Solar firm building plant in Las Vegas

By Knight Ridder Tribune


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ausra, the Palo Alto company with plans to build utility-scale solar plants in California and Florida, announced that it has started building an assembly plant in Las Vegas.

The 130,000-square-foot plant, near Las Vegas McCarran International Airport, will employ 50 people when it opens in April. John O'Donnell, Ausra's executive vice president, said the plant will be heavily automated and rely on multiple robots to manufacture the parts and pieces needed to construct a solar power plant.

Those systems will be trucked to San Luis Obispo County, where Ausra will build a plant that will generate 177 megawatts of power for Pacific Gas & Electric.

In a year, O'Donnell said, the manufacturing plant will make enough reflectors, towers, tubes and other solar components to create solar collectors capable of generating 700 megawatts of power.

One megawatt can power 750 homes.

"We're going to make twice as much stuff in a year as the entire world solar industry is making today," he said. Ausra uses flat mirrors that boil water to create steam that turn turbines to produce electricity. O'Donnell wouldn't say how much it will cost to build the plant.

In September, Ausra got $40 million from Khosla Ventures and Kleiner Perkins Caufield & Byers, two Silicon Valley venture capital heavyweights with big investments in clean technology. Besides its deal with PG&E, Ausra has announced its intention to construct another plant to be used by Florida Power & Light.

It is likely that the company will build a manufacturing facility in the Southeast to serve that project, O'Donnell said. And more deals are coming, he said. With more states, such as California, enacting legislation requiring greater percentages of power from renewable sources, "we'll need 17 gigawatts by 2020 - 1,700 megawatts is a lot," he said.

O'Donnell said Ausra considered the Bay Area, Barstow in Southern California and Phoenix before choosing Las Vegas. Although the company didn't get any special incentives, O'Donnell did note Nevada's "business-friendly climate"; U.S. Sen. Harry Reid's push to make the state a center of renewable energy; and its location in the heart of the "solar Southwest" as reasons for selecting it as the home for its plant.

Related News

Carbon emissions fall as electricity producers move away from coal

Global Electricity Emissions Decline highlights a 2% drop as coal power falls, while wind and solar surge. EU and US decarbonize faster; China expands coal and gas, challenging Paris Agreement climate targets.

 

Key Points

A 2% annual fall in power-sector CO2, led by less coal and rising wind and solar in the EU and US.

✅ Coal generation fell 3% globally despite China growth

✅ EU and US cut coal; wind and solar up 15% worldwide

✅ Gas gains in US; rapid renewables rollout needed for targets

 

Carbon emissions from the global electricity system fell by 2% last year, the biggest drop in almost 30 years, as countries began to turn their backs on coal-fired power plants.

A new report on the world’s electricity generation revealed the steepest cut in carbon emissions since 1990, with IEA data indicating global totals flatlined in 2019 as the US and the EU turned to cleaner energy sources.

Overall, power from coal plants fell by 3% last year, even as China’s reliance on coal plants climbed for another year to make up half the world’s coal generation for the first time.

Coal generation in the US and Europe has halved since 2007, and last year collapsed by almost a quarter in the EU and by 16% in the US.

The report from climate thinktank Ember, formerly Sandbag, warned that the dent in the world’s coal-fired electricity generation relied on many one-off factors, including milder winters across many countries.

“Progress is being made on reducing coal generation, but nothing like with the urgency needed to limit climate change,” the report said.

Dave Jones, the lead author of the report, said governments must dramatically accelerate the global energy transition so that global coal generation collapses throughout the 2020s.

“To switch from coal into gas is just swapping one fossil fuel for another. The cheapest and quickest way to end coal generation is through a rapid rollout of carbon-free electricity such as wind and solar,” he said.

“But without concerted policymaker efforts to boost wind and solar, we will fail to meet climate targets. China’s growth in coal, and to some extent gas, is alarming but the answers are all there.”

The EU has made the fastest progress towards replacing coal with wind and solar power, while the US has increased its reliance on gas as Wall Street’s energy strategy shifted following its shale boom in recent years.

The report revealed that renewable wind and solar power rose by 15% in 2019 to make up 8% of the world’s electricity.

In the EU, wind and solar power made up almost a fifth of the electricity generated last year, and Europe’s oil majors are turning electric as the bloc stayed ahead of the US which relied on these renewable sources for 11% of its electricity. In China and India, renewable energy made up 8% and 9% of the electricity system, respectively.

To meet the Paris climate goals, the world needs to record a compound growth rate of 15% for wind and solar generation every year – which will require “a colossal effort”, the report warned.

The electricity generation report was published as a separate piece of research claimed that 38 out of 75 of the world’s largest asset managers are stalling on taking action on environmental, social and governance (ESG) issues, and amid investor pressure on utilities to release climate reports.

The latest ranking by Asset Owners Disclosure Project, a scheme managed by the investment campaign group ShareAction, found that the 38 asset managers have weak or nonexistent policy commitments and fail to account for their real-world impacts across their mainstream assets.

The survey also claimed that the investment managers often lack appropriate engagement and escalation processes on climate change, human rights and biodiversity.

Scores were based on a survey of activities in responsible investment governance, climate change, human rights, and biodiversity and ranged between AAA to E. Not a single asset manager was granted an AAA or AA rating, the top two scores available.

Felix Nagrawala, ShareAction analyst, said: “While many in the industry are eager to promote their ESG credentials, our analysis clearly indicates that few of the world’s largest asset managers can lay claim to having a truly sustainable approach across all their investments.”

ShareAction said the world’s six largest asset managers – including BlackRock (rated D), State Street (D) and Vanguard (E) – were among the worst performers.

Vanguard said it was committed to companies making “appropriate disclosures on governance, strategy and performance on relevant ESG risks”. BlackRock and State Street did not respond to a request for comment.

 

Related News

View more

Report call for major changes to operation of Nova Scotia's power grid

Nova Scotia Energy Modernization Act proposes an independent system operator, focused energy regulation, coal phase-out by 2030, renewable integration, transmission upgrades, and competitive market access to boost consumer trust and grid reliability across the province.

 

Key Points

Legislation to create an independent system operator and energy regulator, enabling coal phase-out and renewable integration.

✅ Transfers grid control from Nova Scotia Power to an ISO

✅ Establishes a focused energy regulator for multi-sector oversight

✅ Accelerates coal retirement, renewables build-out, and grid upgrades

 

Nova Scotia is poised for a significant overhaul in how its electricity grid operates, with the electricity market headed for a reshuffle as the province vows changes, following a government announcement that will strip the current electric utility of its grid access control. This move is part of a broader initiative to help the province achieve its ambitious energy objectives, including the cessation of coal usage by 2030.

The announcement came from Tory Rushton, the Minister of Natural Resources, who highlighted the recommendations from the Clean Electricity Task Force's report to make the electricity system more accountable to Nova Scotians according to the authors. The report suggests the creation of two distinct entities: an autonomous system operator for energy system planning and an independent body for energy regulation.

Minister Rushton expressed the government's agreement with these recommendations, while the premier had earlier urged regulators to reject a 14% rate hike to protect customers, stating plans to introduce a new Energy Modernization Act in the next legislative session.

Under the proposed changes, Nova Scotia Power, a privately-owned entity, will retain its operational role but will relinquish control over the electricity grid. This responsibility will shift to an independent system operator, aiming to foster competitive practices essential for phasing out coal—currently a major source of the province’s electricity.

Additionally, the existing Utility and Review Board, which recently approved a 14% rate increase despite political opposition, will undergo rebranding to become the Nova Scotia Regulatory and Appeals Board, reflecting a broader mandate beyond energy. Its electricity-related duties will be transferred to the newly proposed Nova Scotia Energy Board, which will oversee various energy sectors including electricity, natural gas, and retail gasoline.

The task force, led by Alison Scott, a former deputy energy minister, and John MacIsaac, an ex-executive of Nalcor Energy, was established by the province in April 2023 to determine the needs of the electrical system in meeting Nova Scotia's environmental goals.

Minister Rushton praised the report for providing a clear direction towards achieving the province's 2030 environmental targets and beyond. He estimated that establishing the recommended bodies would take 18 months to two years, and noted the government cannot order the utility to cut rates under current law, promising job security for current employees of Nova Scotia Power and the Utility and Review Board throughout the transition.

The report advocates for the new system operator to improve consumer trust by distancing electricity system decisions from Nova Scotia Power's corporate interests. It also critiques the current breadth of the Utility and Review Board's mandate as overly extensive for addressing the energy transition's long-term requirements.

Nova Scotia Power's president, Peter Gregg, welcomed the recommendations, emphasizing their role in the province's shift towards renewable energy, as neighboring jurisdictions like P.E.I. explore community generation to build resilience, he highlighted the importance of a focused energy regulator and a dedicated system operator in advancing essential projects for reliable customer service.

The task force's 12 recommendations also include the requirement for Nova Scotia Power to submit an annual asset management plan for regulatory approval and to produce reports on vegetation and wood pole management. It suggests the government assess Ontario's hydro policies for potential adaptation in Nova Scotia and calls for upgrades to the transmission grid infrastructure, with projected costs detailed by Stantec.

Alison Scott remarked on the comparative expense of coal power against renewable sources like wind, suggesting that investments in the grid to support renewables would be economically beneficial in the long run.

 

Related News

View more

UK must start construction of large-scale storage or fail to meet net zero targets.

UK Hydrogen Storage Caverns enable long-duration, low-carbon electricity balancing, storing surplus wind and solar power as green hydrogen in salt formations to enhance grid reliability, energy security, and net zero resilience by 2035 and 2050.

 

Key Points

They are salt caverns storing green hydrogen to balance wind and solar, stabilizing a low-carbon UK grid.

✅ Stores surplus wind and solar as green hydrogen in salt caverns

✅ Enables long-duration, low-carbon grid balancing and security

✅ Complements wind and solar; reduces dependence on flexible CCS

 

The U.K. government must kick-start the construction of large-scale hydrogen storage facilities if it is to meet its pledge that all electricity will come from low-carbon electricity sources by 2035 and reach legally binding net zero targets by 2050, according to a report by the Royal Society.

The report, "Large-scale electricity storage," published Sep. 8, examines a wide variety of ways to store surplus wind and solar generated electricity—including green hydrogen, advanced compressed air energy storage (ACAES), ammonia, and heat—which will be needed when Great Britain's electricity generation is dominated by volatile wind and solar power.

It concludes that large scale electricity storage is essential to mitigate variations in wind and sunshine, particularly long-term variations in the wind, and to keep the nation's lights on. Storing most of the surplus as hydrogen, in salt caverns, would be the cheapest way of doing this.

The report, based on 37 years of weather data, finds that in 2050 up to 100 Terawatt-hours (TWh) of storage will be needed, which would have to be capable of meeting around a quarter of the U.K.'s current annual electricity demand. This would be equivalent to more than 5,000 Dinorwig pumped hydroelectric dams. Storage on this scale, which would require up to 90 clusters of 10 caverns, is not possible with batteries or pumped hydro.

Storage requirements on this scale are not currently foreseen by the government, and the U.K.'s energy transition faces supply delays. Work on constructing these caverns should begin immediately if the government is to have any chance of meeting its net zero targets, the report states.

Sir Chris Llewellyn Smith FRS, lead author of the report, said, "The need for long-term storage has been seriously underestimated. Demand for electricity is expected to double by 2050 with the electrification of heat, transport, and industrial processing, as well as increases in the use of air conditioning, economic growth, and changes in population.

"It will mainly be met by wind and solar generation. They are the cheapest forms of low-carbon electricity generation, but are volatile—wind varies on a decadal timescale, so will have to be complemented by large scale supply from energy storage or other sources."

The only other large-scale low-carbon sources are nuclear power, gas with carbon capture and storage (CCS), and bioenergy without or with CCS (BECCS). While nuclear and gas with CCS are expected to play a role, they are expensive, especially if operated flexibly.

Sir Peter Bruce, vice president of the Royal Society, said, "Ensuring our future electricity supply remains reliable and resilient will be crucial for our future prosperity and well-being. An electricity system with significant wind and solar generation is likely to offer the lowest cost electricity but it is essential to have large-scale energy stores that can be accessed quickly to ensure Great Britain's energy security and sovereignty."

Combining hydrogen with ACAES, or other forms of storage that are more efficient than hydrogen, could lower the average cost of electricity overall, and would lower the required level of wind power and solar supply.

There are currently three hydrogen storage caverns in the U.K., which have been in use since 1972, and the British Geological Survey has identified the geology for ample storage capacity in Cheshire, Wessex and East Yorkshire. Appropriate, novel business models and market structures will be needed to encourage construction of the large number of additional caverns that will be needed, the report says.

Sir Chris observes that, although nuclear, hydro and other sources are likely to play a role, Britain could in principle be powered solely by wind power and solar, supported by hydrogen, and some small-scale storage provided, for example, by batteries, that can respond rapidly and to stabilize the grid. While the cost of electricity would be higher than in the last decade, we anticipate it would be much lower than in 2022, he adds.

 

Related News

View more

TransAlta Scraps Wind Farm as Alberta's Energy Future Blusters

Alberta Wind Energy Policy Changes highlight TransAlta's Riplinger cancellation amid UCP buffer zones for pristine viewscapes, regulatory uncertainty, and market redesign debates, reshaping Alberta's renewables investment climate and clean energy diversification plans.

 

Key Points

UCP rules and market shifts reshaping wind siting, permits, and finance, increasing uncertainty and delays for new projects.

✅ 35-km buffer near pristine viewscapes limits wind siting

✅ TransAlta cancels 300 MW Riplinger project

✅ Market redesign uncertainty chills renewables investment

 

The winds of change are blowing through Alberta's energy landscape today, and they're not necessarily carrying good news for renewable energy development. TransAlta, a major Canadian energy company, recently announced the cancellation of a significant wind farm project, citing a confluence of factors that create uncertainty for the future of wind power in the province. This decision throws a spotlight on the ongoing debate between responsible development and fostering a clean energy future in Alberta.

The scrapped project, the Riplinger wind farm near Cardston, Alberta, was envisioned as a 300-megawatt facility capable of providing clean electricity to the province. However, TransAlta pointed to recent regulatory changes implemented by the United Conservative Party (UCP) government, following the end of the renewable energy moratorium in Alberta, as a key reason for the project's demise. These changes include the establishment of a 35-kilometer buffer zone around designated "pristine viewscapes," which significantly restricts potential wind farm locations.

John Kousinioris, CEO of TransAlta, expressed frustration with the lack of clarity surrounding the future of renewable energy policy in Alberta. He highlighted this, along with the aforementioned rule changes, as major factors in the project's cancellation. TransAlta has also placed three other power projects on hold, indicating a broader concern about the current investment climate for renewable energy in the province.

The news has been met with mixed reactions. While some residents living near the proposed wind farm site celebrate the decision due to concerns about potential impacts on tourism and the environment, others worry about the implications for Alberta's clean energy ambitions, including renewable energy job growth in the province. The province, a major energy producer in Canada, has traditionally relied heavily on fossil fuels, and this decision might be seen as a setback for its goals of diversifying its energy mix.

The Alberta government defends its changes to renewable energy policy, arguing that they are necessary to ensure responsible development and protect sensitive ecological areas. However, the TransAlta decision raises questions about the potential unintended consequences of these changes. Critics argue that the restrictions might discourage investment in renewable energy and the province's ability to sell clean power to wider markets altogether, hindering Alberta's progress towards a more sustainable future.

Adding to the uncertainty is the ongoing process of redesigning Alberta's energy market. The aim is to incorporate more renewable energy sources, including solar energy expansion across the grid, but the details of this redesign remain unclear. This lack of transparency makes it difficult for companies like TransAlta to make sound investment decisions, further dampening enthusiasm for renewable energy projects.

The future of wind energy development in Alberta remains to be seen. TransAlta's decision to scrap the Riplinger project is a significant development, and it will be interesting to observe how other companies respond to the changing regulatory landscape, as a Warren Buffett-linked developer pursues a $200 million wind project in Alberta. Striking a balance between responsible development, protecting the environment, and fostering a clean energy future will be a crucial challenge for Alberta moving forward.

This situation highlights the complex considerations involved in transitioning to a renewable energy future, where court rulings on wind projects can influence policy and investment decisions. While environmental concerns are paramount, ensuring a stable and predictable investment climate is equally important. Open communication and collaboration between industry, government, and stakeholders will be key to navigating these challenges and ensuring Alberta can harness the power of wind energy for a sustainable future.

 

Related News

View more

Pickering NGS life extensions steer Ontario towards zero carbon horizon

OPG Pickering Nuclear Refurbishment extends four CANDU reactors to bolster Ontario clean energy, grid reliability, and decarbonization goals, leveraging Darlington lessons, mature supply chains, and AtkinsRealis OEM expertise for cost effective life extension.

 

Key Points

Modernizing four Pickering CANDU units to extend life, add clean power, and enhance Ontario grid reliability.

✅ Extends four 515 MW CANDU reactors by 30 years

✅ Supports clean, reliable baseload and decarbonization

✅ Leverages Darlington playbook and AtkinsRealis OEM supply chain

 

In a pivotal shift last month, Ontario Power Generation (OPG) revised its strategy for the Pickering Nuclear Power Station, scrapping plans to decommission its six remaining reactors. Instead, OPG has opted to modernize four reactors (Pickering B Units 5-8) starting in 2027, while Units 1 and 4 are slated for closure by the end of the current year.

This revision ensures the continued operation of the four 515 MW Canada Deuterium Uranium (CANDU) reactors—originally constructed in the 1970s and 1980s—extending their service life by at least 30 more years amid an extension request deadline for Pickering.

Todd Smith, Ontario's Energy Minister, underscored the significance of nuclear power in maintaining Ontario's status as a region with one of the cleanest and most reliable electricity grids globally. He emphasized the integral role of nuclear facilities, particularly the Pickering station, in the provincial energy strategy during the announcement supporting continued operations, which was made in the presence of union workers at the plant.

The Pickering station has demonstrated remarkable efficiency and reliability, notably achieving its second-highest output in 2023 and setting a record in 2022 for continuous operation. Extending the lifespan of nuclear plants like Pickering is deemed the most cost-effective method for sustaining low-carbon electricity, according to research conducted by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA) across 243 plants in 24 countries.

The refurbishment project is poised to significantly boost Ontario's economy, projected to add CAN$19.4 billion to the GDP over 11 years and generate approximately 11,000 jobs annually. The Independent Electricity System Operator (IESO) has indicated that to meet the province's future electrification and decarbonization goals, as it faces a growing electricity supply gap, Ontario will need to double its nuclear capacity by 2050, requiring an addition of 17.8 GW of nuclear power.

Subo Sinnathamby, OPG's Senior Vice President of Nuclear Refurbishment, emphasized the necessity of nuclear energy in reducing reliance on natural gas. Sinnathamby, who is leading the refurbishment efforts at OPG's Darlington nuclear power station, where SMR plans are also underway, highlighted the positive impact of the Darlington and Bruce Power projects on the nuclear power supply chain and workforce.

The procurement strategy employed for Darlington, which involved placing orders early to ensure readiness among suppliers, is set to be replicated for the Pickering refurbishment. This approach aims to facilitate a seamless transition of skilled workers and resources from Darlington to Pickering refurbishment, leveraging a matured supply chain and experienced vendors.

AtkinsRealis, the original equipment manufacturer (OEM) for CANDU reactors, has a track record of successfully refurbishing CANDU plants worldwide. The CANDU reactor design, known for its refurbishment capabilities, allows for individual replacement of pressure tubes and access to fuel channels without decommissioning the reactor. Gary Rose, Executive Vice-President of Nuclear at AtkinsRealis, highlighted the economic benefits and environmental benefits of refurbishing reactors, stating it as a viable and swift solution to maximize fossil-free energy.

Looking forward, AtkinsRealis is exploring the potential for multiple refurbishments of CANDU reactors, which could extend their operational life beyond 100 years, addressing local energy needs and economic factors in the decision-making process. This innovative approach underscores the role of nuclear refurbishment in meeting global energy demands sustainably and economically.

 

Related News

View more

TransAlta brings online 119 MW of wind power in US

TransAlta Renewables US wind farms achieved commercial operation, adding 119 MW of wind energy capacity in Pennsylvania and New Hampshire, backed by PPAs with Microsoft, Partners Healthcare, and NHEC, and supported by tax equity financing.

 

Key Points

Two US wind projects totaling 119 MW, now online under PPAs and supported by tax equity financing.

✅ 119 MW online in Pennsylvania and New Hampshire

✅ PPAs with Microsoft, Partners Healthcare, and NHEC

✅ About USD 126 million raised via tax equity

 

TransAlta Renewables Inc says two US wind farms, with a total capacity of 119 MW and operated by its parent TransAlta Corp, became operational in December, amid broader build-outs such as Enel's 450-MW U.S. project coming online and, in Canada, Acciona's 280-MW Alberta wind farm advancing as well.

The 90-MW Big Level wind park in Pennsylvania started commercial operation on December 19. It sells power to technology giant Microsoft Corporation under a 15-year contract, reflecting big-tech procurement alongside Amazon's clean energy projects in multiple markets.

The 29-MW Antrim wind facility in New Hampshire is operational since December 24. It is selling power under 20-year contracts with Boston-based non-profit hospital and physicians network Partners Healthcare and New Hampshire Electric Co-op, mirroring East Coast activity at Amazon Wind Farm US East now fully operational.

The Canadian renewable power producer, which has economic interest in the two wind parks, said that upon their reaching commercial operations, it raised about USD 126 million (EUR 113m) of tax equity to partially fund the projects, as mega-deployments like Invenergy and GE's record North American project and capital plans such as a $200 million Alberta build by a Buffett-linked company underscore financing momentum.

"We continue to pursue additional growth opportunities, including potential drop-down transactions with TransAlta Corp," TransAlta Renewables president John Kousinioris commented.

The comment comes as TransAlta scrapped an Alberta wind project amid Alberta policy shifts.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified