WAPA completes study on power combo

- A study by the Western Area Power Administration concludes there is a certain degree of benefit to using wind turbines to complement power production at hydroelectric dams on the Missouri River.

The Wind and Hydropower Feasibility Study was mandated by the Energy Policy Act of 2005.

"It turns out to be a fairly complicated process," said Randy Wilkerson, a WAPA spokesman. "You're trying to mesh two variables together. You've got a wind resource that's highly variable over time, and you've got this hydropower resource that varies between high-water years and low-water years. In high-water years there's excess electricity to sell, and in low-water years we have to go on the market to purchase that power."

WAPA is an agency of the U.S. Energy Department that sells electricity produced by Missouri River power plants.

Because of drought this decade, WAPA has been forced to buy extra electricity on the market, Wilkerson said. Since open market power is substantially more expensive than power WAPA generates, the agency has had to raise its rates.

The study concluded wind power would have benefits, but only to a certain degree.

"One of the things we saw from the study is that in years of low generation, these wind projects make a lot of sense economically," Wilkerson said. "When there's plenty of water, economically the wind projects aren't as viable. It's kind of a project of balancing that over time to see where the economic breakpoint is."

The optimal amount of wind power, according to the study, is 300 megawatts — about 200 wind turbines, or an 11 percent increase in WAPA's total capacity.

The study found that expanding wind power production along the Missouri River would have moderate benefits during drought years, saving WAPA almost $4 million per year. During years with normal water, the benefits decrease.

Mike Radecki, the project manager for the wind-hydro integration study, said more wind power than 300 megawatts is less viable because of the time of day when strong winds tend to blow in central South Dakota.

"A lot of the wind blows during the evening hours and into the nighttime," Radecki said. "In that same time frame, our load is backing down into the off-peak load. Having more wind during that period isn't as beneficial as if it were blowing during the day, during our peak load, which is when energy is more expensive."

Related News

Opinion: The dilemma over electricity rates and innovation

TORONTO - For more than 100 years, Canadian electricity companies had a very simple mandate: provide reliable, safe power to all. Keep the lights on, as some would say. And they did just that.

Today, however, they are expected to also provide a broad range of energy services through a data-driven, customer-centric system operations platform that can manage, among other things, responsive loads, electric vehicles, storage devices and solar generation. All the while meeting environmental and social sustainability — and delivering on affordability.

Not an easy task.

That’s why this new mandate requires an ironclad commitment to innovation excellence. Not simply replacing “like…

READ MORE
belgium nuclear

Nuclear helps Belgium increase electricity exports in 2019

READ MORE

EV growth in Europe

Parked Electric Cars Earn $1,530 From Europe's Power Grids

READ MORE

Cape Town settlement

Does Providing Electricity To The Poor Reduce Poverty? Maybe Not

READ MORE

cairo at night

Egypt, Eni ink MoU on hydrogen production projects

READ MORE