Zero energy buildings are at hand

By The Independent


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The recently completed 222,000 square foot 20,624 square meter zero energy building constructed in Colorado using standard design materials hopes to show the future of design and encourage other institutions to follow suit.

The new National Renewable Energy Laboratory NREL completed on June 10 in Golden, Colorado, is the first zero energy building of this scale in the United States.

The zero energy building produces as much energy as it consumes by using Transpired Solar Collector technology developed by NREL and for which the firm won an award in 1994. The outside ventilated air is passively preheated via solar collectors on the south of the building, before being sent to a massive underground structure called the Labyrinth which stores thermal energy.

Though the structure functions automatically, optimizing performance while minimizing energy use, any power consumption averaging more than 250 watts per person would ruin the equilibrium of the building. Therefore employees use energy-saving equipment such as specialized laptop computers and elevators which regenerate their own power.

Mr. Baker, Director of Laboratory Operations for the U.S. Department of Energy in Colorado, stated that the major goal of the building is to demonstrate that zero energy buildings can be constructed anywhere. The building, which is 100 percent day-lit uses standard design materials such as concrete and glass, but was designed with energy, not architecture as the focal point.

Mr. Baker said, "over the last few months a number of people from both the public and private sector have come and seen what we have done, the technology could easily be applied to schools and hospitals and we hope to show them that it is possible."

China constructed what is thought to be the world's largest solar-powered office building earlier this year, however though the 807,000 square foot 75,000 square meter construction in Shangdong Province will only use 30 percent of the average energy consumption, it is not zero energy.

It is expected that the NREL building will be occupied by around 800 employees once it is officially open in August.

Related News

B.C.'s Green Energy Ambitions Face Power Supply Challenges

British Columbia Green Grid Constraints underscore BC Hydro's rising imports, peak demand, electrification, hydroelectric variability, and transmission bottlenecks, challenging renewable energy expansion, energy security, and CleanBC targets across industry and zero-emission transportation.

 

Key Points

They are capacity and supply limits straining B.C.'s clean electrification, driving imports and risking reliability.

✅ Record 25% imports in FY2024 raise emissions and costs

✅ Peak demand and transmission limits delay new connections

✅ Drought reduces hydro output; diversified generation needed

 

British Columbia's ambitious green energy initiatives are encountering significant hurdles due to a strained electrical grid and increasing demand, with a EV demand bottleneck adding pressure. The province's commitment to reducing carbon emissions and transitioning to renewable energy sources is being tested by the limitations of its current power infrastructure.

Rising Demand and Dwindling Supply

In recent years, B.C. has experienced a surge in electricity demand, driven by factors such as population growth, increased use of electric vehicles, and the electrification of industrial processes. However, the province's power supply has struggled to keep pace, and one study projects B.C. would need to at least double its power output to electrify all road vehicles. In fiscal year 2024, BC Hydro imported a record 13,600 gigawatt hours of electricity, accounting for 25% of the province's total consumption. This reliance on external sources, particularly from fossil-fuel-generated power in the U.S. and Alberta, raises concerns about energy security and sustainability.

Infrastructure Limitations

The current electrical grid is facing capacity constraints, especially during peak demand periods, and regional interties such as a proposed Yukon connection are being discussed to improve reliability. A report from the North American Electric Reliability Corporation highlighted that B.C. could be classified as an "at-risk" area for power generation as early as 2026. This assessment underscores the urgency of addressing infrastructure deficiencies to ensure a reliable and resilient energy supply.

Government Initiatives and Investments

In response to these challenges, the provincial government has outlined plans to expand the electrical system. Premier David Eby announced a 10-year, $36-billion investment to enhance the grid's capacity, including grid development and job creation measures to support local economies. The initiative focuses on increasing electrification, upgrading high-voltage transmission lines, refurbishing existing generating facilities, and expanding substations. These efforts aim to meet the growing demand and support the transition to clean energy sources.

The Role of Renewable Energy

Renewable energy sources, particularly hydroelectric power, play a central role in B.C.'s energy strategy. However, the province's reliance on hydroelectricity has its challenges. Drought conditions in recent years have led to reduced water levels in reservoirs, impacting the generation capacity of hydroelectric plants. This variability underscores the need for a diversified energy mix, with options like a hydrogen project complementing hydro, to ensure a stable and reliable power supply.

Balancing Environmental Goals and Energy Needs

B.C.'s commitment to environmental sustainability is evident in its policies, such as the CleanBC initiative, which aims to phase out natural gas heating in new homes by 2030 and achieve 100% zero-emission vehicle sales by 2035, supported by networks like B.C.'s Electric Highway that expand charging access. While these goals are commendable, they place additional pressure on the electrical grid. The increased demand from electric vehicles and electrified heating systems necessitates a corresponding expansion in power generation and distribution infrastructure.

British Columbia's green energy ambitions are commendable and align with global efforts to combat climate change. However, achieving these goals requires a robust and resilient electrical grid capable of meeting the increasing demand for power. The province's reliance on external power sources and the challenges posed by climate variability highlight the need for strategic investments in infrastructure and a diversified energy portfolio, guided by BC Hydro review recommendations to keep electricity affordable. By addressing these challenges proactively, B.C. can pave the way for a sustainable and secure energy future.

 

Related News

View more

Cape Town to Build Own Power Plants, Buy Additional Electricity

Cape Town Renewable Energy Plan targets 450+ MW via solar, wind, and battery storage, cutting Eskom reliance, lowering greenhouse gas emissions, stabilizing electricity prices, and boosting grid resilience through municipal procurement, PPAs, and city-owned plants.

 

Key Points

A municipal plan to procure over 450 MW, cut Eskom reliance, stabilize prices, and reduce Cape Town emissions.

✅ Up to 150 MW from private plants within the city

✅ 300 MW to be purchased from outside Cape Town later

✅ City financing 100-200 MW of its own generation

 

Cape Town is seeking to secure more than 450 megawatts of power from renewable sources to cut reliance on state power utility Eskom Holdings SOC Ltd., where wind procurement cuts were considered during lockdown, and reduce greenhouse gas emissions.

South Africa’s second-biggest city is looking at a range of options, including geothermal exploration in comparable markets, and expects the bulk of the electricity to be generated from solar plants, Kadri Nassiep, the city’s executive director of energy and climate change, said in an interview.

On July 14 the city of 4.6 million people released a request for information to seek funding to build its own plants. This month or next it will seek proposals for the provision of as much as 150 megawatts from privately owned plants, largely solar additions, to be built and operated within the city, he said. As much as 300 megawatts may also be purchased at a later stage from plants outside of Cape Town, according to Nassiep.

The city could secure finance to build 100 to 200 megawatts of its own generation capacity, Nassiep said. “We realized that it is important for the city to be more in control around the pricing of the power,” he added.

Power Outages

Cape Town’s foray into the securing of power from sources other than Eskom comes after more than a decade of intermittent electricity outages, while elsewhere in Africa coal projects face scrutiny from lenders, because the utility can’t meet national demand. The government last year said municipalities could find alternative suppliers.

Earlier this month Ethekwini, the municipal area that includes the city of Durban, issued a request for information for the provision of 400 megawatts of power, similar to BC Hydro’s call for power driven by EV uptake.

The City of Johannesburg will in September seek information and proposals for the construction of a 150-megawatt solar plant, reflecting moves like Ontario’s new wind and solar procurements to tackle supply gaps, 50 megawatts of rooftop solar panels and the refurbishment of an idle gas-fired plant that could generate 20 megawatts, it said in June. It will also seek information for the installation of 100 megawatts of battery storage.

Cape Town, which uses a peak of 1,800 megawatts of electricity in winter, hopes to start generating some of its own power next year, aligning with SaskPower’s 2030 renewables plan seen in Canada, according to a statement that accompanied its request for financing proposals.
 

 

Related News

View more

Volkswagen's German Plant Closures

VW Germany Plant Closures For EV Shift signal a strategic realignment toward electric vehicles, sustainability, and zero-emission mobility, optimizing manufacturing, cutting ICE capacity, boosting battery production, retraining workers, and aligning with the Accelerate decarbonization strategy.

 

Key Points

VW is shuttering German plants to cut ICE costs and scale EV output, advancing sustainability and competitiveness.

✅ Streamlines operations; reallocates capital to EV platforms and batteries.

✅ Cuts ICE output, lowers emissions, and boosts clean manufacturing capacity.

✅ Retrains workforce amid closures; invests in software and charging tech.

 

Volkswagen (VW), one of the world’s largest automakers, is undergoing a significant transformation with the announcement of plant closures in Germany. As reported by The Guardian, this strategic shift is part of VW’s broader move towards prioritizing electric vehicles (EVs) and adapting to the evolving automotive market as EVs reach an inflection point globally. The decision highlights the company’s commitment to sustainability and innovation amid a rapidly changing industry landscape.

Strategic Plant Closures

Volkswagen’s decision to close several of its plants in Germany marks a pivotal moment in the company's history. These closures are part of a broader strategy to streamline operations, reduce costs, and focus on the production of electric vehicles. The move reflects VW’s response to the growing demand for EVs and the need to transition from traditional internal combustion engine (ICE) vehicles to cleaner, more sustainable alternatives.

The affected plants, which have been key components of VW’s manufacturing network, will cease production as the company reallocates resources and investments towards its electric vehicle programs. This realignment is aimed at improving operational efficiency and ensuring that VW remains competitive in a market that is increasingly oriented towards electric mobility.

A Shift Towards Electric Vehicles

The closures are closely linked to Volkswagen’s strategic shift towards electric vehicles. The automotive industry is undergoing a profound transformation as governments and consumers place greater emphasis on sustainability and reducing carbon emissions. Volkswagen has recognized this shift and is investing heavily in the development and production of EVs as part of its "Accelerate" strategy, anticipating widespread EV adoption within a decade across key markets.

The company’s commitment to electric vehicles is evident in its plans to launch a range of new electric models and increase production capacity for EVs. Volkswagen aims to become a leader in the electric mobility sector by leveraging its technological expertise and scale to drive innovation and expand its EV offerings.

Economic and Environmental Implications

The closure of VW’s German plants carries both economic and environmental implications. Economically, the move will impact the workforce and local economies dependent on these manufacturing sites. Volkswagen has indicated that it will work on providing support and retraining opportunities for affected employees, as the EV aftermarket evolves and reshapes service needs, but the transition will still pose challenges for workers and their communities.

Environmentally, the shift towards electric vehicles represents a significant positive development. Electric vehicles produce zero tailpipe emissions, which aligns with global efforts to combat climate change and reduce air pollution. By focusing on EV production, Volkswagen is contributing to the reduction of greenhouse gas emissions and supporting the transition to a more sustainable transportation system.

Challenges and Opportunities

While the transition to electric vehicles presents opportunities, it also comes with challenges. Volkswagen will need to manage the complexities of closing and repurposing its existing plants while ramping up production at new or upgraded facilities dedicated to EVs. This transition requires substantial investment in new technologies, infrastructure, and training, including battery supply strategies that influence manufacturing footprints, to ensure a smooth shift from traditional automotive manufacturing.

Additionally, Volkswagen faces competition from other automakers that are also investing heavily in electric vehicles, including Daimler's electrification plan outlining the scope of its transition. To maintain its competitive edge, VW must continue to innovate and offer attractive, high-performance electric models that meet consumer expectations.

Future Outlook

Looking ahead, Volkswagen’s focus on electric vehicles aligns with broader industry trends and regulatory pressures. Governments worldwide are implementing stricter emissions regulations and providing incentives for EV adoption, although Germany's plan to end EV subsidies has sparked debate domestically, creating a favorable environment for companies that are committed to sustainability and clean technology.

Volkswagen’s investment in electric vehicles and its strategic realignment reflect a proactive approach to addressing these trends. The company’s ability to navigate the challenges associated with plant closures and the transition to electric mobility will be critical, especially as Europe's EV slump tests demand signals, in determining its success in the evolving automotive landscape.

Conclusion

Volkswagen’s decision to close several plants in Germany and focus on electric vehicle production represents a significant shift in the company’s strategy. While the closures present challenges, they also highlight Volkswagen’s commitment to sustainability and its response to the growing demand for cleaner transportation solutions. By investing in electric vehicles and adapting its operations, Volkswagen aims to lead the way in the transition to a more sustainable automotive future. As the company moves forward, its ability to effectively manage this transition will be crucial in shaping its role in the global automotive market.

 

Related News

View more

Europe's Thirst for Electricity Spurs Nordic Grid Blockade

Nordic Power Grid Dispute highlights cross-border interconnector congestion, curtailed exports and imports, hydropower priorities, winter demand spikes, rising spot prices, and transmission grid security amid decarbonization efforts across Sweden, Norway, Finland, and Denmark.

 

Key Points

A clash over interconnectors and capacity cuts reshaping trade, prices, and reliability in the Nordic power market.

✅ Sweden cuts interconnector capacity to protect grid stability

✅ Norway prioritizes higher-priced exports via new cables

✅ Finland and Denmark seek EU action on capacity curtailments

 

A spat over electricity supplies is heating up in northern Europe. Sweden is blocking Norway from using its grids to transfer power from producers throughout the region. That’s angered Norway, which in turn has cut flows to its Nordic neighbor.

The dispute has built up around the use of cross-border power cables, which are a key part of Europe’s plans to decarbonize since they give adjacent countries access to low-carbon resources such as wind or hydropower. The electricity flows to wherever prices are higher, informed by how electricity is priced across Europe, without interference from grid operators -- but in the event of a supply squeeze, flows can be stopped.

Sweden moved to safeguard the security of its grid after Norway started increasing electricity exports through huge new cables to Germany and the U.K. Those exports at times have drawn energy away from Sweden, resulting in the country’s system operator cutting capacity at its Nordic borders, preventing exports but also hindering imports, which it relies on to handle demand spikes during winter.

“This is not a good situation in the long run,” Christian Holtz, a energy market consultant for Merlin & Metis AB.

Norway hit back last week by cutting flows to Sweden, this will prioritize better paying customers in Europe, amid Irish price spikes that highlight dispatchable shortages, giving them access to its vast hydro resources at the expense of its Nordic neighbors. 

By partially closing its borders Sweden can’t access imports either, which it relies on to handle demand spikes during the coldest days of the winter. 

In Denmark, unusual summer and autumn winds have at times delivered extraordinarily low electricity prices that ripple through regional markets.

The Swedish grid manager Svenska Kraftnat has reduced export capacity at cables across its borders by as much as half this year to keep operations secure. Finland and Denmark rely on imports too and the cuts will come at a cost for millions of homes and industries across the four nations already contending with record electricity rates this year. 

Finland and Denmark want the European Union to end the exemption to regulations that make such reductions possible in the first place, as Europe is losing nuclear power and facing tighter supply.

“Imports from our neighboring countries ensure adequacy at times of peak consumption,” said Reima Paivinen, head of operation at the Finland’s Fingrid. “The recent surge in electricity prices throughout Europe does not directly affect the adequacy of electricity, but prices may rise dramatically for short periods.”

Svenska Kraftnat says it’s not political -- it has no choice but to cut capacity until its old grids are expanded to handle the new direction of flows, a challenge mirrored by grid expansion woes in Germany that slow integration. That could take at least until 2030 to complete, it said earlier this year. At the same time, Norway halving available export capacity to about 1,200 megawatts will increase risk of shortages. 

“If we need more we will have to count on imports from other countries,” said Erik Ek, head of strategic operation at Svenska Kraftnat. “If that is not available, we will have to disconnect users the day it gets cold.”

 

Related News

View more

Ontario government wants new gas plants to boost electricity production

Ontario Gas Plant Expansion aims to boost grid reliability as nuclear refurbishments proceed, using natural gas to meet electricity demand, despite critics urging renewables, energy storage, and efficiency to reduce carbon emissions, protecting investment growth.

 

Key Points

Ontario plan to expand gas plants for reliability during nuclear outages, sparking debate on emissions and clean options.

✅ IESO data: gas share rose from 4% (2017) to 10.4% (2022).

✅ Government cites nuclear refurbishments and demand growth.

✅ Critics propose storage, wind, solar, and efficiency.

 

The Ontario government is preparing to expand gas-fired power plants in Ontario; a move critics say will make the province's electricity system dirtier and could eventually leave taxpayers on the hook.

The province is currently soliciting bids for additional gas-fired electricity generation, which means new gas plants get built, or existing gas plants get expanded. 

It's poised to be Ontario's biggest increase in the gas-fired power supply in more than a decade since the previous Liberal government scrapped two gas plants, in Mississauga and Oakville, at a cost the auditor general pegged at around $1 billion. 

Doug Ford's energy minister, Todd Smith, says Ontario needs gas plants now to help meet an expected surge in demand for electricity as the province faces a supply shortfall in the coming years and to provide power while some units of the province's nuclear stations are down for refurbishment. 

"It's really important to have natural gas as an insurance policy to keep the lights on and provide the reliability that we need," Smith said in an interview. 

"We need natural gas for the short term, especially to get us through these refurbishments."

The portion of Ontario's electricity supply that comes from natural gas matters for the environment and the province's economy. Manufacturing companies increasingly seek clean power that emits as little carbon dioxide as possible. 

The portion of Ontario's electricity supply that comes from natural gas matters for the environment and the province's economy. Manufacturing companies increasingly seek a power supply that emits as little carbon dioxide as possible. 

Increasing the amount of gas-fired generation in the electricity system puts Ontario's ability to attract such investments at risk as it complicates balancing demand and emissions across the grid, says Evan Pivnick, program manager with Clean Energy Canada, a think tank. 

"Building new natural gas (power plants) in Ontario today should be seen as an absolute last resort for meeting our energy needs," said Pivnick in an interview. 

Ontario's electricity system has among the lowest rates of CO2 emissions in North America, with roughly half of the annual supply provided by nuclear power, one-quarter from hydro dams, and one-tenth from wind turbines. 

However, Ontario's gas plants have produced a growing amount of electricity in recent years, despite an early report exploring a gas halt by the minister, and that trend will continue if new gas plants are built. 

In 2017, gas- and oil-fired generation provided just four percent of Ontario's electricity supply, according to figures from the provincial agency that manages the grid, the Independent Electricity System Operator (IESO). 

By 2022, that figure reached 10.4 percent. 

Ontario doesn't need new gas plants to meet the electricity demand, says Bryan Purcell, vice president of policy and programs at The Atmospheric Fund. This agency invests in low-carbon projects in the Greater Toronto and Hamilton Area. 

"We're quite concerned about where Ontario's electric grid is going," said Purcell. "Thankfully, there's still time to adjust course and look at other options." 

According to Purcell and Pivnick, those options to avoid gas could include power storage (in which excess generated energy is stored for later use when electricity demand rises), wind and solar projects, or energy efficiency and conservation programs.

 

Related News

View more

Florida says no to $400M in federal solar energy incentives

Florida Solar for All Opt-Out highlights Gov. DeSantis rejecting EPA grant funds under the Inflation Reduction Act, limiting low-income households' access to solar panels, clean energy programs, and promised electricity savings across disadvantaged communities.

 

Key Points

Florida Solar for All Opt-Out is the state declining EPA grants, restricting low-income access to solar energy savings.

✅ EPA grant under IRA aimed at low-income solar

✅ Estimated 20% electricity bill savings missed

✅ Florida lacks PPAs and renewable standards

 

Florida has passed up on up to $400 million in federal money that would have helped low-income households install solar panels.

A $7 billion grant “competition” to promote clean energy in disadvantaged communities by providing low-income households with access to affordable solar energy was introduced by President Joe Biden earlier this year, and despite his climate law's mixed results in practice, none of that money will reach Florida households.

The Environmental Protection Agency announced the competition in June as part of Biden’s Inflation Reduction Act. However, Florida Gov. Ron DeSantis has decided to pass on the $400 million up for grabs by choosing to opt out of the opportunity.

Inflation Reduction Act:What is the Inflation Reduction Act? Everything to know about one of Biden's big laws

The program would have helped Florida households reduce their electricity costs by a minimum of 20% during a key time when Floridians are leaving in droves due to a rising cost of living associated with soaring insurance costs, inflation, and proposed FPL rate hikes statewide.

Florida was one of six other states that chose not to apply for the money.

President Joe Biden announced a $7 billion “competition” to promote clean energy in disadvantaged communities.

The opportunity, named “Solar for All,” was announced by the EPA in June and promised to provide up to $7 billion in grants to states, territories, tribal governments, municipalities, and nonprofits to expand the number of low-income and disadvantaged communities primed for residential solar investment — enabling millions of low-income households to access affordable, resilient and clean solar energy.

The grant is intended to help lower energy costs for families, create jobs and help reduce greenhouse effects that accelerate global climate change by providing financial support and incentives to communities that were previously locked out of investments.


How much money would Floridians save under the ‘Solar for All’ solar panel grant?

The program aims to reduce household electricity costs by at least 20%. Florida households paid an average of $154.51 per month for electricity in 2022, just over 14% of the national average of $135.25, and debates over hurricane rate surcharges continue to shape customer bills, according to the U.S. Energy Information Administration. A 20% savings would drop those bills down to around $123 per month.

On the campaign trail, DeSantis has pledged to unravel Biden’s green energy agenda if elected president, amid escalating solar policy battles nationwide, slamming the Inflation Reduction Act and what he called “a concerted effort to ramp up the fear when it comes to things like global warming and climate change.”

His energy agenda includes ending Biden’s subsidies for electric cars while pushing policies that he says would ramp up domestic oil production.

“The subsidies are going to drive inflation higher,” DeSantis said at an event in September. “It’s not going to help with interest rates, and it is certainly not going to help with our unsustainable debt levels.”

DeSantis heading to third debate:As he enters third debate, Ron DeSantis has a big Nikki Haley problem

DeSantis’ plan to curb clean energy usage in Florida seems to be at odds with the state as a whole, and the region's evolving strategy for the South underscores why it has been ranked among the top three states to go solar since 2019, according to the Solar Energy Industries Association (SEIA).

SEIA also shows, however, that Florida lags behind many other states when it comes to solar policies, as utilities tilt the solar market in ways that influence policy outcomes statewide. Florida, for instance, has no renewable energy standards, which are used to increase the use of renewable energy sources for electricity by requiring or encouraging suppliers to provide customers with a stated minimum share of electricity from eligible renewable resources, according to the EIA.

Power purchase agreements, which can help lower the cost of going solar through third-party financing, are also not allowed in Florida, with court rulings on monopolies reinforcing the existing market structure. And there have been other policies implemented that drove other potential solar investments to other states.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.