Ontario Provides Stable Electricity Pricing for Industrial and Commercial Companies


ontario logo

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Ontario ICI Electricity Pricing Freeze helps Industrial Conservation Initiative (ICI) participants by stabilizing Global Adjustment charges, suspending peak hours curtailment, and reducing COVID-19-related electricity cost volatility to support large employers returning operations to full capacity.

 

Key Points

A two-year policy stabilizing GA costs and pausing peak-hour cuts to aid industrial and commercial recovery.

✅ GA cost share frozen for two years

✅ No peak-hour curtailment obligations

✅ Supports industrial and commercial restart

 

The Ontario government is helping large industrial and commercial companies return to full levels of operation without the fear of electricity costs spiking by providing more stable electricity pricing for two years. Effective immediately, companies that participate in the Industrial Conservation Initiative (ICI) will not be required to reduce their electricity usage during peak hours or shift some load to ultra-low overnight pricing where applicable, as their proportion of Global Adjustment (GA) charges for these companies will be frozen.

"Ontario's industrial and commercial electricity consumers continue to experience unprecedented economic challenges during COVID-19, with electricity relief for households and small businesses introduced to help," said Greg Rickford, Minister of Energy, Northern Development and Mines. "Today's announcement will allow large industrial employers to focus on getting their operations up and running and employees back to work, instead of adjusting operations in response to peak electricity demand hours."

Due to COVID-19, electricity consumption in Ontario has been below average as fall in demand as people stayed home across the province, and the province is forecast to have a reliable supply of electricity, supported by the system operator's staffing contingency plans during the pandemic, to accommodate increased usage. Peak hours generally occur during the summer when the weather is hot and electricity demand from cooling systems is high.

"Today's action will reduce the burden of anticipating and responding to peak hours for more than 1,300 ICI participants with 2,000 primarily industrial facilities in Ontario," said Bill Walker, Associate Minister of Energy. "Now these large employers can focus on getting their operations back up and running at full tilt and explore new energy-efficiency programs to manage costs."

The government previously announced it was providing temporary relief for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP) by deferring a portion of GA charges for April, May and June 2020 and by extending off-peak rates for many customers, as well as a disconnect moratorium extension for residential electricity users.

 

Related News

Related News

Millions at Risk of Electricity Shut-Offs Amid Summer Heat

Summer Heatwave Electricity Shut-offs strain power grids as peak demand surges, prompting load shedding, customer alerts, and energy conservation. Vulnerable populations face higher risks, while cooling centers, efficiency upgrades, and renewables bolster resilience.

 

Key Points

Episodic power cuts during extreme heat to balance grid load, protect infrastructure, and manage peak demand.

✅ Causes: peak demand, heatwaves, aging grid, AC load spikes.

✅ Impacts: vulnerable households, health risks, economic losses.

✅ Solutions: load shedding, cooling centers, efficiency, renewables.

 

As temperatures soar across various regions, millions of households are facing the threat of U.S. blackouts due to strain on power grids and heightened demand for cooling during summer heatwaves. This article delves into the causes behind these potential shut-offs, the impact on affected communities, and strategies to mitigate such risks in the future.

Summer Heatwave Challenges

Summer heatwaves bring not only discomfort but also significant challenges to electrical grids, particularly in densely populated urban areas where air conditioning units and cooling systems, along with the data center demand boom, strain the capacity of infrastructure designed to meet peak demand. As temperatures rise, the demand for electricity peaks, pushing power grids to their limits and increasing the likelihood of disruptions.

Vulnerable Populations

The risk of electricity shut-offs disproportionately affects vulnerable populations, including low-income households, seniors, and individuals with medical conditions that require continuous access to electricity for cooling or medical devices. These groups are particularly susceptible to heat-related illnesses and discomfort when faced with more frequent outages during extreme heat events.

Utility Response and Management

Utility companies play a critical role in managing electricity demand and mitigating the risk of shut-offs during summer heatwaves. Strategies such as load shedding, where electricity is temporarily reduced in specific areas to balance supply and demand, and deploying AI for demand forecasting are often employed to prevent widespread outages. Additionally, utilities communicate with customers to provide updates on potential shut-offs and offer advice on energy conservation measures.

Community Resilience

Community resilience efforts are crucial in addressing the challenges posed by summer heatwaves and electricity shut-offs, especially as Canadian grids face harsher weather that heightens outage risks. Local governments, non-profit organizations, and community groups collaborate to establish cooling centers, distribute fans, and provide support services for vulnerable populations during heat emergencies. These initiatives help mitigate the health impacts of extreme heat and ensure that all residents have access to relief from oppressive temperatures.

Long-term Solutions

Investing in resilient infrastructure, enhancing energy efficiency, and promoting renewable energy sources are long-term solutions to reduce the risk of electricity shut-offs during summer heatwaves by addressing grid vulnerabilities that persist. By modernizing electrical grids, integrating smart technologies, and diversifying energy sources, communities can enhance their capacity to withstand extreme weather events and ensure reliable electricity supply year-round.

Public Awareness and Preparedness

Public awareness and preparedness are essential components of mitigating the impact of electricity shut-offs during summer heatwaves. Educating residents about energy conservation practices, encouraging the use of programmable thermostats, and promoting the importance of emergency preparedness plans empower individuals and families to navigate heat emergencies safely and effectively.

Conclusion

As summer heatwaves become more frequent and intense due to climate change impacts on the grid, the risk of electricity shut-offs poses significant challenges to communities across the globe. By implementing proactive measures, enhancing infrastructure resilience, and fostering community collaboration, stakeholders can mitigate the impact of extreme heat events and ensure that all residents have access to safe and reliable electricity during the hottest months of the year.

 

Related News

View more

A New Electric Boat Club Launches in Seattle

Aurelia Boat Club delivers electric boat membership in Seattle, featuring zero-emission propulsion, quiet cruising, sustainable recreation, and a managed fleet with maintenance, insurance, moorage, and charging handled for members seeking hassle-free, eco-friendly boating.

 

Key Points

Aurelia Boat Club is a Seattle membership offering all-electric boats, with maintenance, insurance, and moorage included.

✅ Unlimited access to an all-electric fleet

✅ Maintenance, insurance, moorage, and charging included

✅ Quiet, zero-emission cruising on Seattle waters

 

Seattle's maritime scene has welcomed a new player: Aurelia Boat Club. Founded by former Pure Watercraft employees, Aurelia is poised to redefine electric boating in the city, where initiatives like Washington State Ferries hybrid-electric upgrade are underway. The club's inception follows the unexpected closure of Pure Watercraft, a Seattle-based startup that aimed to revolutionize the pleasure boating industry before its financial troubles led to its downfall.

From Pure Watercraft to Aurelia Boat Club

Pure Watercraft, established in 2011, garnered attention for its innovative electric propulsion systems designed to replace traditional gas-powered motors in boats, while efforts to build the first commercial electric speedboats also advanced. The company attracted significant investment, including a notable partnership with General Motors in 2021, which acquired a 25% stake in Pure Watercraft. Despite these efforts, Pure Watercraft faced financial difficulties and entered receivership in 2024, leading to the liquidation of its assets. 

Amidst this transition, Danylo Kurgan and Mrugesh Desai saw an opportunity to continue the vision of electric boating. Kurgan, formerly a financial analyst at Pure Watercraft and involved in the company's boat club operations, teamed up with Desai, a technology executive and startup investor. Together, they acquired key assets from Pure Watercraft's receivership, including electric outboard motors, pontoon boats, inflatable crafts, battery systems, spare parts, and digital infrastructure. 

Aurelia Boat Club's Offerings

Aurelia Boat Club aims to provide a sustainable and accessible alternative to traditional gas-powered boat clubs in Seattle. Members can enjoy unlimited access to a fleet of all-electric boats without the responsibilities of ownership. The club's boats are equipped with electric motors, offering a quiet and environmentally friendly boating experience, similar to how electric ships are clearing the air on the B.C. coast. Additionally, Aurelia handles maintenance, repairs, insurance, and moorage, allowing members to focus solely on enjoying their time on the water. 

The Future of Electric Boating in Seattle

Aurelia Boat Club's launch signifies a growing interest in sustainable boating practices in Seattle. The club's founders are committed to scaling the business and expanding their fleet to meet the increasing demand for eco-friendly recreational activities, as projects like battery-electric high-speed ferries indicate. By leveraging the assets and knowledge gained from Pure Watercraft, Aurelia aims to continue the legacy of innovation in the electric boating industry.

As the boating community becomes more environmentally conscious, initiatives like Aurelia Boat Club play a crucial role in promoting sustainable practices, and examples such as Harbour Air's electric aircraft highlight the momentum. The club's success could serve as a model for other cities, demonstrating that with the right vision and resources, the transition to electric boating is not only feasible but also desirable.

While the closure of Pure Watercraft marked the end of one chapter, it also paved the way for new ventures like Aurelia Boat Club to carry forward the mission of transforming the boating industry, with regional moves like the Kootenay Lake electric-ready ferry and international innovations such as Berlin electric flying ferry showing what's possible. With a strong foundation and a clear vision, Aurelia is set to make significant waves in Seattle's electric boating scene.

 

 

Related News

View more

Ontario introduces new 'ultra-low' overnight hydro pricing

Ontario Ultra-Low Overnight Electricity Rates cut costs for shift workers and EV charging, with time-of-use pricing, off-peak savings, on-peak premiums, kilowatt-hour details, and Ontario Energy Board guidance for homes and businesses across participating utilities.

 

Key Points

Ontario's ultra-low overnight plan: 2.4c/kWh 11pm-7am for EVs, shift workers; higher daytime on-peak pricing.

✅ 2.4c/kWh 11pm-7am; 24c/kWh on-peak 4pm-9pm

✅ Best for EV charging, shift work, night usage

✅ Available provincewide by Nov 1 via local utilities

 

The Ontario government is introducing a new ultra-low overnight price plan that can benefit shift workers and individuals who charge electric vehicles while they sleep.

Speaking at a news conference on Tuesday, Energy Minister Todd Smith said the new plan could save customers up to $90 a year.

“Consumer preferences are still changing and our government realized there was more we could do, especially as the province continues to have an excess supply of clean electricity at night when province-wide electricity demand is lower,” Smith said, noting a trend underscored by Ottawa's demand decline during the pandemic.

The new rate, which will be available as an opt-in option as of May 1, will be 2.4 cents per kilowatt-hour from 11 p.m. to 7 a.m. Officials say this is 67 per cent lower than the current off-peak rate, which saw a off-peak relief extension during the pandemic.

However, customers should be aware that this plan will mean a higher on-peak rate, as unlike earlier calls to cut peak rates, Hydro One peak charges remained unchanged for self-isolating customers.

The new plan will be offered by Toronto Hydro, London Hydro, Centre Wellington Hydro, Hearst Power, Renfrew Hydro, Wasaga Distribution, and Sioux Lookout Hydro by May. Officials have said this will be expanded to all local distribution companies by Nov. 1.

With the new addition of the “ultra low” pricing, there are now three different electricity plans that Ontarians can choose from. Here is what you have to know about the new hydro options:

TIME OF USE:
Most residential customers, businesses and farms are eligible for these rates, similar to BC Hydro time-of-use proposals in another province, which are divided into off-peak, mid-peak and on-peak hours.

This is what customers will pay as of May 1 according to the Ontario Energy Board, following earlier COVID-19 electricity relief measures that temporarily adjusted rates:

 Off-peak (Weekdays between 7 p.m. and 7 a.m. and on weekends/holidays): 7.4 cents per kilowatt-hour
 Mid-Peak (Weekdays between 7 a.m. and 11 a.m., and between 5 p.m. and 7 p.m.): 10.2 cents per kilowatt-hour
 On-Peak ( Weekdays 11 a.m. to 5 p.m.): 15.1 cents per kilowatt-hour

TIERED RATES
This plan allows customers to get a standard rate depending on how much electricity is used. There are various thresholds per tier, and once a household exceeds that threshold, a higher price applies. Officials say this option may be beneficial for retirees who are home often during the day or those who use less electricity overall.

The tiers change depending on the season. This is what customers will pay as of May 1:

 Residential households that use 600 kilowatts of electricity per month and non-residential businesses that use 750 kilowatts per month: 8.7 cents per kilowatt-hour.
 Residences and businesses that use more than that will pay a flat rate of 10.3 cents per kilowatt-hour


ULTRA-LOW OVERNIGHT RATES
Customers can opt-in to this plan if they use most of their electricity overnight.

This is what customers will pay as of May 1:

  •  Between 11 p.m. and 7 a.m.: 2.4 cents per kilowatt-hour
  •  Weekends and holidays between 7 a.m. and 11 p.m.: 7.4 cents per kilowatt-hour
  •  Mid-Peak (Weekdays between 7 a.m. and 4 p.m., and between 9 p.m. and 11 p.m.): 10.2 cents per kilowatt-hour
  •  On-Peak (weekdays between 4 p.m. and 9 p.m.): 24 cents per kilowatt-hour

More information on these plans can be found on the Ontario Energy Board website, alongside stable pricing for industrial and commercial updates from the province.

 

Related News

View more

PG&E’s Pandemic Response Includes Precautionary Health and Safety Actions; Moratorium on Customer Shutoffs for Nonpayment

PG&E COVID-19 Shutoff Moratorium suspends service disconnections, offers flexible payment plans, and expands customer support with safety protocols, social distancing, and public health guidance for residential and commercial utility customers during the pandemic.

 

Key Points

A temporary halt to utility shutoffs with flexible payment plans to support PG&E customers during COVID-19.

✅ Suspends shutoffs for residential and commercial accounts

✅ Offers most flexible payment plans upon COVID-19 hardship

✅ Enhances safety: social distancing, PPE, remote work protocols

 

Pacific Gas and Electric Company has announced that due to the COVID-19 pandemic, it has voluntarily implemented a moratorium on service disconnections for non-payment, effective immediately. This suspension, similar to policies in New Jersey and New York, will apply to both residential and commercial customers and will remain in effect until further notice. To further support customers who may be impacted by the pandemic, PG&E will offer its most flexible pay plans to customers who indicate either an impact or hardship as a result of COVID-19. PG&E will continue to monitor current events and identify opportunities to support our customers and communities through concrete actions.

In addition to the moratorium on service shut-offs, PG&E’s response to the COVID-19 pandemic is focused on efforts to protect the health and safety of its customers, employees, contractors and the communities it serves, including ongoing wildfire risk reduction efforts that continue alongside its pandemic response. Actions the company has taken include providing guidance for employees who have direct customer contact to take social distancing precautionary measures, such as avoiding handshakes and wearing disposable nitrile gloves while in customers' homes, and continuing safety work related to power line-related fires across its service area.

Customers who visit local offices to pay bills and are sick or experiencing symptoms are being asked to use other payment options such as online or by phone, as seen when Texas utilities waived fees during the pandemic, at 1-877-704-8470.

“We recognize that this is a rapidly changing situation and an uncertain time for many of our customers. Our most important responsibility is the health and safety of our customers and employees. We also want to provide some relief from the stress and financial challenges many are facing during this worldwide, public health crisis, and with rates set to stabilize in 2025 the company remains focused on affordability. We understand that many of our customers may experience a personal financial strain due to the slowdown in the economy related to the pandemic, and programs like the Wildfire Assistance Program can help eligible customers,” said Chief Customer Officer and Senior Vice President Laurie Giammona.

Internally, the company is taking advanced cleaning measures, communicating best practices frequently with employees, and is asking its leaders to let employees work remotely if their job allows, while avoiding critical business disruption. PG&E has activated an enterprise-wide incident response team and is vigilantly monitoring the Centers for Disease Control and Prevention and World Health Organization for updates related to the virus. The company is committed to continue addressing customer service needs and does not expect any disruption in gas or electric service due to the public health crisis.

 

Related News

View more

Pacific Northwest's Renewable Energy Goals Hindered

Pacific Northwest Transmission Bottleneck slows clean energy progress as BPA's aging grid constrains renewable interconnections, delaying wind, solar, and data center growth; decarbonization targets depend on transmission upgrades, new substations, and policy reform.

 

Key Points

An interconnection and capacity shortfall on BPA's aging grid that delays renewables and impedes clean energy goals.

✅ BPA approvals lag: 1 of 469 projects since 2015.

✅ Yakama solar waits for substation upgrades until 2027.

✅ Data centers and decarbonization targets face grid constraints.

 

Oregon and Washington have set ambitious targets to decarbonize their power sectors, aiming for 100% clean electricity in the coming decades. However, a significant obstacle stands in the way: the region's aging and overburdened transmission grid, underscoring why 100% renewables remain elusive even as momentum builds.

The Grid Bottleneck

The BPA operates a transmission system that is nearly a century old in some areas, and its capacity has not expanded sufficiently to accommodate the influx of renewable energy projects, reflecting stalled grid spending in many parts of the U.S., according to recent analyses. Since 2015, 469 large renewable projects have applied to connect to the BPA's grid; however, only one has been approved—a stark contrast to other regions in the country. This bottleneck has left numerous wind and solar projects in limbo, unable to deliver power to the grid.

One notable example is the Yakama Nation's solar project. Despite receiving a $32 million federal grant under the bipartisan infrastructure law as part of a broader grid overhaul for renewables, the tribe faces significant delays. The BPA estimates that it will take until 2027 to complete the necessary upgrades to the transmission system, including a new substation, before the solar array can be connected. This timeline poses a risk of losing federal funding if the project isn't operational by 2031.

Economic and Environmental Implications

The slow pace of grid expansion has broader implications for the region's economy and environmental goals. Data centers and other energy-intensive industries are increasingly drawn to the Pacific Northwest due to its clean energy potential, while interregional projects like the Wyoming-to-California wind link illustrate how transmission access can unlock supply. However, without adequate infrastructure, these industries may seek alternatives elsewhere. Additionally, the inability to integrate renewable energy efficiently hampers efforts to reduce greenhouse gas emissions and combat climate change.

Policy Challenges and Legislative Efforts

Efforts to address the grid limitations through state-level initiatives have faced challenges, even as a federal rule to boost transmission advances nationally. In 2025, both Oregon and Washington considered legislation to establish state bonding authorities aimed at financing transmission upgrades. However, these bills failed to pass, leaving the BPA as the primary entity responsible for grid expansion. The BPA's unique structure—operating as a self-funded federal agency without direct state oversight—has made it difficult for regional leaders to influence its decision-making processes.

Looking Ahead

The Pacific Northwest's renewable energy aspirations hinge on modernizing its transmission infrastructure, aligning with decarbonization strategies that emphasize grid buildout. While the BPA has proposed several projects to enhance grid capacity, the timeline for completion remains uncertain. Without significant investment and policy reforms, the region risks falling behind in the transition to a clean energy future. Stakeholders across Oregon and Washington must collaborate to advocate for necessary changes and ensure that the grid can support the growing demand for renewable energy.

The Pacific Northwest's commitment to clean energy is commendable, but achieving these goals requires overcoming substantial infrastructure challenges, and neighboring jurisdictions such as British Columbia have pursued B.C. regulatory streamlining to accelerate projects. Addressing the limitations of the BPA's transmission system is critical to unlocking the full potential of renewable energy in the region. Only through concerted efforts at the federal, state, and local levels can Oregon and Washington hope to realize their green energy ambitions.

 

Related News

View more

New fuel cell could help fix the renewable energy storage problem

Proton Conducting Fuel Cells enable reversible hydrogen energy storage, coupling electrolyzers and fuel cells with ceramic catalysts and proton-conducting membranes to convert wind and solar electricity into fuel and back to reliable grid power.

 

Key Points

Proton conducting fuel cells store renewable power as hydrogen and generate electricity using reversible catalysts.

✅ Reversible electrolysis and fuel-cell operation in one device

✅ Ceramic air electrodes hit up to 98% splitting efficiency

✅ Scalable path to low-cost grid energy storage with hydrogen

 

If we want a shot at transitioning to renewable energy, we’ll need one crucial thing: technologies that can convert electricity from wind, sun, and even electricity from raindrops into a chemical fuel for storage and vice versa. Commercial devices that do this exist, but most are costly and perform only half of the equation. Now, researchers have created lab-scale gadgets that do both jobs. If larger versions work as well, they would help make it possible—or at least more affordable—to run the world on renewables.

The market for such technologies has grown along with renewables: In 2007, solar and wind provided just 0.8% of all power in the United States; in 2017, that number was 8%, according to the U.S. Energy Information Administration. But the demand for electricity often doesn’t match the supply from solar and wind, a key reason why the U.S. grid isn't 100% renewable today. In sunny California, for example, solar panels regularly produce more power than needed in the middle of the day, but none at night, after most workers and students return home.

Some utilities are beginning to install massive banks of cheaper solar batteries in hopes of storing excess energy and evening out the balance sheet. But batteries are costly and store only enough energy to back up the grid for a few hours at most. Another option is to store the energy by converting it into hydrogen fuel. Devices called electrolyzers do this by using electricity—ideally from solar and wind power—to split water into oxygen and hydrogen gas, a carbon-free fuel. A second set of devices called fuel cells can then convert that hydrogen back to electricity to power cars, trucks, and buses, or to feed it to the grid.

But commercial electrolyzers and fuel cells use different catalysts to speed up the two reactions, meaning a single device can’t do both jobs. To get around this, researchers have been experimenting with a newer type of fuel cell, called a proton conducting fuel cell (PCFC), which can make fuel or convert it back into electricity using just one set of catalysts.

PCFCs consist of two electrodes separated by a membrane that allows protons across. At the first electrode, known as the air electrode, steam and electricity are fed into a ceramic catalyst, which splits the steam’s water molecules into positively charged hydrogen ions (protons), electrons, and oxygen molecules. The electrons travel through an external wire to the second electrode—the fuel electrode—where they meet up with the protons that crossed through the membrane. There, a nickel-based catalyst stitches them together to make hydrogen gas (H2). In previous PCFCs, the nickel catalysts performed well, but the ceramic catalysts were inefficient, using less than 70% of the electricity to split the water molecules. Much of the energy was lost as heat.

Now, two research teams have made key strides in improving this efficiency, and a new fuel cell concept brings biological design ideas into the mix. They both focused on making improvements to the air electrode, because the nickel-based fuel electrode did a good enough job. In January, researchers led by chemist Sossina Haile at Northwestern University in Evanston, Illinois, reported in Energy & Environmental Science that they came up with a fuel electrode made from a ceramic alloy containing six elements that harnessed 76% of its electricity to split water molecules. And in today’s issue of Nature Energy, Ryan O’Hayre, a chemist at the Colorado School of Mines in Golden, reports that his team has done one better. Their ceramic alloy electrode, made up of five elements, harnesses as much as 98% of the energy it’s fed to split water.

When both teams run their setups in reverse, the fuel electrode splits H2 molecules into protons and electrons. The electrons travel through an external wire to the air electrode—providing electricity to power devices. When they reach the electrode, they combine with oxygen from the air and protons that crossed back over the membrane to produce water.

The O’Hayre group’s latest work is “impressive,” Haile says. “The electricity you are putting in is making H2 and not heating up your system. They did a really good job with that.” Still, she cautions, both her new device and the one from the O’Hayre lab are small laboratory demonstrations. For the technology to have a societal impact, researchers will need to scale up the button-size devices, a process that typically reduces performance. If engineers can make that happen, the cost of storing renewable energy could drop precipitously, thereby moving us closer to cheap abundant electricity at scale, helping utilities do away with their dependence on fossil fuels.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified