some areas, those wanting a larger system can find themselves caught up in red tape.

The vice-president of the Australian Solar Council, Glen Morris, said these limitations were holding back solar installation businesses and preventing the take-up of new battery storage technology.

"If you've already got a five kilowatt system, your house is full as far as the network is concerned," Mr Morris said.

"You go to add a battery, that's another five kilowatts and so they say no you're already full … so you can't add storage to your solar system."

The powers that be are stumbling in the dark to prevent a looming energy crisis, as the grid seeks to balance renewables' hidden challenges and competing demands.

Mr Morris also said the networks had the capacity to solve the problem of any excess solar flows into the grid, and infrastructure upgrades were not necessary.

"They already have the capability to turn off your solar invertor whenever they feel like it," he said.

"If they choose to connect that functionality, it's there in the inverter. The customer already has it."

ENA has acknowledged there is frustration with rooftop system size limits in the solar industry.

"What we are seeing is solar installers and others slightly frustrated at different requirements for different networks and sometimes they are unclear on the reasons for that," Mr Dillon said.

"Limitations are in place across the country to keep the lights on and make sure the network stays safe and we don't have sudden rushes of people connecting to the grid that causes outage issues."

But Mr Mountain is unconvinced, calling the limitations "somewhat spurious".

"The published, documented, critically reviewed analyses are few and far between, so it is very easy for engineers to make these arguments and those in policy circles only have so much tolerance for the detail," he said.

 

Related News

View more

‘Tsunami of data’ could consume one fifth of global electricity by 2025

ICT Electricity Demand is surging as data centers, 5G, IoT, and server farms expand, straining grids, boosting carbon emissions, and challenging climate targets unless efficiency, renewable energy, and smarter cooling dramatically improve.

 

Key Points

ICT electricity demand is power used by networks, devices, and data centers across the global communications sector.

✅ Projected to reach up to 20 percent of global electricity by 2025

✅ Driven by data centers, 5G traffic, IoT, and high-res streaming

✅ Mitigation: efficiency, renewable PPAs, advanced cooling, workload shifts

 

The communications industry could use 20% of all the world’s electricity by 2025, hampering attempts to meet climate change targets, even as countries like New Zealand's electrification plans seek broader decarbonization, and straining grids as demand by power-hungry server farms storing digital data from billions of smartphones, tablets and internet-connected devices grows exponentially.

The industry has long argued that it can considerably reduce carbon emissions by increasing efficiency and reducing waste, but academics are challenging industry assumptions. A new paper, due to be published by US researchers later this month, will forecast that information and communications technology could create up to 3.5% of global emissions by 2020 – surpassing aviation and shipping – and up to 14% 2040, around the same proportion as the US today.

Global computing power demand from internet-connected devices, high resolution video streaming, emails, surveillance cameras and a new generation of smart TVs is increasing 20% a year, consuming roughly 3-5% of the world’s electricity in 2015, says Swedish researcher Anders Andrae.

In an update o a 2016 peer-reviewed study, Andrae found that without dramatic increases in efficiency, the ICT industry could use 20% of all electricity and emit up to 5.5% of the world’s carbon emissions by 2025. This would be more than any country, except China, India and the USA, where China's data center electricity use is drawing scrutiny.

He expects industry power demand to increase from 200-300 terawatt hours (TWh) of electricity a year now, to 1,200 or even 3,000TWh by 2025. Data centres on their own could produce 1.9 gigatonnes (Gt) (or 3.2% of the global total) of carbon emissions, he says.

“The situation is alarming,” said Andrae, who works for the Chinese communications technology firm Huawei. “We have a tsunami of data approaching. Everything which can be is being digitalised. It is a perfect storm. 5G [the fifth generation of mobile technology] is coming, IP [internet protocol] traffic is much higher than estimated, and all cars and machines, robots and artificial intelligence are being digitalised, producing huge amounts of data which is stored in data centres.”

US researchers expect power consumption to triple in the next five years as one billion more people come online in developing countries, and the “internet of things” (IoT), driverless cars, robots, video surveillance and artificial intelligence grows exponentially in rich countries.

The industry has encouraged the idea that the digital transformation of economies and large-scale energy efficiencies will slash global emissions by 20% or more, but the scale and speed of the revolution has been a surprise.

Global internet traffic will increase nearly threefold in the next five years says the latest Cisco Visual Networking Index, a leading industry tracker of internet use.

“More than one billion new internet users are expected, growing from three billion in 2015 to 4.1bn by 2020. Over the next five years global IP networks will support up to 10bn new devices and connections, increasing from 16.3bn in 2015 to 26bn by 2020,” says Cisco.

A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

Data centre capacity is also rocketing in Europe, where the EU's plan to double electricity use by 2050 could compound demand, and Asia with London, Frankfurt, Paris and Amsterdam expected to add nearly 200MW of consumption in 2017, or the power equivalent of a medium size power station.

“We are seeing massive growth of data centres in all regions. Trends that started in the US are now standard in Europe. Asia is taking off massively,” says Mitual Patel, head of EMEA data centre research at global investment firm CBRE.

“The volume of data being handled by such centres is growing at unprecedented rates. They are seen as a key element in the next stage of growth for the ICT industry”, says Peter Corcoran, a researcher at the university of Ireland, Galway.

Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions

Ireland, which with Denmark is becoming a data base for the world’s biggest tech companies, has 350MW connected to data centres but this is expected to triple to over 1,000MW, or the equivalent of a nuclear power station size plant, in the next five years.

Permission has been given for a further 550MW to be connected and 750MW more is in the pipeline, says Eirgrid, the country’s main grid operator.

“If all enquiries connect, the data centre load could account for 20% of Ireland’s peak demand,” says Eirgrid in its All-Island Generation Capacity Statement 2017-2026  report.

The data will be stored in vast new one million square feet or larger “hyper-scale” server farms, which companies are now building. The scale of these farms is huge; a single $1bn Apple data centre planned for Athenry in Co Galway, expects to eventually use 300MW of electricity, or over 8% of the national capacity and more than the daily entire usage of Dublin. It will require 144 large diesel generators as back up for when the wind does not blow.

 Facebook’s Lulea data centre in Sweden, located on the edge of the Arctic circle, uses outside air for cooling rather than air conditioning and runs on hydroelectic power generated on the nearby Lule River. Photograph: David Levene for the Guardian

Pressed by Greenpeace and other environment groups, large tech companies with a public face , including Google, Facebook, Apple, Intel and Amazon, have promised to use renewable energy to power data centres. In most cases they are buying it off grid but some are planning to build solar and wind farms close to their centres.

Greenpeace IT analyst Gary Cook says only about 20% of the electricity used in the world’s data centres is so far renewable, with 80% of the power still coming from fossil fuels.

“The good news is that some companies have certainly embraced their responsibility, and are moving quite aggressively to meet their rapid growth with renewable energy. Others are just growing aggressively,” he says.

Architect David Hughes, who has challenged Apple’s new centre in Ireland, says the government should not be taken in by the promises.

“Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions. Data centres … have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target. They are just adding to demand and reducing our percentage. They are getting a free ride at the Irish citizens’ expense,” says Hughes.

Eirgrid estimates indicate that by 2025, one in every 3kWh generated in Ireland could be going to a data centre, he added. “We have sleepwalked our way into a 10% increase in electricity consumption.”

Fossil fuel plants may have to be kept open longer to power other parts of the country, and manage issues like SF6 use in electrical equipment, and the costs will fall on the consumer, he says. “We will have to upgrade our grid and build more power generation both wind and backup generation for when the wind isn’t there and this all goes onto people’s bills.”

Under a best case scenario, says Andrae, there will be massive continuous improvements of power saving, as the global energy transition gathers pace, renewable energy will become the norm and the explosive growth in demand for data will slow.

But equally, he says, demand could continue to rise dramatically if the industry keeps growing at 20% a year, driverless cars each with dozens of embedded sensors, and cypto-currencies like Bitcoin which need vast amounts of computer power become mainstream.

“There is a real risk that it all gets out of control. Policy makers need to keep a close eye on this,” says Andrae.

 

Related News

View more

New York Achieves Solar Energy Goals Ahead of Schedule

New York Solar Milestone accelerates renewable energy adoption, meeting targets early with 8,000 MW capacity powering 1.1 million homes, boosting green jobs, community solar, battery storage, and grid reliability under the CLCPA clean energy framework.

 

Key Points

It is New York achieving its solar goal early, powering 1.1M homes and advancing CLCPA renewable targets.

✅ 8,000 MW installed, enough to power about 1.1M homes

✅ CLCPA targets: 70 percent renewables by 2030

✅ Community solar, storage, and green jobs scaling statewide

 

In a remarkable display of commitment to renewable energy, New York has achieved its solar energy targets a year ahead of schedule, marking a significant milestone in the state's clean energy journey, and aligning with a national trend where renewables reached a record 28% in April nationwide. With the addition of solar power capacity capable of powering over a million homes, New York is not just setting the pace for solar adoption but is also establishing itself as a leader in the fight against climate change.

A Commitment to Renewable Energy

New York’s ambitious clean energy agenda is part of a broader effort to reduce greenhouse gas emissions and transition to sustainable energy sources. The state's goal, established under the Climate Leadership and Community Protection Act (CLCPA), aims for 70% of its electricity to come from renewable sources by 2030. With the recent advancements in solar energy, including contracts for 23 renewable projects totaling 2.3 GW, New York is well on its way to achieving that goal, demonstrating that aggressive policy frameworks can lead to tangible results.

The Numbers Speak for Themselves

As of now, New York has successfully installed more than 8,000 megawatts (MW) of solar energy capacity, supported by large-scale energy projects underway across New York that are expanding the grid. This achievement translates to enough electricity to power approximately 1.1 million homes, showcasing the state's investment in harnessing the sun’s power. The rapid expansion of solar installations reflects both increasing consumer interest and supportive policies that facilitate growth in the renewable energy sector.

Economic Benefits and Job Creation

The surge in solar energy capacity has not only environmental implications but also significant economic benefits. The solar industry in New York has become a substantial job creator, employing tens of thousands of individuals across various sectors. From manufacturing solar panels to installation and maintenance, the job opportunities associated with this growth are diverse and vital for local economies.

Moreover, as solar installations increase, the state benefits from reduced electricity costs over time. By investing in renewable energy, New York is paving the way for a more resilient and sustainable energy future, while simultaneously providing economic opportunities for its residents.

Community Engagement and Accessibility

New York's solar success is also tied to its efforts to engage communities and increase access to renewable energy. Initiatives such as community solar programs allow residents who may not have the means or space to install solar panels on their homes to benefit from solar energy. These programs provide an inclusive approach, ensuring that low-income households and underserved communities have access to clean energy solutions.

The state has also implemented various incentives to encourage solar adoption, including tax credits, rebates, and financing options. These efforts not only promote environmental sustainability but also aim to make solar energy more accessible to all New Yorkers, furthering the commitment to equity in the energy transition.

Innovations and Future Prospects

New York's solar achievements are complemented by ongoing innovations in technology and energy storage solutions. The integration of battery storage systems is becoming increasingly important, reflecting growth in solar and storage in the coming years, and allowing for the capture and storage of solar energy for use during non-sunny periods. This technology enhances grid reliability and supports the state’s goal of transitioning to a fully sustainable energy system.

Looking ahead, New York aims to continue this momentum. The state is exploring additional strategies to increase renewable energy capacity, including plans to investigate sites for offshore wind across its coastline, and other clean energy technologies. By diversifying its renewable energy portfolio, New York is positioning itself to meet and even exceed future energy demands while reducing its carbon footprint.

A Model for Other States

New York’s success story serves as a model for other states aiming to enhance their renewable energy capabilities, with its approval of the biggest offshore wind farm underscoring that leadership. The combination of strong policy frameworks, community engagement, and technological innovation can inspire similar initiatives nationwide. As more states look to address climate change, New York’s proactive approach can provide valuable insights into effective strategies for solar energy deployment.

New York’s achievement of its solar energy goals a year ahead of schedule is a testament to the state's unwavering commitment to sustainability and renewable energy. With the capacity to power over a million homes, this milestone not only signifies progress in clean energy adoption but also highlights the potential for economic growth and community engagement. As New York continues on its path toward a greener future, and stays on the road to 100% renewables by mid-century, it sets a powerful example for others to follow, proving that ambitious renewable energy goals can indeed become a reality.

 

Related News

View more

Several Milestones Reached at Nuclear Power Projects Around the World

Nuclear Power Construction Milestones spotlight EPR builds, Hualong One steam generators, APR-1400 grid integration, and VVER startups, with hot functional testing, hydrostatic checks, and commissioning advancing toward fuel loading and commercial operation.

 

Key Points

Key reactor project steps, from testing and grid readiness to startup, marking progress toward safe commercial operation.

✅ EPR units advance through cold and hot functional testing

✅ Hualong One installs 365-ton steam generators at Fuqing 5

✅ APR-1400 and VVER projects progress toward grid connection

 

The world’s nuclear power industry has been busy in the new year, with several construction projects, including U.S. reactor builds, reaching key milestones as 2018 began.

 

EPR Units Making Progress

Four EPR nuclear units are under construction in three countries: Olkiluoto 3 in Finland began construction in August 2005, Flamanville 3 in France began construction in December 2007, and Taishan 1 and 2 in China began construction in November 2009. Each of the new units is behind schedule and over budget, but recent progress may signal an end to some of the construction difficulties.

EDF reported that cold functional tests were completed at Flamanville 3 on January 6. The main purpose of the testing was to confirm the integrity of primary systems, and verify that components important to reactor safety were properly installed and ready to operate. More than 500 welds were inspected while pressure was held greater than 240 bar (3,480 psi) during the hydrostatic testing, which was conducted under the supervision of the French Nuclear Safety Authority.

With cold testing successfully completed, EDF can now begin preparing for hot functional tests, which verify equipment performance under normal operating temperatures and pressures. Hot testing is expected to begin in July, with fuel loading and reactor startup possible by year end. The company also reported that the total cost for the unit is projected to be €10.5 billion (in 2015 Euros, excluding interim interest).

Olkiluoto 3 began hot functional testing in December. Teollisuuden Voima Oyj—owner and operator of the site—expects the unit to produce its first power by the end of this year, with commercial operation now slated to begin in May 2019.

Although work on Taishan 1 began years after Olkiluoto 3 and Flamanville 3, it is the furthest along of the EPR units. Reports surfaced on January 2 that China General Nuclear (CGN) had completed hot functional testing on Taishan 1, and that the company expects the unit to be the first EPR to startup. CGN said Taishan 1 would begin commercial operation later this year, with Taishan 2 following in 2019.

 

Hualong One Steam Generators Installed

Another Chinese project reached a notable milestone on January 8. China National Nuclear Corp. announced the third of three steam generators had been installed at the Hualong One demonstration project, which is being constructed as Unit 5 at the Fuqing nuclear power plant.

The Hualong One pressurized water reactor unit, also known as the HPR 1000, is a domestically developed design, part of China’s nuclear program, based on a French predecessor. It has a 1,090 MW capacity. The steam generators reportedly weigh 365 metric tons and stand more than 21 meters tall. The first steam generator was installed at Fuqing 5 on November 10, with the second placed on Christmas Eve.

 

Barakah Switchyard Energized

In the United Arab Emirates, more progress has been made on the four South Korean–designed APR-1400 units under construction at the Barakah nuclear power plant. On January 4, Emirates Nuclear Energy Corp. (ENEC) announced that the switchyard for Units 3 and 4 had been energized and connected to the power grid, a crucial step in Abu Dhabi toward completion. Unit 2’s main power transformer, excitation transformer, and auxiliary power transformer were also energized in preparation for hot functional testing on that unit.

“These milestones are a result of our extensive collaboration with our Prime Contractor and Joint Venture partner, the Korea Electric Power Corporation (KEPCO),” ENEC CEO Mohamed Al Hammadi said in a press release. “Working together and benefitting from the experience gained when conducting the same work on Unit 1, the teams continue to make significant progress while continuing to implement the highest international standards of safety, security and quality.”

In 2017, ENEC and KEPCO achieved several construction milestones including installation and concrete pouring for the reactor containment building liner dome section on Unit 3, and installation of the reactor containment liner plate rings, reactor vessel, steam generators, and condenser on Unit 4.

Construction began on the four units (Figure 1) in July 2012, May 2013, September 2014, and September 2015, respectively. Unit 1 is currently undergoing commissioning and testing activities while awaiting regulatory review and receipt of the unit’s operating license from the Federal Authority for Nuclear Regulation, before achieving 100% power in a later phase. According to ENEC, Unit 2 is 90% complete, Unit 3 is 79% complete, and Unit 4 is 60% complete.

 

VVER Units Power Up

On December 29, Russia’s latest reactor to commence operation—Rostov 4 near the city of Volgodonsk—reached criticality, as other projects like Leningrad II-1 advance across the fleet, and was operated at its minimum controlled reactor power (MCRP). Criticality is a term used in the nuclear industry to indicate that each fission event in the reactor is releasing a sufficient number of neutrons to sustain an ongoing series of reactions, which means the neutron population is constant and the chain reaction is stable.

“The transfer to the MCRP allows [specialists] to carry out all necessary physical experiments in the critical condition of [the] reactor unit (RU) to prove its design criteria,” Aleksey Deriy, vice president of Russian projects for ASE Engineering Co., said in a press release. “Upon the results of the experiments the specialists will decide on the RU powerup.”

Rostov 4 is a VVER-1000 reactor with a capacity of 1,000 MW. The site is home to three other VVER units: Unit 1 began commercial operation in 2001, Unit 2 in 2010, and Unit 3 in 2015.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified