A spark for clean energy

By Boston Globe


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
It might be just a coincidence that California's clean energy industry started vaulting ahead of the Northeast's after California passed a bill in 2006 to curb its carbon emissions. More likely, passage of the anti-global-warming law was the proof that innovative entrepreneurs were seeking of the state's commitment to changing its energy profile.

Massachusetts should learn from California's example and pass the energy bill that is now in a conference committee. Senator Michael Morrissey of Quincy and Representative Brain Dempsey of Haverhill are leading the negotiations.

The signs from Washington offer little hope that the U.S. Senate will pass a filibuster-proof bill limiting greenhouse gas emissions. This makes it all the more important that states like Massachusetts lead the way in curbing such emissions.

Both the House and Senate versions of the state's energy bill give top priority to requiring the state's electric and gas utilities to invest first in efficiency gains before turning to new production as they balance supply and demand. Not only does this ensure no increases in emissions, it also saves ratepayers money. Generating new electricity is typically four times as costly as conservation. Under the bill, electric utilities would have to get 20 percent of their power from renewable sources by 2025.

There are differences between the two bills. The Senate sets a commendably tougher standard for proposals for gasified coal as a favored alternative energy technology. The state has no business giving a competitive edge to any power source that emits more carbon than the cleanest-burning natural-gas plant. The final version should also leave open the door for renewable energy imports, such as wind or water power from Canada, if they are price-competitive with in-state renewables.

Governor Patrick has enlisted Massachusetts in the Regional Greenhouse Gas Initiative, which sets up a cap and trade system to reduce electric utilities' carbon emissions. California's global warming bill extends that approach to the entire state economy. A global warming bill pending in the Massachusetts Legislature would set this state on a similar course, but its goal for emission reductions is extremely ambitious.

States can attract more companies with breakthrough technology by setting high standards for clean energy. In the year after California passed its global warming bill, it gained $1.8 billion in new clean energy investments, more than 48 percent of the US total. Massachusetts is at risk of ceding this burgeoning industry to California. For economic reasons as well as environmental ones, the state needs a solid energy bill.

Related News

Alberta Ends Moratorium on Renewable Energy Projects

Alberta Ends Renewable Energy Moratorium, accelerating wind and solar deployment while prioritizing grid stability, reliability, and infrastructure upgrades to attract investment, cut emissions, meet climate targets, and integrate renewables into the provincial power system.

 

Key Points

It is Alberta's decision to lift a pause on new wind and solar projects while enhancing grid reliability.

✅ Resumes wind and solar development across Alberta.

✅ Focuses on grid stability and infrastructure upgrades.

✅ Aims to attract investment and meet climate targets.

 

The Alberta government has announced the end of a temporary suspension on the development of new renewable energy projects, as the power grid operator prepares to accept green energy bids across the market. This pause, which had been in place since May 2023, was initially implemented to evaluate the effects of rapid growth in renewable energy installations on the province's power grid and overall energy system. However, the decision to lift the moratorium reflects a shift in the government’s approach to balancing energy needs and environmental goals.

The suspension was introduced amid concerns that the swift expansion of wind and solar energy projects, including documented challenges with solar energy expansion in the province, could place undue stress on Alberta's electrical grid and infrastructure. Officials expressed worries about the ability of the grid to handle the increased load and the potential need for upgrades to accommodate new renewable energy sources. The government aimed to assess the implications of this growth and determine appropriate measures to ensure that the energy system could support both existing and future demands.

The moratorium drew significant criticism from various sectors, including renewable energy companies, environmental advocates, and local communities. Critics argued that the pause was detrimental to Alberta's efforts to transition to cleaner energy sources and meet climate targets, citing cases like TransAlta scrapping a wind farm amid policy uncertainty. They pointed out that halting projects could delay investments and job creation associated with the renewable energy sector, potentially impeding progress towards a more sustainable energy future.

In response to these concerns, the Alberta government conducted further reviews and consultations. The decision to cancel the pause reflects the government’s recognition of the importance of advancing renewable energy initiatives while also addressing the need for grid stability and infrastructure development. By ending the moratorium, the government aims to support the continued growth of renewable energy projects and maintain momentum in the shift towards greener energy solutions.

The lifting of the moratorium is expected to have a positive impact on the renewable energy industry in Alberta. Several planned projects that were put on hold can now proceed, leading to renewed investment and economic benefits, including a renewable energy surge that could power 4,500 jobs across the province. The government’s decision signals a commitment to integrating renewable energy sources into the provincial grid in a way that ensures both reliability and sustainability.

Going forward, the Alberta government plans to implement measures to better manage the integration of renewable energy into the existing power infrastructure. This includes addressing any potential challenges related to grid capacity and ensuring that the growth of renewable energy projects aligns with the province's overall energy strategy, as recent federal procurement such as a $500M green electricity contract with an Edmonton company underscores demand that integration efforts must accommodate. The goal is to create a balanced approach that supports the development of clean energy while maintaining the stability and efficiency of the energy system.

The end of the moratorium aligns with Alberta’s broader objectives to reduce greenhouse gas emissions and promote environmental sustainability within a province recognized as a powerhouse for both green energy and fossil fuels in Canada. The government’s approach reflects a willingness to adapt policies and strategies in response to evolving industry needs and environmental priorities. By removing the pause, Alberta demonstrates its commitment to fostering a diverse and resilient energy sector that can meet both current and future demands.

The decision to cancel the moratorium is also seen as a move to reinforce Alberta’s position as a leader in renewable energy development. With the lifting of restrictions, the province can continue to attract investment in clean energy projects, as neighboring jurisdictions such as B.C. streamline clean energy approvals to accelerate deployment, enhance its reputation as a progressive energy market, and contribute to global efforts to address climate change.

In summary, the Alberta government’s decision to lift the pause on renewable energy projects represents a significant shift in its approach to energy policy. The move reflects an acknowledgment of the importance of advancing renewable energy while addressing the practical challenges associated with grid management and infrastructure development. By ending the moratorium, Alberta aims to support the growth of clean energy initiatives and maintain its commitment to sustainability and environmental responsibility.

 

Related News

View more

Hydro once made up around half of Alberta's power capacity. Why does Alberta have so little now?

Alberta Hydropower Potential highlights renewable energy, dams, reservoirs, grid flexibility, contrasting wind and solar growth with limited investment, regulatory hurdles, river basin resources, and decarbonization pathways across Athabasca, Peace, and Slave River systems.

 

Key Points

It is the technical capacity for new hydro in Alberta's river basins to support a more reliable, lower carbon grid.

✅ 42,000 GWh per year developable hydro identified in studies.

✅ Major potential in Athabasca, Peace, and Slave River basins.

✅ Barriers include high capital costs, market design, water rights.

 

When you think about renewable energy sources on the Prairies, your mind may go to the wind farms in southern Alberta, or even the Travers Solar Project, southeast of Calgary.

Most of the conversation around renewable energy in the province is dominated by advancements in solar and wind power, amid Alberta's renewable energy surge that continues to attract attention. 

But what about Canada's main source of electricity — hydro power?

More than half of Canada's electricity is generated from hydro sources, with 632.2 terawatt-hours produced as of 2019. That makes it the fourth largest installed capacity of hydropower in the world. 

But in Alberta, it's a different story. 

Currently, hydro power contributes between three and five per cent of Alberta's energy mix, while fossil fuels make up about 89 per cent.

According to Canada's Energy Future report from the Canada Energy Regulator, by 2050 it will make up two per cent of the province's electricity generation shares.

So why is it that a province so rich in mountains and rivers has so little hydro power?


Hydro's history in Alberta
Hydro power didn't always make up such a small sliver of Alberta's electricity generation. Hydro installations began in the early 20th century as the province's population exploded. 

Grant Berg looks after engineering for hydro for TransAlta, Alberta's largest producer of hydro power with 17 facilities across the province.

"Our first plant was Horseshoe, which started in 1911 that we formed as Calgary Power," he said. 

"It was really in response to the City of Calgary growing and having some power needs."

Berg said in 1913, TransAlta's second installation, the Kananaskis Plant, started as Calgary continued to grow.

A historical photo of a hydro-electric dam in Kananaskis Alta. taken in 1914.
Hydro power plant in Kananaskis as seen in 1914. (Glenbow Archives)
Some bigger installations were built in the 1920s, including Ghost reservoir, but by mid-century population growth increased.

"Quite a large build out really, I think in response to the growth in Alberta following the war. So through the 1950s really quite a large build out of hydro from there."

By the 1950s, around half of the province's installed capacity was hydro power.

"Definitely Calgary power was all hydro until the 1950s," said Berg. 


Hydro potential in the province 
Despite the current low numbers in hydroelectricity, Alberta does have potential. 

According to a 2010 study, there is approximately 42,000 gigawatt-hours per year of remaining developable hydroelectric energy potential at identified sites. 

An average home in Alberta uses around 7,200 kilowatt-hours of electricity per year, meaning that the hydro potential could power 5.8 million homes each year. 

"This volume of energy could be sufficient to serve a significant amount of Alberta's load and therefore play a meaningful role in the decarbonization of the province's electric system," the Alberta Electric System Operator said in its 2022 Pathways to Net-Zero Emissions report.

Much of that potential lies in northern Alberta, in the Athabasca, Peace and Slave River basins.

The AESO report says that despite the large resource potential, Alberta's energy-only market framework has attracted limited investment in hydroelectric generation. 

Hydro power was once a big deal in Alberta, but investment in the industry has been in decline since the 1950s. Climate change reporter Christy Climenhaga explains why.
So why does Alberta leave out such a large resource potential on the path to net zero?

The government of Alberta responded to that question in a statement. 

"Hydro facilities, particularly large scale ones involving dams, are associated with high costs and logistical demands," said the Ministry of Affordability and Utilities. 

"Downstream water rights for other uses, such as irrigation, further complicate the development of hydro projects."

The ministry went on to say that wind and solar projects have increased far more rapidly because they can be developed at relatively lower cost and shorter timelines, and with fewer logistical demands.

"Sources from wind power and solar are increasingly more competitive," said Jean-Denis Charlebois, chief economist with the Canadian Energy Regulator. 


Hydro on the path to net zero
Hydro power is incredibly important to Canada's grid, and will remain so, despite growth in wind and solar power across the province.

Charlebois said that across Canada, the energy make-up will depend on the province. 

"Canadian provinces will generate electricity in very different ways from coast to coast. The major drivers are essentially geography," he said. 

Charlebois says that in British Columbia, Manitoba, Quebec and Newfoundland and Labrador, hydropower generation will continue to make up the majority of the grid.

"In Alberta and Saskatchewan, we see a fair bit of potential for wind and solar expansion in the region, which is not necessarily the case on Canada's coastlines," he said.

And although hydro is renewable, it does bring its adverse effects to the environment — land use changes, changes in flow patterns, fish populations and ecosystems, which will have to be continually monitored. 

"You want to be able to manage downstream effects; make sure that you're doing all the proper things for the environment," said Ryan Braden, director of mining and hydro at TransAlta.

Braden said hydro power still has a part to play in Alberta, even with its smaller contributions to the future grid. 

"It's one of those things that, you know, the wind doesn't blow or the sun doesn't shine, this is here. The way we manage it, we can really support that supply and demand," he said.

 

Related News

View more

Data Show Clean Power Increasing, Fossil Fuel Decreasing in California

California clean electricity accelerates with renewables as solar and wind surge, battery storage strengthens grid resilience, natural gas declines, and coal fades, advancing SB 100 targets, carbon neutrality goals, and affordable, reliable power statewide.

 

Key Points

California clean electricity is the state's transition to renewable, zero-carbon power, scaling solar, wind and storage.

✅ Solar generation up nearly 20x since 2012

✅ Natural gas power down 20%; coal nearly phased out

✅ Battery storage shifts daytime surplus to evening demand

 

Data from the California Energy Commission (CEC) highlight California’s continued progress toward building a more resilient grid, achieving 100 percent clean electricity and meeting the state’s carbon neutrality goals.

Analysis of the state’s Total System Electric Generation report shows how California’s power mix has changed over the last decade. Since 2012:

Solar generation increased nearly twentyfold from 2,609 gigawatt-hours (GWh) to 48,950 GWh.

  • Wind generation grew by 63 percent.
  • Natural gas generation decreased 20 percent.
  • Coal has been nearly phased-out of the power mix, and renewable electricity surpassed coal nationally in 2022 as well.

In addition to total utility generation, rooftop solar increased by 10 times generating 24,309 GWh of clean power in 2022. The state’s expanding fleet of battery storage resources also help support the grid by charging during the day using excess renewable power for use in the evening.

“This latest report card showing how solar energy boomed as natural gas powered electricity experienced a steady 20 percent decline over the last decade is encouraging,” said CEC Vice Chair Siva Gunda. “Even as climate impacts become increasingly severe, California remains committed to transitioning away from polluting fossil fuels and delivering on the promise to build a future power grid that is clean, reliable and affordable.”

Senate Bill 100 (2018) requires 100 percent of California’s electric retail sales be supplied by renewable and zero-carbon energy sources by 2045. To keep the state on track, last year Governor Gavin Newsom signed SB 1020, establishing interim targets of 90 percent clean electricity by 2035 and 95 percent by 2040.

The state monitors progress through the Renewables Portfolio Standard (RPS), which tracks the power mix of retail sales, and regional peers such as Nevada's RPS progress offer useful comparison. The latest data show that in 2021 more than 37 percent of the state’s electricity came from RPS-eligible sources such as solar and wind, an increase of 2.7 percent compared to 2020. When combined with other sources of zero-carbon energy such as large hydroelectric generation and nuclear, nearly 59 percent of the state’s retail electricity sales came from nonfossil fuel sources.

The total system electric generation report is based on electric generation from all in-state power plants rated 1 megawatt (MW) or larger and imported utility-scale power generation. It reflects the percentage of a specific resource compared to all power generation, not just retail sales. The total system electric generation report accounts for energy used for water conveyance and pumping, transmission and distribution losses and other uses not captured under RPS.

 

Related News

View more

Peterborough Distribution sold to Hydro One for $105 million.

Peterborough Distribution Inc. Sale to Hydro One delivers a $105 million deal pending Ontario Energy Board approval, a 1% distribution rate cut, five-year rate freeze, job protections, and a new operations centre and fleet facility.

 

Key Points

A $105M acquisition of PDI by Hydro One, with OEB review, rate freeze, job protections, and a new operations centre.

✅ $105 million purchase; Ontario Energy Board approval required

✅ 1% distribution rate cut and a five-year rate freeze

✅ New operations centre; PDI employees offered roles at Hydro One

 

The City of Peterborough said Wednesday it has agreed to sell Peterborough Distribution Inc. to Hydro One for $105 million, amid a period when Hydro One shares fell after leadership changes.

The deal requires approval from the Ontario Energy Board before it can proceed.

According to the city, the deal includes a one per cent distribution rate reduction and a five-year freeze in distribution rates for customers, plus:

  • A second five-year period with distribution rate increases limited to inflation and an earnings sharing mechanism to offset rates in year 11 and onward
  • Protections for PDI employees with employees receiving employment offers to move to Hydro One
  • A sale price of $105 million
  • An agreement to develop a regional operations centre and new fleet maintenance facility in Peterborough

“Hydro One was unique in its ability to offer new investment and job creation in our community through the addition of a new operations centre to serve customers throughout the broader region,” Mayor Daryl Bennett said.

“We’re surrounded by Hydro One territory — in fact, we already have Hydro One customers within the City of Peterborough and new subdivisions will be in Hydro One territory. Hydro One will be able to create efficiencies by better utilizing its existing infrastructure, benefiting customers and supporting growth.”

The sale comes after months of negotiations amid investor concerns about Hydro One’s uncertainties. At one point, it looked like the sale wouldn’t go through, after it was announced that Hydro One had walked away from the bargaining table.

City council approved the sale of PDI in December 2016, despite a strong public opposition and debate over proposals to make hydro public again among some parties.

Elsewhere in Canada, political decisions around utilities have also sparked debate, as seen when Manitoba Hydro faced controversy over policy shifts.

 

Related News

View more

Egypt Plans Power Link to Saudis in $1.6 Billion Project

Egypt-Saudi Electricity Interconnection enables cross-border power trading, 3,000 MW capacity, and peak-demand balancing across the Middle East, boosting grid stability, reliability, and energy security through an advanced electricity network, interconnector infrastructure, and GCC grid integration.

 

Key Points

A 3,000 MW grid link letting Egypt and Saudi Arabia trade power, balance peak demand, and boost regional reliability.

✅ $1.6B project; Egypt invests ~$600M; 2-year construction timeline

✅ 3,000 MW capacity; peak-load shifting; cross-border reliability

✅ Links GCC grid; complements Jordan and Libya interconnectors

 

Egypt will connect its electricity network to Saudi Arabia, joining a system in the Middle East that has allowed neighbors to share power, similar to the Scotland-England subsea project that will bring renewable power south.

The link will cost about $1.6 billion, with Egypt paying about $600 million, Egypt’s Electricity Minister Mohamed Shaker said Monday at a conference in Cairo, as the country pursues a smart grid transformation to modernize its network. Contracts to build the network will be signed in March or April, and construction is expected to take about two years, he said. In times of surplus, Egypt can export electricity and then import power during shortages.

"It will enable us to benefit from the difference in peak consumption,” Shaker said. “The reliability of the network will also increase.”

Transmissions of electricity across borders in the Gulf became possible in 2009, when a power grid connected Qatar, Kuwait, Saudi Arabia and Bahrain, a dynamic also seen when Ukraine joined Europe's grid under emergency conditions. The aim of the grid is to ensure that member countries of the Gulf Cooperation Council can import power in an emergency. Egypt, which is not in the GCC, may have been able to avert an electricity shortage it suffered in 2014 if the link with Saudi Arabia existed at the time, Shaker said.

The link with Saudi Arabia should have a capacity of 3,000 megawatts, he said. Egypt has a 450-megawatt link with Jordan and one with Libya at 200 megawatts, the minister said. Egypt will seek to use its strategic location to connect power grids in Asia, where the Philippines power grid efforts are raising standards, and elsewhere in Africa, he said.

In 2009, a power grid linked Qatar, Kuwait, Saudi Arabia and Bahrain, allowing the GCC states to transmit electricity across borders, much like proposals for a western Canadian grid that aim to improve regional reliability. 

 

Related News

View more

Is 5G a waste of electricity? Experts say it's complicated

5G Energy Costs highlight base station power consumption, carrier electricity bills, and carbon emissions in China, while advances in energy efficiency, sleep modes, and cooling systems aim to optimize low-latency networks and reduce operational expenses.

 

Key Points

5G energy costs rise with power-hungry base stations, yet per-bit efficiency and sleep modes help cut bills.

✅ 5G base stations use ~4x 4G electricity

✅ Per-bit 5G energy efficiency is ~4x better than 4G

✅ Sleep modes and advanced cooling reduce OPEX and emissions

 

As 5G developers look desperately for a "killer app" to prove the usefulness of the superfast wireless technology, mobile carriers in China are complaining about the high energy cost of 5G signal towers.

And the situation is, according to experts, more complicated than many have thought.

The costly 5G

5G technology can be 10 or more times faster than 4G and significantly more responsive to users' input, but the speed comes at a cost.

A 5G base station consumes "four times more electricity" than its 4G counterpart, said Ding Haiyu, head of wireless and terminals at the China Mobile Research Institute, during a symposium on 5G and carbon neutrality in Beijing, a key focus for countries pursuing a net-zero grid by 2050 worldwide.

But concerning each bit of data transmitted, 5G is four times more energy-efficient than 4G, according to Ding.

This means that mobile carriers should fully occupy their 5G network for as long time as possible, but that can be hard at this moment, as many people are still holding 4G smartphones.

"When the 5G stations are running without people using them, they are really electricity guzzlers," said Zhu Qingfeng, head of power supply design at China Information Technology Designing and Consulting Institute Co., Ltd., who represents China Unicom at the symposium. "Each of the three telecom carrier giants are emitting about ten million tonnes of carbon in the air."

"We have to shut down some 5G base stations at night to reduce emission," he added.

Some utilities are testing fuel cell solutions to keep backup batteries charged much longer, supporting network resilience at lower emissions.

A representative from China Telecom said electricity bills of the nationwide carrier reached a new high of 100 billion yuan (about $15 billion) a year, mirroring the power challenges for utilities as data center demand booms elsewhere.

Getting better

While admitting the excessive cost of 5G, experts at the symposium also agreed that the situation is improving, even as climate pressures on the grid continue to mount.

Ding listed a series of recent technologies that is helping reduce the energy use of 5G, including chips of better process, automatic sleeping and wake-up of base stations and liquid nitrogen-based cooling system, and superconducting cables as part of ongoing upgrades.

"We are aiming at halving the 5G electricity cost to only two times of 4G in two years," Ding said.

Experts also discussed the possibility of making use of 5G's low latency features to help monitoring the electricity grid, thus making the digital grid smarter and more cost effective.

G's energy cost is seen as a hot topic for the incoming World 5G Convention in Beijing in early August, alongside smart grid transformation themes. Stay tuned to CGTN Digital as we bring you the latest news about the convention and 5G technology.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified