Massachusetts stirs controversy with solar demand charge, TOU pricing cut


mass puc logo

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Massachusetts Solar Net Metering faces new demand charges and elimination of residential time-of-use rates under an MDPU order, as Eversource cites grid cost fairness while clean energy advocates warn of impacts on distributed solar growth.

 

Key Points

Policy letting solar customers net out usage with exports; MDPU now adds demand charges and ends TOU rates.

✅ New residential solar demand charges start Dec 31, 2018.

✅ Optional residential TOU rates eliminated by MDPU order.

✅ Eversource cites grid cost fairness; advocates warn slower solar.

 

A recent Massachusetts Department of Public Utilities' rate case order changes the way solar net metering works and eliminates optional residential time-of-use rates, stirring controversy between clean energy advocates and utility Eversource and potential consumer backlash over rate design.

"There is a lot of room to talk about what net-energy metering should look like, but a demand charge is an unfair way to charge customers," Mark LeBel, staff attorney at non-profit clean energy advocacy organization Acadia Center, said in a Tuesday phone call. Acadia Center is an intervenor in the rate case and opposed the changes.

The Friday MDPU order implements demand charges for new residential solar projects starting on December 31, 2018. Such charges are based on the highest peak hourly consumption over the course of a month, regardless of what time the power is consumed.

Eversource contends the demand charge will more fairly distribute the costs of maintaining the local power grid, echoing minimum charge proposals aimed at low-usage customers. Net metering is often criticized for not evenly distributing those costs, which are effectively subsidized by non-net-metered customers.

"What the demand charge will do is eliminate, to the extent possible, the unfair cross subsidization by non-net-metered customers that currently exists with rates that only have kilowatt-hour charges and no kilowatt demand, Mike Durand, Eversource spokesman, said in a Tuesday email. 

"For net metered facilities that use little kilowatt-hours, a demand charge is a way to charge them for their fair share of the cost of the significant maintenance and upgrade work we do on the local grid every day," Durand said. "Currently, their neighbors are paying more than their share of those costs."

It will not affect existing facilities, Durand said, only those installed after December 31, 2018.

Solar advocates are not enthusiastic about the change and see it slowing the growth of solar power, particularly residential rooftop solar, in the state.

"This is a terrible outcome for the future of solar in Massachusetts," Nathan Phelps, program manager of distributed generation and regulatory policy at solar power advocacy group Vote Solar, said in a Tuesday phone call.

"It's very inconsistent with DPU precedent and numerous pieces of legislation passed in the last 10 years," Phelps said. "The commonwealth has passed several pieces of legislation that are supportive of renewable energy and solar power. I don't know what the DPU was thinking."

 

TIME-OF-USE PRICING ELIMINATED

It does not matter when during the month peak demand occurs -- which could be during the week in the evening -- customers will be charged the same as they would on a hot summer day, LeBel said. Because an individual customer's peak usage does not necessarily correspond to peak demand across the utility's system, consumers are not being provided incentives to reduce energy usage in a way that could benefit the power system, Acadia Center said in a Tuesday statement.

However, Eversource maintains that residential customer distribution peaks based on customer load profiles do not align with basic service peak periods, which are based on Independent System Operator New England's peaks that reflect market-based pricing, even as a Connecticut market overhaul advances in the region, according to the MDPU order.

"The residential Time of Use rates we're eliminating are obsolete, having been designed decades ago when we were responsible for both the generation and the delivery of electricity," Eversource's Durand said.

"We are no longer in the generation business, having divested of our generation assets in Massachusetts in compliance with the law that restructured of our industry back in the late 1990s. Time Varying pricing is best used with generation rates, where the price for electricity changes based on time of day and electricity demand and can significantly alter electric bills for households," he said.

Additionally, only 0.02% of residential customers take service on Eversource's TOU rates and it would be difficult for residential customers to avoid peak period rates because they do not have the ability to shift or reduce load, according to the order.

"The Department allowed the Companies' proposal to eliminate their optional residential TOU rates in order to consolidate and align their residential rates and tariffs to better achieve the rate structure goal of simplicity," the MDPU said in the order.

Related News

Russian hackers had 'hundreds of victims' as they infiltrated U.S. power grid

Russian cyberattacks on U.S. power grid exposed DHS warnings: Dragonfly/Energetic Bear breached control rooms, ICS networks, and could trigger blackouts via switch manipulation, phishing, and malware, threatening critical infrastructure and utility operations nationwide.

 

Key Points

State-backed breaches of utility ICS and control rooms enabled potential switch manipulation and blackouts.

✅ DHS: Dragonfly/Energetic Bear breached utility networks

✅ Access reached control rooms and ICS for switch control

✅ Ongoing campaign via phishing, malware, lateral movement

 

Russian hackers for a state-sponsored organization invaded hundreds of control rooms of U.S. electric utilities that could have led to blackouts, a new report says.

The group, known as Dragonfly or Energetic Bear, infiltrated networks of U.S. utilities as part of an effort that is likely ongoing, Department of Homeland Security officials told the Wall Street Journal.

Jonathan Home, chief of industrial-control-system analysis for DHS, said the hackers “got to the point where they could have thrown switches” and upset power flows.

Although the agency did not disclose which companies were impacted, the officials at a briefing Monday said that there were “hundreds of victims” including breaches at power plants across the U.S., and that some companies may not be aware that hackers infiltrated their networks yet.

According to experts, Russia has been preparing for such attacks for some time now, prompting a renewed focus on protecting the grid among utilities and policymakers.

“They’ve been intruding into our networks and are positioning themselves for a limited or widespread attack,” said former Deputy Assistant Defense Secretary Michael Carpenter, now senior director at the Penn Biden Center at the University of Pennsylvania, per the Wall Street Journal. “They are waging a covert war on the West.”

Earlier this year, the Trump administration claimed Russia had staged a power grid hacking campaign against the U.S. energy grid and other U.S. infrastructure.

The report comes after President Trump told reporters last week during a joint press conference in Helsinki alongside Russian President Vladimir Putin that he had no reason not to believe the Russian leader's assurances to him that the Kremlin was not to blame for interference in the election.

Trump later admitted that he misspoke when he said he didn’t “see any reason why” Russia would have meddled in the 2016 election, and said he believes the U.S. intelligence community assessment that found that the Russian government did interfere in the electoral process.

 

Related News

View more

Energy Efficiency and Demand Response Can Nearly Level Southeast Electricity Demand for More than a Decade

Southeast Electricity Demand Forecast examines how energy efficiency, photovoltaics, electric vehicles, heat pumps, and demand response shape grid needs, stabilize load through 2030, shift peaks, and inform utility planning across the region.

 

Key Points

An outlook of load shaped by efficiency, solar, EVs, with demand response keeping usage steady through 2030.

✅ Stabilizes regional demand through 2030 under accelerated adoption

✅ Energy efficiency and demand response are primary levers

✅ EVs and heat pumps drive growth post 2030; shift winter peaks

 

Electricity markets in the Southeast are facing many changes on the customer side of the meter. In a new report released today, we look at how energy efficiency, photovoltaics (solar electricity), electric vehicles, heat pumps, and demand response (shifting loads from periods of high demand) might affect electricity needs in the Southeast.

We find that if all of these resources are pursued on an accelerated basis, electricity demand in the region can be stabilized until about 2030.

After that, demand will likely grow in the following decade because of increased market penetration of electric vehicles and heat pumps, but energy planners will have time to deal with this growth if these projections are borne out. We also find that energy efficiency and demand response can be vital for managing electricity supply and demand in the region and that these resources can help contain energy demand growth, reducing the impact of expensive new generation on consumer wallets.

 

National trends

This is the second ACEEE report looking at regional electricity demand. In 2016, we published a study on electricity consumption in New England, finding an even more pronounced effect. For New England, with even more aggressive pursuit of energy efficiency and these other resources, consumption was projected to decline through about 2030, before rebounding in the following decade.

These regional trends fit into a broader national pattern. In the United States, electricity consumption has been characterized by flat electricity demand for the past decade. Increased energy efficiency efforts have contributed to this lack of consumption growth, even as the US economy has grown since the Great Recession. Recently, the US Energy Information Administration (EIA – a branch of the US Department of Energy) released data on US electricity consumption in 2016, finding that 2016 consumption was 0.3% below 2015 consumption, and other analysts reported a 1% slide in 2023 on milder weather.

 

Five scenarios for the Southeast

ACEEE’s new study focuses on the Southeast because it is very different from New England, with warmer weather, more economic growth, and less-aggressive energy efficiency and distributed energy policies than the Northeast. For the Southeast, we examined five scenarios: a business-as-usual scenario; two alternative scenarios with progressively higher levels of energy efficiency, photovoltaics informed by a solar strategy for the South that is emerging regionally, electric vehicles, heat pumps, and demand response; and two scenarios combining high numbers of electric vehicles and heat pumps with more modest levels of the other resources. This figure presents electricity demand for each of these scenarios:

Over the 2016-2040 period, we project that average annual growth will range from 0.1% to 1.0%, depending on the scenario, much slower than historic growth in the region. Energy efficiency is generally the biggest contributor to changes in projected 2040 electricity consumption relative to the business-as-usual scenario, as shown in the figure below, which presents our accelerated scenario that is based on levels of energy efficiency and other resources now targeted by leading states and utilities in the Southeast.

To date, Entergy Arkansas has achieved the annual efficiency savings as a percent of sales shown in the accelerated scenario and Progress Energy (a division of Duke Energy) has nearly achieved those savings in both North and South Carolina. Sixteen states outside the Southeast have also achieved these savings statewide.

The efficiency savings shown in the aggressive scenario have been proposed by the Arkansas PSC. This level of savings has already been achieved by Arizona as well as six other states. Likewise, the demand response savings we model have been achieved by more than 10 utilities, including four in the Southeast. The levels of photovoltaic, electric vehicle, and heat pump penetration are more speculative and are subject to significant uncertainty.

We also examined trends in summer and winter peak demand. Most utilities in the Southeast have historically had peak demand in the summer, often seeing heatwave-driven surges that stress operations across the Eastern U.S., but our analysis shows that winter peaks will be more likely in the region as photovoltaics and demand response reduce summer peaks and heat pumps increase winter peaks.

 

Why it’s vital to plan broadly

Our analysis illustrates the importance of incorporating energy efficiency, demand response, and photovoltaics into utility planning forecasts as utility trends to watch continue to evolve. Failing to include these resources leads to much higher forecasts, resulting in excess utility system investments, unnecessarily increasing customer electricity rates. Our analysis also illustrates the importance of including electric vehicles and heat pumps in long-term forecasts. While these technologies will have moderate impacts over the next 10 years, they could become increasingly important in the long run.

We are entering a dynamic period of substantial uncertainty for long-term electricity sales and system peaks, highlighted by COVID-19 demand shifts that upended typical patterns. We need to carefully observe and analyze developments in energy efficiency, photovoltaics, electric vehicles, heat pumps, and demand response over the next few years. As these technologies advance, we can create policies to reduce energy bills, system costs, and harmful emissions, drawing on grid reliability strategies tested in Texas, while growing the Southeast’s economy. Resource planners should be sure to incorporate these emerging trends and policies into their long-term forecasts and planning.

 

Related News

View more

Americans Keep Using Less and Less Electricity

U.S. Electricity Demand Decoupling signals GDP growth without higher load, driven by energy efficiency, LED adoption, services-led output, and rising renewables integration with the grid, plus EV charging and battery storage supporting decarbonization.

 

Key Points

GDP grows as electricity use stays flat, driven by efficiency, renewables, and a shift toward services and output.

✅ LEDs and codes cut residential and commercial load intensity.

✅ Wind, solar, and gas gain share as coal and nuclear struggle.

✅ EVs and storage can grow load and enable grid decarbonization.

 

By Justin Fox

Economic growth picked up a little in the U.S. in 2017. But electricity use fell, with electricity sales projections continuing to decline, according to data released recently by the Energy Information Administration. It's now been basically flat for more than a decade:


 

Measured on a per-capita basis, electricity use is in clear decline, and is already back to the levels of the mid-1990s.

 


 

Sources: U.S. Energy Information Administration, U.S. Bureau of Economic Analysis

*Includes small-scale solar generation from 2014 onward

 

I constructed these charts to go all the way back to 1949 in part because I can (that's how far back the EIA data series goes) but also because it makes clear what a momentous change this is. Electricity use rose and rose and rose and then ... it didn't anymore.

Slower economic growth since 2007 has been part of the reason, but the 2017 numbers make clear that higher gross domestic product no longer necessarily requires more electricity, although the Iron Law of Climate is often cited to suggest rising energy use with economic growth. I wrote a column last year about this big shift, and there's not a whole lot new to say about what's causing it: mainly increased energy efficiency (driven to a remarkable extent by the rise of LED light bulbs), and the continuing migration of economic activity away from making tangible things and toward providing services and virtual products such as games and binge-watchable TV series (that are themselves consumed on ever-more-energy-efficient electronic devices).

What's worth going over, though, is what this means for those in the business of generating electricity. The Donald Trump administration has made saving coal-fired electric plants a big priority; the struggles of nuclear power plants have sparked concern from multiple quarters. Meanwhile, U.S. natural gas production has grown by more than 40 percent since 2007, thanks to hydraulic fracturing and other new drilling techniques, while wind and solar generation keep making big gains in cost and market share. And this is all happening within the context of a no-growth electricity market.

In China, a mystery in China's electricity data has complicated global comparisons.

 

Here are the five main sources of electric power in the U.S.:


 

The big story over the past decade has been coal and natural gas trading places as the top fuel for electricity generation. Over the past year and a half coal regained some of that lost ground as natural gas prices rose from the lows of early 2016. But with overall electricity use flat and production from wind and solar on the rise, that hasn't translated into big increases in coal generation overall.

Oh, and about solar. It's only a major factor in a few states (California especially), so it doesn't make the top five. But it's definitely on the rise.

 

 

What happens next? For power generators, the best bet for breaking out of the current no-growth pattern is to electrify more of the U.S. economy, especially transportation. A big part of the attraction of electric cars and trucks for policy-makers and others is their potential to be emissions-free. But they're only really emissions-free if the electricity used to charge them is generated in an emissions-free manner -- creating a pretty strong business case for continuing "decarbonization" of the electric industry. It's conceivable that electric car batteries could even assist in that decarbonization by storing the intermittent power generated by wind and solar and delivering it back onto the grid when needed.

I don't know exactly how all this will play out. Nobody does. But the business of generating electricity isn't going back to its pre-2008 normal. 

 

Related News

View more

Hong Kong to expect electricity bills to rise 1 or 2 per cent

Hong Kong Electricity Tariff Increase reflects a projected 1-2% rise as HK Electric and CLP Power shift to cleaner fuel and natural gas, expand gas-fired units and LNG terminals, and adjust the fuel clause charge.

 

Key Points

An expected 1-2% 2018 rise from cleaner fuel, natural gas projects, asset growth, and shrinking fuel cost surpluses.

✅ Expected 1-2% rise amid cleaner fuel and gas shift

✅ Fuel clause charge and asset expansion pressure prices

✅ HK Electric and CLP Power urged to use surpluses prudently

 

Hong Kong customers have been asked to expect higher electricity bills next year, as seen with BC Hydro rate increases in Canada, with a member of a government panel on energy policy anticipating an increase in tariffs of one or two per cent.

The environment minister, Wong Kam-sing, also hinted they should be prepared to dig deeper into their pockets for electricity, as debates over California electric bills illustrate, in the wake of power companies needing to use more expensive but cleaner fuel to generate power in the future.

HK Electric supplies power to Hong Kong Island, Lamma Island and Ap Lei Chau. Photo: David Wong

The city’s two power companies, HK Electric and CLP Power, are to brief lawmakers on their respective annual tariff adjustments for 2018, amid Ontario electricity price pressures drawing international attention, at a Legislative Council economic development panel meeting on Tuesday.

HK Electric supplies electricity to Hong Kong Island and neighbouring Lamma Island and Ap Lei Chau, while CLP Power serves Kowloon and the New Territories, including Lantau Island.

Wong said on Monday: “We have to appreciate that when we use cleaner fuel, there is a need for electricity tariffs to keep pace. I believe it is the hope of mainstream society to see a low-carbon and healthier environment.”

Secretary for the Environment Wong Kam-sing believes most people desire a low-carbon environment. Photo: Sam Tsang

But he declined to comment on how much the tariffs might rise.

World Green Organisation chief executive William Yu Yuen-ping, also a member of the Energy Advisory Committee, urged the companies to better use their “overflowing” surpluses in their fuel cost recovery accounts.

Tariffs are comprised of two components: a basic amount reflecting a company’s operating costs and investments, and the fuel clause charge, which is based on what the company projects it will pay for fuel for the year.

William Yu of World Green Organisation says the companies should use their surpluses more carefully. Photo: May Tse

Critics have claimed the local power suppliers routinely overestimate their fuel costs and amass huge surpluses.

In recent years, the two managed to freeze or cut their tariffs thanks to savings from lower fuel costs. Last year, HK Electric offered special rebates to its customers, which saw its tariff drop by 17.2 per cent. CLP Power froze its own charge for 2017.

Yu said the two companies should use the surpluses “more carefully” to stabilise tariffs.

Rise after fall in Hong Kong electricity use linked to subsidies

“We estimate a big share of the surplus has been used up and so the honeymoon period is over.”

Based on his group’s research, Yu believed the tariffs would increase by one or two per cent.

Economist and fellow committee member Billy Mak Sui-choi said the expansion of the power companies’ fixed asset bases, such as building new gas-fired units and offshore liquefied natural gas terminals, a pattern reflected in Nova Scotia's 14% rate hike recently approved by regulators, would also cause tariffs to rise.

To fight climate change and improve air quality, the government has pledged to cut carbon intensity by between 50 and 60 per cent by 2020. Officials set a target of boosting the use of natural gas for electricity generation to half the total fuel mix from 2020.

Both power companies are privately owned and monitored by the government through a mutually agreed scheme of control agreements, akin to oversight seen under the UK energy price cap in other jurisdictions. These require the firms to seek government approval for their development plans, including their projected basic tariff levels.

At present, the permitted rate of return on their net fixed assets is 9.99 per cent. The deals are due to expire late next year.

Earlier this year, officials reached a deal with the two companies on the post-2018 scheme, settling on a 15-year term. The new agreements slash their permitted rate of return to 8 per cent.

 

Related News

View more

'Electricity out of essentially nothing': Invention creates power from falling snow

Snow-powered nanogenerator harvests static electricity from falling snow using a silicone triboelectric design, enabling energy harvesting, solar panel support during snowfall, and dual-use sensing for weather monitoring and wearable winter sports analytics.

 

Key Points

A silicone triboelectric device that harvests snowDcharge to generate power and enable sensing.

✅ Triboelectric silicone layer captures charge from falling snow.

✅ Integrates with solar arrays to maintain power during snowfall.

✅ Functions as weather and motion sensor for winter sports.

 

Scientists from University of California, Los Angeles and McMaster University have invented a nanogenerator that creates electricity from falling snow.

Most Canadians have already seen a mini-version of this, McMaster Prof. Ravi Selvaganapathy told CTV’s Your Morning. “We find that we often get shocked in the winter when it’s dry when we come in into contact with a conductive surface like a doorknob.”

The thin device works by harnessing static electricity: positively-charged, falling snow collides with the negatively-charged silicone device, which produces a charge that’s captured by an electrode.

“You separate the charges and create electricity out of essentially nothing,” Richard Kaner, who holds UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation and whose lab has explored turning waste into graphene, said in a press release.

“The device can work in remote areas because it provides its own power and does not need batteries or reliance on home storage systems such as the Tesla Powerwall, which store energy for later use,” he said, explaining that the device was 3D printed, flexible and inexpensive to make because of the low cost of silicone.

“It’s also going to be useful in places like Canada, where we get a lot of snow and are pursuing a net-zero grid by 2050 to cut emissions. We can extract energy from the environment,” Selvaganapathy added.

The team, which also included scientists from the University of Toronto, published their findings in Nano Energy journal last year, but a few weeks ago, they revealed the device’s more practical uses.

About 30 per cent of the Earth’s surface is covered by snow each winter, which can significantly limit the energy generated by solar panels, including rooftop solar grids in cold climates.

So the team thought: why not simply harness electricity from the snow whenever the solar panels were covered?

Integrating their device into solar panel arrays could produce a continuous power supply whenever it snows, potentially as part of emerging virtual power plants that aggregate distributed resources, study co-author and UCLA assistant researcher Maher El-Kady explained.

The device also serves as a weather-monitoring station by recording how much snow is falling and from where; as well as the direction and speed of the wind.

The team said they also want to incorporate their device into weather sensors to help them better acquire and transmit electronic signals, supporting initiatives to use AI for energy savings across local grids. They said several Toronto-based companies -- which they couldn’t name -- have expressed interest in partnering with them.

Selvaganapathy said the device would hop on the trend of “sensors being incorporated into what we wear, into our homes and even to detect electricity theft in some markets in order to monitor a lot of the things that are important to us”

But the device’s arguably larger potential use is being integrated into technology to monitor athletes and their performances during winter sports, such as hiking, skiing and cross-country skiing.

Up to now, the movement patterns used during cross-country skiing couldn’t be detected by a smart watch, but this device may be able to.

Scientists such as Kaner believe the technology could usher in a new era of self-monitoring devices to assess an athlete’s performance while they’re running, walking or jumping.

The device is simply a proof of concept and the next step would be figuring out how to generate more electricity and integrate it into all of these potential devices, Selvaganapathy said.

 

Related News

View more

US Government Condemns Russia for Power Grid Hacking

Russian Cyberattacks on U.S. Critical Infrastructure target energy grids, nuclear plants, water systems, and aviation, DHS and FBI warn, using spear phishing, malware, and ICS/SCADA intrusion to gain footholds for potential sabotage and disruption.

 

Key Points

State-backed hacks targeting U.S. energy, nuclear, water and aviation via phishing and ICS access for sabotage.

✅ DHS and FBI detail multi-stage intrusion since 2016

✅ Targets include energy, nuclear, water, aviation, manufacturing

✅ TTPs: spear phishing, lateral movement, ICS reconnaissance

 

Russia is attacking the U.S. energy grid, with reported power plant breaches unfolding alongside attacks on nuclear facilities, water processing plants, aviation systems, and other critical infrastructure that millions of Americans rely on, according to a new joint analysis by the FBI and the Department of Homeland Security.

In an unprecedented alert, the US Department of Homeland Security (DHS) and FBI have warned of persistent attacks by Russian government hackers on critical US government sectors, including energy, nuclear, commercial facilities, water, aviation and manufacturing.

The alert details numerous attempts extending back to March 2016 when Russian cyber operatives targeted US government and infrastructure.

The DHS and FBI said: “DHS and FBI characterise this activity as a multi-stage intrusion campaign by Russian government cyber-actors who targeted small commercial facilities’ networks, where they staged malware, conducted spear phishing and gained remote access into energy sector networks.

“After obtaining access, the Russian government cyber-actors conducted network reconnaissance, moved laterally and collected information pertaining to industrial control systems.”

The Trump administration has accused Russia of engineering a series of cyberattacks that targeted American and European nuclear power plants and water and electric systems, and could have sabotaged or shut power plants off at will.

#google#

United States officials and private security firms saw the attacks as a signal by Moscow that it could disrupt the West’s critical facilities in the event of a conflict.

They said the strikes accelerated in late 2015, at the same time the Russian interference in the American election was underway. The attackers had compromised some operators in North America and Europe by spring 2017, after President Trump was inaugurated.

In the following months, according to the DHS/FBI report, Russian hackers made their way to machines with access to utility control rooms and critical control systems at power plants that were not identified. The hackers never went so far as to sabotage or shut down the computer systems that guide the operations of the plants.

Still, new computer screenshots released by the Department of Homeland Security have made clear that Russian state hackers had the foothold they would have needed to manipulate or shut down power plants.

“We now have evidence they’re sitting on the machines, connected to industrial control infrastructure, that allow them to effectively turn the power off or effect sabotage,” said Eric Chien, a security technology director at Symantec, a digital security firm.

“From what we can see, they were there. They have the ability to shut the power off. All that’s missing is some political motivation,” Mr. Chien said.

American intelligence agencies were aware of the attacks for the past year and a half, and the Department of Homeland Security and the F.B.I. first issued urgent warnings to utility companies in June, 2017. Both DHS/FBI have now offered new details as the Trump administration imposed sanctions against Russian individuals and organizations it accused of election meddling and “malicious cyberattacks.”

It was the first time the administration officially named Russia as the perpetrator of the assaults. And it marked the third time in recent months that the White House, departing from its usual reluctance to publicly reveal intelligence, blamed foreign government forces for attacks on infrastructure in the United States.

In December, the White House said North Korea had carried out the so-called WannaCry attack that in May paralyzed the British health system and placed ransomware in computers in schools, businesses and homes across the world. Last month, it accused Russia of being behind the NotPetya attack against Ukraine last June, the largest in a series of cyberattacks on Ukraine to date, paralyzing the country’s government agencies and financial systems.

But the penalties have been light. So far, President Trump has said little to nothing about the Russian role in those attacks.

The groups that conducted the energy attacks, which are linked to Russian intelligence agencies, appear to be different from the two hacking groups that were involved in the election interference.

That would suggest that at least three separate Russian cyberoperations were underway simultaneously. One focused on stealing documents from the Democratic National Committee and other political groups. Another, by a St. Petersburg “troll farm” known as the Internet Research Agency, used social media to sow discord and division. A third effort sought to burrow into the infrastructure of American and European nations.

For years, American intelligence officials tracked a number of Russian state-sponsored hacking units as they successfully penetrated the computer networks of critical infrastructure operators across North America and Europe, including in Ukraine.

Some of the units worked inside Russia’s Federal Security Service, the K.G.B. successor known by its Russian acronym, F.S.B.; others were embedded in the Russian military intelligence agency, known as the G.R.U. Still others were made up of Russian contractors working at the behest of Moscow.

Russian cyberattacks surged last year, starting three months after Mr. Trump took office.

American officials and private cybersecurity experts uncovered a series of Russian attacks aimed at the energy, water and aviation sectors and critical manufacturing, including nuclear plants, in the United States and Europe. In its urgent report in June, the Department of Homeland Security and the F.B.I. notified operators about the attacks but stopped short of identifying Russia as the culprit.

By then, Russian spies had compromised the business networks of several American energy, water and nuclear plants, mapping out their corporate structures and computer networks.

They included that of the Wolf Creek Nuclear Operating Corporation, which runs a nuclear plant near Burlington, Kan. But in that case, and those of other nuclear operators, Russian hackers had not leapt from the company’s business networks into the nuclear plant controls.

Forensic analysis suggested that Russian spies were looking for inroads — although it was not clear whether the goal was to conduct espionage or sabotage, or to trigger an explosion of some kind.

In a report made public in October, Symantec noted that a Russian hacking unit “appears to be interested in both learning how energy facilities operate and also gaining access to operational systems themselves, to the extent that the group now potentially has the ability to sabotage or gain control of these systems should it decide to do so.”

The United States sometimes does the same thing. It bored deeply into Iran’s infrastructure before the 2015 nuclear accord, placing digital “implants” in systems that would enable it to bring down power grids, command-and-control systems and other infrastructure in case a conflict broke out. The operation was code-named “Nitro Zeus,” and its revelation made clear that getting into the critical infrastructure of adversaries is now a standard element of preparing for possible conflict.

 


Reconstructed screenshot fragments of a Human Machine Interface that the threat actors accessed, according to DHS


Sanctions Announced

The US treasury department has imposed sanctions on 19 Russian people and five groups, including Moscow’s intelligence services, for meddling in the US 2016 presidential election and other malicious cyberattacks.

Russia, for its part, has vowed to retaliate against the new sanctions.

The new sanctions focus on five Russian groups, including the Russian Federal Security Service, the country’s military intelligence apparatus, and the digital propaganda outfit called the Internet Research Agency, as well as 19 people, some of them named in the indictment related to election meddling released by special counsel Robert Mueller last month.

In announcing the sanctions, which will generally ban U.S. people and financial institutions from doing business with those people and groups, the Treasury Department pointed to alleged Russian election meddling, involvement in the infrastructure hacks, and the NotPetya malware, which the Treasury Department called “the most destructive and costly cyberattack in history.”

The new sanctions come amid ongoing criticism of the Trump administration’s reluctance to punish Russia for cyber and election meddling. Sen. Mark Warner (D-Va.) said that, ahead of the 2018 mid-term elections, the administration’s decision was long overdue but not enough. “Nearly all of the entities and individuals who were sanctioned today were either previously under sanction during the Obama Administration, or had already been charged with federal crimes by the Special Counsel,” Warner said.

 

Warning: The Russians Are Coming

In an updated warning to utility companies, DHS/FBI officials included a screenshot taken by Russian operatives that proved they could now gain access to their victims’ critical controls, prompting a renewed focus on protecting the U.S. power grid among operators.

American officials and security firms, including Symantec and CrowdStrike, believe that Russian attacks on the Ukrainian power grid in 2015 and 2016 that left more than 200,000 citizens there in the dark are an ominous sign of what the Russian cyberstrikes may portend in the United States and Europe in the event of escalating hostilities.

Private security firms have tracked the Russian government assaults on Western power and energy operators — conducted alternately by groups under the names Dragonfly campaigns alongside Energetic Bear and Berserk Bear — since 2011, when they first started targeting defense and aviation companies in the United States and Canada.

By 2013, researchers had tied the Russian hackers to hundreds of attacks on the U.S. power grid and oil and gas pipeline operators in the United States and Europe. Initially, the strikes appeared to be motivated by industrial espionage — a natural conclusion at the time, researchers said, given the importance of Russia’s oil and gas industry.

But by December 2015, the Russian hacks had taken an aggressive turn. The attacks were no longer aimed at intelligence gathering, but at potentially sabotaging or shutting down plant operations.

At Symantec, researchers discovered that Russian hackers had begun taking screenshots of the machinery used in energy and nuclear plants, and stealing detailed descriptions of how they operated — suggesting they were conducting reconnaissance for a future attack.

Eventhough the US government enacted sanctions, cybersecurity experts are still questioning where the Russian attacks could lead, given that the United States was sure to respond in kind.

“Russia certainly has the technical capability to do damage, as it demonstrated in the Ukraine,” said Eric Cornelius, a cybersecurity expert at Cylance, a private security firm, who previously assessed critical infrastructure threats for the Department of Homeland Security during the Obama administration.

“It is unclear what their perceived benefit would be from causing damage on U.S. soil, especially given the retaliation it would provoke,” Mr. Cornelius said.

Though a major step toward deterrence, publicly naming countries accused of cyberattacks still is unlikely to shame them into stopping. The United States is struggling to come up with proportionate responses to the wide variety of cyberespionage, vandalism and outright attacks.

Lt. Gen. Paul Nakasone, who has been nominated as director of the National Security Agency and commander of United States Cyber Command, the military’s cyberunit, said during his recent Senate confirmation hearing, that countries attacking the United States so far have little to worry about.

“I would say right now they do not think much will happen to them,” General Nakasone said. He later added, “They don’t fear us.”

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified