Ukraine's Green Fightback: Rising from the Ashes with Renewable Energy


solar power

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Ukraine Green Fightback advances renewable energy, energy independence, and EU integration, rebuilding war-damaged grids with solar, wind, and storage, exporting power to Europe, and scaling community microgrids for resilient, low-carbon recovery and REPowerEU alignment.

 

Key Points

Ukraine Green Fightback shifts to renewables and resilient grids, aiming 50% clean power by 2035 despite wartime damage.

✅ 50% renewable electricity target by 2035, up from 15% in 2021

✅ Community solar and microgrids secure hospitals and schools

✅ Wind and solar rebuild capacity; surplus exports to EU grids

 

Two years after severing ties with Russia's power grid, Ukraine stands defiant, rebuilding its energy infrastructure with a resolute focus on renewables. Amidst the ongoing war's devastation, a remarkable green fightback is taking shape, driven by a vision of a self-sufficient, climate-conscious future.

Energy Independence, Forged in Conflict:

Ukraine's decision to unplug from Russia's grid in 2022 was both a strategic move and a forced necessity, aligning with a wider pushback from Russian oil and gas across the continent. While it solidified energy independence aspirations, the full-scale invasion pushed the country into "island mode," highlighting vulnerabilities of centralized infrastructure.

Today, Ukraine remains deeply intertwined with Europe, inching towards EU accession and receiving global support, as Europe's green surge in clean energy gathers pace. This aligns perfectly with the country's commitment to environmental responsibility, further bolstered by the EU's own "REPowerEU" plan to ditch fossil fuels.

Rebuilding with Renewables:

The war's impact on energy infrastructure has been significant, with nearly half damaged or destroyed. Large-scale renewables have borne the brunt, with 30% of solar and 90% of wind farms facing disruption.

Yet, the spirit of resilience prevails. Surplus electricity generated by solar plants is exported to Poland, showcasing the potential of renewable sources and mirroring Germany's solar power boost across the region. Ambitious projects are underway, like the Tyligulska wind farm, Ukraine's first built in a conflict zone, already supplying clean energy to thousands.

The government's vision is bold: 50% renewable energy share by 2035, a significant leap from 2021's 15%, and informed by the fact that over 30% of global electricity already comes from renewables. This ambition is echoed by civil society groups who urge even higher targets, with calls for 100% renewable energy worldwide continuing to grow.

Community-Driven Green Initiatives:

Beyond large-scale projects, community-driven efforts are flourishing. Villages like Horenka and Irpin, scarred by the war, are rebuilding hospitals and schools with solar panels, ensuring energy security and educational continuity.

These "bright examples," as Svitlana Romanko, founder of Razom We Stand, calls them, pave the way for a broader green wave. Research suggests replacing all coal plants with renewables would cost a manageable $17 billion, paving the way for a future free from dependence on fossil fuels, with calls for a fossil fuel lockdown gaining traction.

Environmental Cost of War:

The war's ecological footprint is immense, with damages exceeding €56.7 billion. The Ministry of Environmental Protection and Natural Resources is meticulously documenting this damage, not just for accountability but for post-war restoration.

Their efforts extend beyond documentation. Ukraine's "EcoZagroza" app allows citizens to report environmental damage and monitor pollution levels, fostering a collaborative approach to environmental protection.

Striving for a Greener Future:

President Zelenskyy's peace plan highlights ecocide prevention and environmental restoration. The ministry itself is undergoing a digitalization push, tackling corruption and implementing EU-aligned reforms.

While the European Commission's recent progress report acknowledges Ukraine's strides, set against a Europe where renewable power has surpassed fossil fuels for the first time, the "crazy rhythm" of change, as Ecoaction's Anna Ackermann describes it, reflects the urgency of the situation. Finding the right balance between war efforts and green initiatives remains a crucial challenge.

Conclusion:

Ukraine's green fightback is a testament to its unwavering spirit. Amidst the darkness of war, hope shines through in the form of renewable energy projects and community-driven initiatives. By embracing a green future, Ukraine not only rebuilds but sets an example for the world, demonstrating that even in the face of adversity, sustainability can prevail.

 

Related News

Related News

Electric vehicle assembly deals put Canada in the race

Canada EV Manufacturing Strategy catalyzes electric vehicles growth via batteries, mining, and supply chain localization, with Unifor deals, Ford and FCA retooling, and government incentives safeguarding jobs and competitiveness across the auto industry.

 

Key Points

A coordinated plan to scale EV assembly, batteries, and mining supply chains in Canada via union deals and incentives.

✅ Government-backed Ford and FCA retooling for EV models.

✅ Battery cell, module, and pack production localizes value.

✅ Mining-to-mobility links metals to the EV supply chain.

 

As of a month ago Canada was just a speck on the global EV manufacturing map. We couldn’t honestly claim to be in the global race to electrify the automotive sector, even as EV shortages and wait times signalled surging demand.

An analysis published earlier this year by the International Council on Clean Transportation and Pembina Institute found that while Canada ranked 12th globally in vehicle production, EV production was a miniscule 0.4 per cent of that total and well off the average of 2.3 per cent amongst auto producing nations.

As the report’s co-author Ben Sharpe noted, “Canada is a huge auto producer. But nobody is really shining a light on the fact that if Canada’s doesn’t quickly ramp up its EV production, the steady decline we’ve seen in auto manufacturing over the past 20 years is going to accelerate.”


National strategy
While the report received relatively scant attention outside industry circles, its thesis was not lost on the leadership of Unifor, the union representing Canadian autoworkers.

In an August op-ed, Unifor national president Jerry Dias laid out the table stakes: “Global automakers are pouring hundreds of billions of dollars into electric vehicle investments, but no major programs are landing in Canada. Without a comprehensive national auto strategy, and active government engagement, the future is dim … securing our industry’s future requires a much bigger made-in-Canada style effort. An effort that government must lead.”


And then he got busy at the negotiating table.

The result? All of a sudden Canada is (or rather, will be) on the EV assembly map, just as the market hits an EV inflection point globally on adoption trends.

Late last month, contract negotiations between Unifor and Ford produced the Ford Oakville deal that will see $2 billion — including $590 million from the federal and Ontario governments ($295 million each) — invested towards production of five EV models in Oakville, Ont.

Three weeks later, Unifor reached a similar agreement with Fiat Chrysler Automobiles on a $1.5-billion investment, including retooling, to accommodate production of both a plug-in hybrid and battery electric vehicle (including at least one additional model). 

 

Workforce implications
The primary motivation for Unifor in pushing for EVs in contract negotiations is, at minimum, preserving jobs — if not creating them. Unifor estimates that retooling the Ford plant in Oakville will save 3,000 of the 3,400 jobs there, contributing to Ontario's EV jobs boom as the transition accelerates. However, as VW CEO Herbert Diess has noted, “The reality is that building an electric car involves some 30 per cent less effort than one powered by an internal combustion engine.”


So, when it comes to the relationship between jobs and EVs, at first glance it might not seem to be a great news story. What exactly are the workforce implications?

To answer this question, and aid automakers and their suppliers in navigating the transition to EV production, the Boston Consulting Group (BCG) has done a study on the evolution of labour requirements along the automotive value chain. And the results, it turns out, are both illuminating and encouraging — so long as you look across the full value chain.

 

Common wisdom “inaccurate”
The study provides an in-depth unpacking of the similarities and differences between manufacturing an internal combustion engine (ICE) vehicle versus a battery EV (BEV), and in doing so it arrives at a surprising conclusion: “The common wisdom that BEVs are less labor intensive in assembly stages than traditional vehicles is inaccurate.” 

BCG’s analysis modeled how many labour hours were required to build an ICE vehicle versus a BEV, including the distribution of labour value across the automotive value chain.

While ICE vehicles require more labour associated with components, engine, motor and transmission assembly and installation, BEVs require the addition of battery manufacturing (cell production and module and battery pack assembly) and an increase in assembly-related labour. Meanwhile, labour requirements for press, body and paint shops don’t differ at all. Put that all together and labour requirements for BEVs are comparable to those of ICE vehicles when viewed across the full value chain.


Value chain shifting to parts suppliers
However, as BCG notes, this similarity not only masks, but even magnifies, a significant change that was already underway in the distribution of labour value across the value chain — an accelerating shift to parts suppliers.

This trend is a key reason why the Canadian Automotive Parts Manufacturers’ Association launched Project Arrow earlier this year, and just unveiled the winner of the EV concept design that will ultimately become a full-build, 100 per cent Canadian-equipped zero-emission concept vehicle. The project is a showcase for Canadian automotive SMEs.

The bulk of the value shift is into battery cell manufacturing, which is dominated by Asian players. In light of this, both the EU and UK are working hard to devise strategies to secure battery cell manufacturing, including projects like a Niagara Region battery plant that signal momentum, and hence capture this value domestically. Canada must now do the same — and in the process, capitalize on the unique opportunity we have buried underground: the metals and minerals needed for batteries.

The federal government is well aware of this opportunity, which Minister of Industry, Science and Economic Development Navdeep Bains has coined “mines to mobility.” But we’re playing catch up, and the window to effectively position to capture this opportunity will close quickly.

 

Cooperation and coordination needed
As Unifor’s Dias noted in an interview with Electric Autonomy after the FCA deal, the scale of the opportunity extends beyond the assembly plants in Oakville and Windsor: “This is about putting workers back in our steel plants. This is about making batteries. This is about saying to aluminum workers in Quebec and B.C. … to lithium workers in Quebec … cobalt workers in Northern Ontario, you’re going to be a part of the solution…It is a transformative time. … We’re on the cusp of leading globally for where this incredible industry is going.”


With their role in securing Ford’s EV production commitment, the federal and Ontario governments made clear that they understand the potential that EVs offer Canada, including how to capitalize on the U.S. auto sector's pivot as supply chains evolve, and their role in capitalizing on this opportunity.

But to ultimately succeed will require more than an open chequebook, it will take a coordinated industrial strategy that spans the full automotive value chain and extends beyond it into batteries and even mining, alongside Canada-U.S. collaboration to align supply chains. This will require effective cooperation and coordination between governments and across several industrial sectors and their associations.

Together they are Team Canada’s pit crew in the global EV race. How we fare will depend on how efficiently and effectively that crew works together. 

 

Related News

View more

Canada must commit to 100 per cent clean electricity

Canada Green Investment Gap highlights lagging EV and clean energy funding as peers surge. With a green recovery budget pending, sustainable finance, green bonds, EV charging, hydrogen, and carbon capture are pivotal to decarbonization.

 

Key Points

Canada lags peers in EV and clean energy investment, urging faster budget and policy action to cut emissions.

✅ Per capita climate spend trails US and EU benchmarks

✅ EVs, hydrogen, charging need scaled funding now

✅ Strengthen sustainable finance, green bonds, disclosure

 

Canada is being outpaced on the international stage when it comes to green investments in electric vehicles and green energy solutions, environmental groups say.

The federal government has an opportunity to change course in about three weeks, when the Liberals table their first budget in over two years, the International Institute for Sustainable Development (IISD) argued in a new analysis endorsed by nine other climate action, ecology and conservation organizations.

“Canada’s international peers are ramping up commitments for green recovery, including significant investments from many European countries,” states the analysis, “Investing for Tomorrow, Today,” published March 29.

“To keep up with our global peers, sufficient investments and strengthened regulations, including EV sales regulations, must work in tandem to rapidly decarbonize all sectors of the Canadian economy.”

Deputy Prime Minister and Finance Minister Chrystia Freeland confirmed last week that the federal budget will be tabled April 19. The Liberals are expected to propose between $70 billion and $100 billion in fiscal stimulus to jolt the economy out of its pandemic doldrums.

The government teased a coming economic “green transformation” late last year when Freeland released the fall economic statement, promising to examine federal green bonds, border carbon adjustments and a sustainable finance market, with tweaks like tightening the climate-risk disclosure obligations of corporations.

The government has also proposed a wide range of green measures in its new climate plan released in December — which the think tank called the “most ambitious” in Canada’s history — including energy retrofit programs, boosting hydrogen and other alternative fuels, and rolling out carbon capture technology in a grid where 18% of electricity still came from fossil fuels in 2019.

But the possible “three-year stimulus package to jumpstart our recovery” mentioned in the fall economic statement came with the caveat that the COVID-19 virus would have to be “under control.” While vaccines are being administered, Canada is currently dealing with a rise of highly transmissible variants of the virus.

Freeland spoke with United States Vice-President Kamala Harris on March 25, highlighting potential Canada-U.S. collaboration on EVs alongside the “need to support entrepreneurs, small businesses, young people, low-wage and racialized workers, the care economy, and women” in the context of an economic recovery.

Biden is contemplating a climate recovery plan that could exceed US$2 trillion as Canada looks to capitalize on the U.S. auto pivot to EVs to spur domestic industry. Per capita, that is over 8 times what Canada has announced so far for climate-related spending in the wake of the pandemic, according to a new analysis from green groups.
U.S. President Joe Biden is contemplating a climate and clean energy recovery plan that could “exceed US$2 trillion,” White House officials told reporters this month. “Per capita, that is over eight times what Canada has announced so far for climate-related spending in the wake of the pandemic,” the IISD-led analysis stated.

Biden’s election platform commitment of $508 billion over 10 years in clean energy was also seen as “significantly higher per capita than Canada’s recent commitments.”

Since October 2020, Canada has announced $36 billion in new climate-focused funding, a 2035 EV mandate and other measures, the groups found. By comparison, they noted, a political agreement in Europe proposed that a minimum of 37 per cent of investments in each national recovery plan should support climate action. France and Germany have also committed tens of billions of dollars to support clean hydrogen.

As for electric vehicles (EVs), the United Kingdom has committed $4.9 billion, while Germany has put up $7.5 billion to expand EV adoption and charging infrastructure and sweeten incentive programs for prospective buyers, complementing Canada’s ambitious EV goals announced domestically. The U.K. has also committed $3.5 billion for bike lanes and other active transportation, the groups noted.

Canada announced $400 million over five years this month for a new network of bike lanes, paths, trails and bridges, the first federal fund dedicated to active transportation.

 

Related News

View more

Electric cars don't need better batteries. America needs better charging networks

EV charging anxiety reflects concerns beyond range anxiety, focusing on charging infrastructure, fast chargers, and network reliability during road trips, from Tesla Superchargers to Electrify America stations across highways in the United States.

 

Key Points

EV charging anxiety is worry about finding reliable fast chargers on public networks, not just limited range.

✅ Non-Tesla networks vary in uptime and plug-and-charge reliability.

✅ Charging deserts complicate route planning on long highway stretches.

✅ Sync stops: align rest breaks with fast chargers to save time.

 

With electric cars, people often talk about "range anxiety," and how cars with bigger batteries and longer driving ranges will alleviate that. I just drove an electric car from New York City to Atlanta, a distance of about 950 miles, and it taught me something important. The problem really isn't range anxiety. It's anxiety around finding a convenient and working chargers on America's still-challenged EV charging networks today.

Back in 2019, I drove a Tesla Model S Long Range from New York City to Atlanta. It was a mostly uneventful trip, thanks to Tesla's nicely organized and well maintained network of fast chargers that can fill the batteries with an 80% charge in a half hour or less. Since then, I've wanted to try that trip again with an electric car that wasn't a Tesla, one that wouldn't have Tesla's unified charging network to rely on.
I got my chance with a Mercedes-Benz EQS 450+, a car that is as close to a direct competitor to the Tesla Model S as any. And while I made it to Atlanta without major incident, I encountered glitchy chargers, called the charging network's customer service twice, and experienced some serious charging anxiety during a long stretch of the Carolinas.

Long range
The EPA estimated range for the Tesla I drove in 2019 was 370 miles, and Tesla's latest models can go even further.

The EQS 450+ is officially estimated to go 350 miles on a charge, but I beat that handily without even trying. When I got into the car, its internal displays showed a range estimate of 446 miles. On my trip, the car couldn't stretch its legs quite that far, because I was driving almost entirely on highways at fairly high speeds, but by my calculations, I could have gone between 370 and 390 miles on a charge.

I was going to drive over the George Washington Bridge then down through New Jersey, Delaware, Virginia then North Carolina and South Carolina. I figured three charging stops would be needed and, strictly speaking, that was correct. The driving route laid out by the car's navigation system included three charging stops, but the on-board computers tended push things to the limit. At each stop, the battery would be drained to a little over 10% or so. (I learned later this is a setting I could adjust to be more conservative if I'd wanted.)

But I've driven enough electric cars to have some concerns. I use public chargers fairly often, and I know they're imperfect, and we need to fix these problems to build confidence. Sometimes they aren't working as well as they should. Sometimes they're just plain broken. And even if the car's navigation system is telling you that a charger is "available," that can change at any moment. Someone else can pull into the charging spot just a few seconds before you get there.
I've learned to be flexible and not push things to the limit.

On the first day, when I planned to drive from New York to Richmond, Virginia, no charging stop was called for until Spotsylvania, Virginia, a distance of nearly 300 miles. By that point, I had 16% charge left in the car's batteries which, by the car's own calculation, would have taken me another 60 miles.

As I sat and worked inside the Spotsylvania Town Centre mall I realized I'd been dumb. I had already stopped twice, at rest stops in New Jersey and Delaware. The Delaware stop, at the Biden Welcome Center, had EV fast chargers, as the American EV boom accelerates nationwide. I could have used one even though the car's navigation didn't suggest it.

Stopping without charging was a lost opportunity and it cost me time. If I'm going to stop to recharge myself why not recharge the car, too?
But that's the thing, though. A car can be designed to go 350 miles or more before needing to park whereas human beings are not. Elementary school math will tell you that at highway speeds, that's nearly six hours of driving all at once. We need bathrooms, beverages, food, and to just get out and move around once in a while. Sure, it's physically possible to sit in a car for longer than that in one go, but most people in need of speed will take an airplane, and a driver of an EQS, with a starting price just north of $100,000, can almost certainly afford the ticket.

I stopped for a charge in Virginia but realized I could have stopped sooner. I encountered a lot of other electric cars on the trip, including this Hyundai Ioniq 5 charging next to the Mercedes.

I vowed not to make that strategic error again. I was going to take back control. On the second day, I decided, I would choose when I needed to stop, and would look for conveniently located fast chargers so both the EQS and I could get refreshed at once. The EQS's navigation screen pinpointed available charging locations and their maximum charging speeds, so, if I saw an available charger, I could poke on the icon with my finger and add it onto my route.

For my first stop after leaving Richmond, I pulled into a rest stop in Hillsborough, North Carolina. It was only about 160 miles south from my hotel and I still had half of a full charge.

I sipped coffee and answered some emails while I waited at a counter. I figured I would take as long as I wanted and leave when I was ready with whatever additional electricity the car had gained in that time. In all, I was there about 45 minutes, but at least 15 minutes of that was used trying to get the charger to work. One of the chargers was simply not working at all, and, at another one, a call to Electrify America customer service -- the EV charging company owned by Volkswagen that, by coincidence, operated all the chargers I used on the trip -- I got a successful charging session going at last. (It was unclear what the issue was.)

That was the last and only time I successfully matched my own need to stop with the car's. I left with my battery 91% charged and 358 miles of range showing on the display. I would only need to stop once more on way to Atlanta and not for a long time.

Charging deserts
Then I began to notice something. As I drove through North Carolina and then South Carolina, the little markers on the map screen indicating available chargers became fewer and fewer. During some fairly long stretches there were none showing at all, highlighting how better grid coordination could improve coverage.

It wasn't an immediate concern, though. The EQS's navigation wasn't calling for me to a charge up again until I'd nearly reached the Georgia border. By that point I would have about 11% of my battery charge remaining. But I was getting nervous. Given how far it was between chargers my whole plan of "recharging the car when I recharge myself" had already fallen apart, the much-touted electric-car revolution notwithstanding. I had to leave the highway once to find a gas station to use the restroom and buy an iced tea. A while later, I stopped for lunch, a big plate of "Lexington Style BBQ" with black eyed peas and collard greens in Lexington, North Carolina. None of that involved charging because there no chargers around.

Fortunately, a charger came into sight on my map while I still had 31% charge remaining. I decided I would protect myself by stopping early. After another call to Electrify America customer service, I was able to get a nice, high-powered charging session on the second charger I tried. After about an hour I was off again with a nearly full battery.

I drove the last 150 miles to Atlanta, crossing the state line through gorgeous wetlands and stopping at the Georgia Welcome Center, with hardly a thought about batteries or charging or range.

But I was driving $105,000 Mercedes. What if I'd been driving something that cost less and that, while still going farther than a human would want to drive at a stretch, wouldn't go far enough to make that trip as easily, a real concern for those deciding if it's time to buy an electric car today. Obviously, people do it. One thing that surprised me on this trip, compared to the one in 2019, was the variety of fully electric vehicles I saw driving the same highways. There were Chevrolet Bolts, Audi E-Trons, Porsche Taycans, Hyundai Ioniqs, Kia EV6s and at least one other Mercedes EQS.

Americans are taking their electric cars out onto the highways, as the age of electric cars gathers pace nationwide. But it's still not as easy as it ought to be.

 

Related News

View more

Texas battery rush: Oil state's power woes fuel energy storage boom

Texas Battery Storage Investment Boom draws BlackRock, SK, and UBS, leveraging ERCOT price volatility, renewable energy growth, and utility-scale energy storage arbitrage to enhance grid reliability, resilience, and double-digit returns across high-demand nodes.

 

Key Points

Texas sees a rush into battery storage, using ERCOT price spreads to bolster grid reliability and earn about 20% returns.

✅ Investors exploit price volatility, peak-demand spreads.

✅ Utility-scale storage enhances ERCOT reliability.

✅ Top players: BlackRock, SK E&S, UBS; 700 MW deals.

 

BlackRock, Korea's SK, Switzerland's UBS and other companies are chasing an investment boom in battery storage plants in Texas, lured by the prospect of earning double-digit returns from the power grid problems plaguing the state, according to project owners, developers and suppliers.

Projects coming online are generating returns of around 20%, compared with single digit returns for solar and wind projects, according to Rhett Bennett, CEO of Black Mountain Energy Storage, one of the top developers in the state.

"Resolving grid issues with utility-scale energy storage is probably the hottest thing out there,” he said.

The rapid expansion of battery storage could help, through efforts like a virtual power plant initiative in Texas, prevent a repeat of the February 2021 ice storm and grid collapse which killed 246 people and left millions of Texans without power for days.

The battery rush also puts the Republican-controlled state at the forefront of President Joe Biden's push to expand renewable energy use.

Power prices in Texas can swing from highs of about $90 per megawatt hour (MWh) on a normal summer day to nearly $3,000 per MWh when demand surges on a day with less wind power, a dynamic tied to wind curtailment on the Texas grid according to a simulation by the federal government's U.S. Energy Information Administration.

That volatility, a product of demand and higher reliance on intermittent wind and solar energy, has fueled a rush to install battery plants, aided by falling battery costs, that store electricity when it is cheap and abundant and sell when supplies tighten and prices soar.

Texas last year accounted for 31% of new U.S. grid-scale energy storage, with much of it pairing storage with solar, according to energy research firm Wood Mackenzie, second only to California which has had a state mandate for battery development for a decade.

And Texas is expected to account for nearly a quarter of the U.S. grid-scale storage market over the next five years, a trajectory consistent with record U.S. solar-plus-storage growth noted by analysts, according to Wood Mackenzie projections shared with Reuters.

Developers and energy traders said locations offering the highest returns -- in strapped areas of the grid -- will become increasingly scarce as more storage comes online and, as diversifying resources for better projects suggests, electricity prices stabilize.

Texas lawmakers this week voted to provide new subsidies for natural gas power plants in a bid to shore up reliability. But the legislation also contains provisions that industry groups said could encourage investment in battery storage by supporting 'unlayering' peak demand approaches.

Amid the battery rush, BlackRock acquired developer Jupiter Power from private equity firm EnCap Investments late last year. Korea's SK E&S acquired Key Capture Energy from Vision Ridge Partners in 2021 and UBS bought five Texas projects from Black Mountain last year for a combined 700 megawatts (MW) of energy storage. None of the sales' prices were disclosed.

SK E&S said its acquisition of Key Capture was part of a strategy to invest in U.S. grid resiliency.

"SK E&S views energy storage solutions in Texas and across the U.S. as a core technology that supports a new energy infrastructure system to ensure American homes and businesses have affordable power," the company said in a statement.

 

Related News

View more

The underwater 'kites' generating electricity as they move

Faroe Islands Tidal Kites harness predictable ocean energy with underwater turbines by Minesto, flying figure-eight paths in fjords to amplify tidal power and deliver renewable electricity to SEV's grid near Vestmanna at megawatt scale.

 

Key Points

Subsea turbines that fly figure-eight paths to harvest tidal currents, delivering reliable renewable power to the grid.

✅ Figure-eight control amplifies speed vs. ambient current

✅ Predictable baseload complementing wind and hydro

✅ 1.2 MW Dragon-class units planned for Faroese fjords

 

Known as "sea dragons" or "tidal kites", they look like aircraft, but these are in fact high-tech tidal turbines, part of broader ocean and river power efforts generating electricity from the power of the ocean.

The two kites - with a five-metre (16ft) wingspan - move underwater in a figure-of-eight pattern, absorbing energy from the running tide. They are tethered to the fjord seabed by 40-metre metal cables.

Their movement is generated by the lift exerted by the water flow - just as a plane flies by the force of air flowing over its wings.

Other forms of tidal power use technology similar to terrestrial wind turbines, and emerging kite-based wind power shows the concept's versatility, but the kites are something different.

The moving "flight path" allows the kite to sweep a larger area at a speed several times greater than that of the underwater current. This, in turn, enables the machines to amplify the amount of energy generated by the water alone.

An on-board computer steers the kite into the prevailing current, then idles it at slack tide, maintaining a constant depth in the water column. If there were several kites working at once, the machines would be spaced far enough apart to avoid collisions.

The electricity is sent via the tethering cables to others on the seabed, and then to an onshore control station near the coastal town of Vestmanna.

The technology has been developed by Swedish engineering firm Minesto, founded back in 2007 as a spin-off from the country's plane manufacturer, Saab.

The two kites in the Faroe Islands have been contributing energy to Faroe's electricity company SEV, and the islands' national grid, on an experimental basis over the past year.

Each kite can produce enough electricity to power approximately 50 to 70 homes.

But according to Minesto chief executive, Martin Edlund, larger-scale beasts will enter the fjord in 2022.

"The new kites will have a 12-metre wingspan, and can each generate 1.2 megawatts of power [a megawatt is 1,000 kilowatts]," he says. "We believe an array of these Dragon-class kites will produce enough electricity to power half of the households in the Faroes."

The 17 inhabited Faroe islands are an autonomous territory of Denmark. Located halfway between Shetland and Iceland, in a region where U.K. wind lessons resonate, they are home to just over 50,000 people.

Known for their high winds, persistent rainfall and rough seas, the islands have never been an easy place to live. Fishing is the primary industry, accounting for more than 90% of all exports.

The hope for the underwater kites is that they will help the Faroe Islands achieve its target of net-zero emission energy generation by 2030, with advances in wave energy complementing tidal resources along the way.

While hydro-electric power currently contributes around 40% of the islands' energy needs, wind power contributes around 12% and fossil fuels - in the form of diesel imported by sea - still account for almost half.

Mr Edlund says that the kites will be a particularly useful back-up when the weather is calm. "We had an unusual summer in 2021 in Faroes, with about two months with virtually no wind," he says.

"In an island location there is no possibility of bringing in power connections from another country, and tidal energy for remote communities can help, when supplies run low. The tidal motion is almost perpetual, and we see it as a crucial addition to the net zero goals of the next decade."

Minesto has also been testing its kites in Northern Ireland and Wales, where offshore wind in the UK is powering rapid growth, and it plans to install a farm off the coast of Anglesey, plus projects in Taiwan and Florida.

The Faroe Islands' drive towards more environmental sustainability extends to its wider business community, with surging offshore wind investment providing global momentum. The locals have formed a new umbrella organisation - Burðardygt Vinnulív (Faroese Business Sustainability Initiative).

It currently has 12 high-profile members - key players in local business sectors such as hotels, energy, salmon farming, banking and shipping.

The initiative's chief executive - Ana Holden-Peters - believes the strong tradition of working collaboratively in the islands has spurred on the process. "These businesses have committed to sustainability goals which will be independently assessed," she says.

"Our members are asking how they can make a positive contribution to the national effort. When people here take on a new idea, the small scale of our society means it can progress very rapidly."

One of the islands' main salmon exporters - Hiddenfjord - is also doing its bit, by ceasing the air freighting of its fresh fish. Thought to be a global first for the Atlantic salmon industry, it is now exporting solely via sea cargo instead.

According to the firm's managing director Atli Gregersen this will reduce its transportation CO2 emissions by more than 90%. However it is a bold move commercially as it means that its salmon now takes much longer to get to key markets.

For example, using air freight, it could get its salmon to New York City within two days, but it now takes more than a week by sea.

What has made this possible is better chilling technology that keeps the fresh fish constantly very cold, but without the damaging impact of deep freezing it. So the fish is kept at -3C, rather than the -18C or below of typical commercial frozen food transportation.

"It's taken years to perfect a system that maintains premium quality salmon transported for sea freight rather than plane," says Mr Gregersen. "And that includes stress-free harvesting, as well as an unbroken cold-chain that is closely monitored for longer shelf life.

"We hope, having shown it can be done, that other producers will follow our lead - and accept the idea that salmon were never meant to fly."

Back in the Faroe Island's fjords, a firm called Ocean Rainforest is farming seaweed.

The crop is already used for human food, added to cosmetics, and vitamin supplements, but the firm's managing director Olavur Gregersen is especially keen on the potential of fermented seaweed being used as an additive to cattle feed.

He points to research which appears to show that if cows are given seaweed to eat it reduces the amount of methane gas that they exhale.

"A single cow will burp between 200 and 500 litres of methane every day, as it digests," says Mr Gregersen. "For a dairy cow that's three tonnes per animal per year.

"But we have scientific evidence to show that the antioxidants and tannins in seaweed can significantly reduce the development of methane in the animal's stomach. A seaweed farm covering just 10% of the largest planned North Sea wind farm could reduce the methane emissions from Danish dairy cattle by 50%."

The technology that Ocean Rainforest uses to farm its four different species of seaweed is relatively simple. Tiny algal seedlings are affixed to a rope which dangles in the water, and they grow rapidly. The line is lifted using a winch and the seaweed strands simply cut off with a knife. The line goes back into the water, and the seaweed starts growing again.

Currently, Ocean Rainforest is harvesting around 200 tonnes of seaweed per annum in the Faroe Islands, but plans to scale this up to 8,000 tonnes by 2025. Production may also be expanded to other areas in Europe and North America.

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified