BWE - Wind power potential even higher than expected


wind turbines

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

German Wind Power 2030 Outlook highlights onshore and offshore growth, repowering, higher full-load hours, and efficiency gains. Deutsche WindGuard, BWE, and LEE NRW project 200+ TWh, potentially 500 TWh, covering rising electricity demand.

 

Key Points

Forecast: efficiency and full-load gains could double onshore wind to 200+ TWh; added land could lift output to 500 TWh.

✅ Modern turbines and repowering boost full-load hours and yields

✅ Onshore generation could hit 200+ TWh on existing areas by 2030

✅ Expanding land to 2% may enable 500 TWh; offshore adds more

 

Wind turbines have become more and more efficient over the past two decades, a trend reflected in Denmark's new green record for wind-powered generation.

A new study by Deutsche WindGuard calculates the effect on the actual generation volumes for the first time, underscoring Germany's energy transition balancing act as targets scale. Conclusion of the analysis: The technical progress enables a doubling of the wind power generation by 2030.

Progressive technological developments make wind turbines more powerful and also enable more and more full-load hours, with wind leading the power mix in many markets today. This means that more electricity can be generated continuously than previously assumed. This is shown by a new study by Deutsche WindGuard, which was commissioned by the Federal Wind Energy Association (BWE) and the State Association of Renewable Energies NRW (LEE NRW).

The study 'Full load hours of wind turbines on land - development, influences, effects' describes in detail for the first time the effects of advances in wind energy technology on the actual generation volumes. It can thus serve as the basis for further calculations and potential assessments, reflecting milestones like UK wind surpassing coal in 2016 in broader analyses.

The results of the investigation show that the use of modern wind turbines with higher full load hours alone on the previously designated areas could double wind power generation to over 200 terawatt hours (TWh) by 2030. With an additional area designation, generation could even be increased to 500 TWh. If the electricity from offshore wind energy is added, the entire German electricity consumption from wind energy could theoretically be covered, and renewables recently outdelivered coal and nuclear in Germany as a sign of momentum: The current electricity consumption in Germany is currently a good 530 TWh, but will increase in the future.

Christian Mildenberger, Managing Director of LEE NRW: 'Wind can do much more: In the past 20 years, technology has made great leaps and bounds. Modern wind turbines produce around ten times as much electricity today as those built at the turn of the millennium. This must also be better reflected in potential studies by the federal and state governments. '

Wolfram Axthelm, BWE Managing Director: 'We need a new look at the existing areas and the repowering. Today in Germany not even one percent of the area is designated for wind energy inland. But even with this we could cover almost 40 percent of the electricity demand by 2030. If this area share were increased to only 2 percent of the federal area, it would be almost 100 percent of the electricity demand! Wind energy is indispensable for a CO2-neutral future. This requires a clever provision of space in all federal states. '

Dr. Dennis Kruse, Managing Director of Deutsche WindGuard: 'It turns out that the potential of onshore wind energy in Germany is still significantly underestimated. Modern wind turbines achieve a significantly higher number of full load hours than previously assumed. That means: The wind can be used more and more efficiently and deliver more income. '

On the areas already designated today, numerous older systems will be replaced by modern ones by 2030 (repowering). However, many old systems will still be in operation. According to Windguard's calculations, the remaining existing systems, together with around 12,500 new, modern wind systems, could generate 212 TWh in 2030. If the area backdrop were expanded from 0.9 percent today to 2 percent of the land area, around 500 TWh would be generated by inland wind, despite grid expansion challenges in Europe that shape deployment.

The ongoing technological development must also be taken into account. The manufacturers of wind turbines are currently working on a new class of turbines with an output of over seven megawatts that will be available in three to five years. According to calculations by the LEE NRW, by 2040 the same number of wind turbines as today could produce over 700 TWh of electricity inland. The electricity demand, which will increase in the future due to electromobility, heat pumps and the production of green hydrogen, can thus be completely covered by a combination of onshore wind, offshore wind, solar power, bioenergy, hydropower and geothermal energy, and a net-zero roadmap for Germany points to significant cost reductions.

 

Related News

Related News

Alberta renewable energy surge could power 4,500 jobs

Alberta Renewable Energy Boom highlights corporate investments, power purchase agreements, wind and solar capacity gains, grid decarbonization, and job growth, adding 2 GW and $3.7B construction since 2019 in an open electricity market.

 

Key Points

Alberta's PPA-driven wind and solar surge adds 2 GW, cuts grid emissions, creates jobs, and accelerates private builds.

✅ 2 GW added since 2019 via corporate PPAs

✅ Open electricity market enables direct deals

✅ Strong wind and solar resources boost output

 

Alberta has seen a massive increase in corporate investment in renewable energy since 2019, and capacity from those deals is set to increase output by two gigawatts —  enough to power roughly 1.5 million homes. 

“Our analysis shows $3.7 billion worth of renewables construction by 2023 and 4,500 jobs,” Nagwan Al-Guneid, the director of Business Renewables Centre Canada, says. 

The centre is an initiative of the environmental think tank Pembina Institute and provides education and guidance for companies looking to invest in renewable energy or energy offsets across Canada. Its membership is made up of renewable energy companies.

The addition of two gigawatts is over two times the amount of renewable energy added to the grid between 2010 and 2017, according to the Canadian Energy Regulator. 

We’re tripling our Prairies coverage
The Narwhal’s newly minted Prairies bureau is here to bring you stories on energy and the environment you won’t find anywhere else. Stay tapped in by signing up for a weekly dose of our ad‑free, independent journalism.

“This is driven directly by what we call power purchase agreements,” Al-Guneid says. “We have companies from across the country coming to Alberta.”

So far this year, 191 megawatts of renewable energy will be added through purchase agreements, according to the Business Renewables Centre, as diversified energy sources can make better projects overall.

Alberta’s electricity system is unique in Canada — an open market where companies can ink deals directly with private power producers to sell renewable energy and buy a set amount of electricity produced each year, either for use or for offset credits. The financial security provided by those contracts helps producers build out more renewable projects without market risks. Purchasers get cheap renewable energy or credits to meet internal or external emissions goals. 

It differs from other provinces, many of which rely on large hydro capacity and where there is a monopoly, often government-owned, on power supply. 

In those provinces, investment in renewables largely depends on whether the company with the monopoly is in a buying mood, says Blake Shaffer, an economics professor at the University of Calgary who studies electricity markets. 

That’s not the case in Alberta, where the only real regulatory hurdle is applying to connect a project to the grid.

“Once that’s approved, you can just go ahead and build it, and you can sell it,” Shaffer says.

That sort of flexibility has attracted some big investments, including two deals with Amazon in 2021 to purchase 455 megawatts worth of solar power from Calgary-based Greengate Power. There are also big investments from oil companies looking to offset emissions.

The investments are allowing Alberta to decarbonize its grid, largely with the backing of the private sector. 

Shaffer says Alberta is the “renewables capital in Canada,” a powerhouse in both green and fossil energy by many measures.

“That just shocks people because of course their association with Alberta is nothing about renewables, but oil and gas,” Shaffer says. “But it really is the investment centre for renewables in the entire country right now.”

Alberta has ‘embarrassing’ riches in wind energy and solar power
It’s not just the market that is driving Alberta’s renewables boom. According to Shaffer there are three other key factors: an embarrassment of wind and solar riches, the need to transition away from a traditionally dirty, coal-reliant grid and the current high costs of energy. 

Shaffer says the strong and seemingly non-stop winds coming off the foothills of the Rockies in the southwest of the province mean wind power is increasingly competitive and each turbine produces more energy compared to other areas. The same is true for solar, with an abundance of sunny days.

“Southern Alberta and southern Saskatchewan have the best solar insolation,” he says. “You put a panel in Vancouver, or you put a panel in Medicine Hat, and you’re gonna get about 50 per cent more energy out of that panel in Medicine Hat, and they’re gonna cost you the same.”

The spark that set off the surge in investments wasn’t strictly an open-market mechanism. Under the previous NDP government, the province brought in a program that allowed private producers to compete for government contracts, with some solar facilities contracted below natural gas demonstrating cost advantages.

The government agreed to a certain price and the producers were then allowed to sell their electricity on the open market. If the price dropped below what was guaranteed, the province would pay the difference. If, however, the price was higher, the developers would pay the difference to the government. 

 

Related News

View more

California Takes the Lead in Electric Vehicle and Charging Station Adoption

California EV Adoption leads the U.S., with 37% of registered electric vehicles and 27% of charging locations, spanning Level 1, Level 2, and DC Fast stations, aligned with OCPI and boosted by CALeVIP funding.

 

Key Points

California EV adoption reflects the state's leading EV registrations and growth in private charging infrastructure.

✅ 37% of U.S. EVs, 27% of charging locations in 2022

✅ CALeVIP funding boosts public charging deployment

✅ OCPI-aligned data; EVs per charger rose to 75 in CA

 

California has consistently been at the forefront of electric vehicle (EV) adoption, with EV sales topping 20% in California underscoring this trend, and the proliferation of EV charging stations in the United States, maintaining this position since 2016. According to recent estimates from our State Energy Data System (SEDS), California accounts for 37% of registered light-duty EVs in the U.S. and 27% of EV charging locations as of the end of 2022.

The vehicle stock data encompass all registered on-road, light-duty vehicles and exclude any previous vehicle sales no longer in operation. The data on EV charging locations include both private and public access stations for Legacy, Level 1, Level 2, and DC Fast charging ports, excluding EV chargers in single-family residences. There is a data series break between 2020 and 2021, when the U.S. Department of Energy updated its data to align with the Open Charge Point Interface (OCPI) international standard, reflecting changes in the U.S. charging infrastructure landscape.

In 2022, the number of registered EVs in the United States, with U.S. EV sales soaring into 2024 nationwide, surged to six times its 2016 figure, growing from 511,600 to 3.1 million, while the number of U.S. charging locations nearly tripled, rising from 19,178 to 55,015. Over the same period, California saw its registered EVs more than quadruple, jumping from 247,400 to 1.1 million, and its charging locations tripled, increasing from 5,486 to 14,822.

California's share of U.S. EV registrations has slightly decreased in recent years as EV adoption has spread across the country, with Arizona EV ownership relatively high as well. In 2016, California accounted for approximately 48% of light-duty EVs in the United States, which was approximately 12 times more than the state with the second-highest number of EVs, Georgia. By 2022, California's share had decreased to around 37%, which was still approximately six times more than the state with the second-most EVs, Florida.

On the other hand, California's share of U.S. EV charging locations has risen slightly in recent years, as charging networks compete amid federal electrification efforts and partly due to the California Electric Vehicle Infrastructure Project (CALeVIP), which provides funding for the installation of publicly available EV charging stations. In 2016, approximately 25% of U.S. EV charging locations were in California, over four times as many as the state with the second-highest number, Texas. In 2022, California maintained its position with over four times as many EV charging locations as the state with the second-most, New York.

The growth in the number of registered EVs has outpaced the growth of EV charging locations in the United States, and in 2021 plug-in vehicles traveled 19 billion electric miles nationwide, underscoring utilization. In 2016, there were approximately 27 EVs per charging location on average in the country. Alaska had the highest ratio, with 67 EVs per charging location, followed by California with 52 vehicles per location.

In 2022, the average ratio was 55 EVs per charging location in the United States, raising questions about whether the grid can power an ongoing American EV boom ahead. New Jersey had the highest ratio, with 100 EVs per charging location, followed by California with 75 EVs per location.

 

Related News

View more

Clean Energy Accounts for 50% of Germany's Electricity

Germany Renewable Energy Milestone marks renewables supplying 53% of power, with record onshore wind and peak solar; hydrogen-ready gas plants and grid upgrades are planned to balance variability amid Germany's coal phase-out.

 

Key Points

It marks renewables supplying 53% of Germany's power, driven by wind and solar records in the energy transition.

✅ 53% of generation and 52% of consumption in 2024

✅ Onshore wind hit record; June solar peaked

✅ 24 GW hydrogen-ready gas plants planned for grid balancing

 

For the first time, renewable energy sources have surpassed half of Germany's electricity production this year, as indicated by data from sustainable energy organizations.

Preliminary figures from the Center for Solar Energy and Hydrogen Research alongside the German Association of Energy and Water Industries (BDEW) show that the contribution of green energy has risen to 53%, echoing how renewable power surpassed fossil fuels in Europe recently, a significant increase from 44% in the previous year.

The year saw a record output from onshore wind energy, as investments in European wind power climbed, and an unprecedented peak in solar energy production in June, as reported by the organizations. Additionally, renewable sources constituted 52% of Germany's total power consumption, marking an increase of approximately five percentage points.

Germany, Europe's leading economy, heavily impacted by Russia's reduced natural gas supplies last year, as Europeans push back from Russian oil and gas across the region, has been leaning on renewable sources to bridge the energy gap. This shift comes even as the country temporarily ramped up coal usage last winter. Having phased out its nuclear power plants earlier this year, Germany aims for an 80% clean energy production by 2030.

In absolute numbers, Germany produced a record level of renewable energy this year, supported by a solar power boost during the energy crisis, approximately 267 billion kilowatt-hours, according to the associations. A decrease of 11% in overall energy production facilitated a reduced reliance on fossil fuels.

However, Europe's transition to more sustainable energy sources, particularly offshore wind, has encountered hurdles such as increased financing and component costs, even as neighbors like Ireland pursue an ambitious green electricity goal within four years. Germany continues to face challenges in expanding its renewable energy capacity, as noted by BDEW’s executive board chairwoman, Kerstin Andreae.

Andreae emphasizes that while energy companies are eager to invest in the transition, they often encounter delays due to protracted approval processes, bureaucratic complexities, and scarcity of land despite legislative improvements.

German government officials are close to finalizing a strategy this week for constructing multiple new gas-fired power plants, despite findings that solar plus battery storage can be cheaper than conventional power in Germany, a plan estimated to cost around 40 billion euros ($44 billion). This initiative is a critical part of Germany's strategy to mitigate potential power shortages that might result from the discontinuation of coal power, particularly given the variability in renewable energy sources.

A crucial meeting involving representatives from the Economy and Finance Ministries, along with the Chancellor's Office, is expected to occur late Tuesday. The purpose is to finalize this agreement, according to sources who requested anonymity due to restrictions on public disclosure.

The Economy Ministry, spearheading this project, confirmed that intensive discussions are ongoing, although no further details were disclosed.

Germany's plan involves utilizing approximately 24 gigawatts (GW) of energy from hydrogen, including emerging offshore green hydrogen options, and gas-fired power plants to compensate for the fluctuations in wind and solar power generation. However, the proposal has faced challenges, particularly regarding the allocation of public funds for these projects, with disagreements arising with the European Union's executive in Brussels.

Environmental groups have also expressed criticism of the strategy. They advocate for an expedited end to fossil fuel usage and remain skeptical about the energy sector's arguments favoring natural gas as a transitional fuel. Despite natural gas emitting less carbon dioxide than coal, environmentalists question its role in Germany's energy future.

 

 

Related News

View more

Local study to look at how e-trucks might supply future electricity

Electrified Trucking Grid Integration explores vehicle-to-grid (V2G) strategies where rolling batteries backfeed power during peak demand, optimizing charging infrastructure, time-of-use pricing, and IESO market operations for Ontario shippers like Nature Fresh Farms.

 

Key Points

An approach using V2G-enabled electric trucks to support the grid, cut peak costs, and add revenue streams.

✅ Models charging sites, timing, and local grid impacts.

✅ Evaluates V2G backfeed economics and IESO pricing.

✅ Uses Nature Fresh Farms data for logistics and energy.

 

A University of Windsor project will study whether an electrified trucking industry might not only deliver the goods, but help keep the lights on with the timely off-loading of excess electrons from their powerful batteries via vehicle-to-grid approaches now emerging.

The two-year study is being overseen by Environmental Energy Institute director Rupp Carriveau and associate professor Hanna Moah of the Cross-Border Institute in conjunction with the Leamington-based greenhouse grower Nature Fresh Farms.

“The study will look at what happens if we electrified the transport truck fleet in Ontario to different degrees, considering the power demand for truck fleets that would result,” Carriveau said.

“Where trucks would be charging and how that will affect the electricity grid grid coordination in those locations at specific times. We’ll be able to identify peak times on the demand side.

“On the other side, we have to recognize these are rolling batteries. They may be able to backfeed the grid, sell electricity back to prop the grid up in locations it wasn’t able to in the past.”

The national research organization Mathematics of International Technology and Complex Systems (Mitacs) is funding the $160,000 study, and the Independent Electricity Systems Operator, a Crown corporation responsible for operating Ontario’s electricity market, amid an electricity supply crunch that is boosting storage efforts, is also offering support for the project.

Because of the varying electricity prices in the province based on usage, peak demand and even time of year, Carriveau said there could be times where draining off excess truck battery power will be cheaper than the grid, and vehicle-to-building charging models show how those savings can be realized.

“It could offer the truck owner another revenue stream from his asset, and businesses a cheaper electricity alternative in certain circumstances,” he said.

The local greenhouse industry was a natural fit for the study, said Carriveau, based on the amount of work the university does with the sector along with the fact it is both a large consumer and producer of electricity.

The study will be based on assumptions for electric truck capacity and performance because the low number of such vehicles currently on the road, though large electric bus fleets offer operational insights.

How will an electrified trucking industry affect Ontario’s electricity grid? University of Windsor engineering professor Rupp Carriveau is part of a new study on trucks being used to help deliver electricity as well as their products around Ontario. He is shown on campus on Tuesday, July 6, 2021.

How will an electrified trucking industry affect Ontario’s electricity grid? University of Windsor engineering professor Rupp Carriveau is part of a new study on trucks being used to help deliver electricity as well as their products around Ontario. He is shown on campus on Tuesday, July 6, 2021.

Nature Fresh Farms will supply all its data on power use, logistics, utility costs and shipping schedules to determine if switching to an electrified fleet makes sense for the company.

“As an innovative company, we are always thinking, ‘What is next?’, whether its developments in product varieties, technology or sustainability,” said company CEO Peter Quiring. “Green transportation is the next big focus.

“We were given the opportunity to work closely on this project and offer our operations as a case study to see how we can find feasible alternatives, not only for Nature Fresh Farms or even for companies in agriculture, but for every industry that relies on the transportation of their goods.”

Currently, Nature Fresh Farms doesn’t have any electrified trucks. Carriveau said the second phase of the study might actually involve an electric truck in a pilot project.

 

Related News

View more

Electric cars won't solve our pollution problems – Britain needs a total transport rethink

UK Transport Policy Overhaul signals bans on petrol and diesel cars, rail franchising reform, 15-minute cities, and active travel, tackling congestion, emissions, microplastics, urban sprawl, and public health with systemic, multimodal planning.

 

Key Points

A shift toward EVs, rail reform, and 15-minute cities to reduce emissions, congestion, and health risks.

✅ Phase-out of petrol and diesel car sales by 2030

✅ National rail franchising replaced with integrated operations

✅ Urban design: 15-minute cities, cycling, and active travel

 

Could it be true? That this government will bring all sales of petrol and diesel cars to an end by 2030, even as a 2035 EV mandate in Canada is derided by critics? That it will cancel all rail franchises and replace them with a system that might actually work? Could the UK, for the first time since the internal combustion engine was invented, really be contemplating a rational transport policy? Hold your horses.

Before deconstructing it, let’s mark this moment. Both announcements might be a decade or two overdue, but we should bank them as they’re essential steps towards a habitable nation.

We don’t yet know exactly what they mean, as the government has delayed its full transport announcement until later this autumn. But so far, nothing that surrounds these positive proposals makes any sense, and the so-called EV revolution often proves illusory in practice.

If the government has a vision for transport, it appears to be plug and play. We’ll keep our existing transport system, but change the kinds of vehicles and train companies that use it. But when you have a system in which structural failure is embedded, nothing short of structural change will significantly improve it.

A switch to electric cars will reduce pollution, though the benefits depend on the power mix; in Canada, Canada’s grid was 18% fossil-fuelled in 2019, for example. It won’t eliminate it, as a high proportion of the microscopic particles thrown into the air by cars, which are highly damaging to our health, arise from tyres grating on the surface of the road. Tyre wear is also by far the biggest source of microplastics pouring into our rivers and the sea. And when tyres, regardless of the engine that moves them, come to the end of their lives, we still have no means of properly recycling them.

Cars are an environmental hazard long before they leave the showroom. One estimate suggests that the carbon emissions produced in building each one equate to driving it for 150,000km. The rise in electric vehicle sales has created a rush for minerals such as lithium and copper, with devastating impacts on beautiful places. If the aim is greatly to reduce the number of vehicles on the road, and replace those that remain with battery-operated models, alongside EV battery recycling efforts, then they will be part of the solution. But if, as a forecast by the National Grid proposes, the current fleet is replaced by 35m electric cars, a University of Toronto study warns they are not a silver bullet, and we’ll simply create another environmental disaster.

Switching power sources does nothing to address the vast amount of space the car demands, which could otherwise be used for greens, parks, playgrounds and homes. It doesn’t stop cars from carving up community and turning streets into thoroughfares and outdoor life into a mortal hazard. Electric vehicles don’t solve congestion, or the extreme lack of physical activity that contributes to our poor health.

So far, the government seems to have no interest in systemic change. It still plans to spend £27bn on building even more roads, presumably to accommodate all those new electric cars. An analysis by Transport for Quality of Life suggests that this road-building will cancel out 80% of the carbon savings from a switch to electric over the next 12 years. But everywhere, even in the government’s feted garden villages and garden towns, new developments are being built around the car.

Rail policy is just as irrational, even though lessons from large electric bus fleets offer cleaner mass transit options. The construction of HS2, now projected to cost £106bn, has accelerated in the past few months, destroying precious wild places along the way, though its weak business case has almost certainly been destroyed by coronavirus.

If one thing changes permanently as a result of the pandemic, it is likely to be travel. Many people will never return to the office. The great potential of remote technologies, so long untapped, is at last being realised. Having experienced quieter cities with cleaner air, few people wish to return to the filthy past.

Like several of the world’s major cities, our capital is being remodelled in response, though why electric buses haven’t taken over remains a live question. The London mayor – recognising that, while fewer passengers can use public transport, a switch to cars would cause gridlock and lethal pollution – has set aside road space for cycling and walking. Greater Manchester hopes to build 1,800 miles of protected pedestrian and bicycle routes.

Cycling to work is described by some doctors as “the miracle pill”, massively reducing the chances of early death: if you want to save the NHS, get on your bike. But support from central government is weak and contradictory, and involves a fraction of the money it is spending on new roads. The major impediment to a cycling revolution is the danger of being hit by a car.

Even a switch to bicycles (including electric bikes and scooters) is only part of the answer. Fundamentally, this is not a vehicle problem but an urban design problem. Or rather, it is an urban design problem created by our favoured vehicle. Cars have made everything bigger and further away. Paris, under its mayor Anne Hidalgo, is seeking to reverse this trend, by creating a “15-minute city”, in which districts that have been treated by transport planners as mere portals to somewhere else become self-sufficient communities – each with their own shops, parks, schools and workplaces, within a 15-minute walk of everyone’s home.

This, I believe, is the radical shift that all towns and cities need. It would transform our sense of belonging, our community life, our health and our prospects of local employment, while greatly reducing pollution, noise and danger. Transport has always been about much more than transport. The way we travel helps to determine the way we live. And at the moment, locked in our metal boxes, we do not live well.

 

Related News

View more

Is it finally time to buy an electric car?

Electric Vehicles deliver longer range, faster charging, and broader price options, with incentives and lease deals reducing costs; evaluate performance, home charging, road trip needs, and vehicle types like SUVs, pickups, and vans.

 

Key Points

Electric vehicles are battery-powered cars that cut costs, boost performance, and charge at home or at fast stations.

✅ Longer range and faster charging reduce range anxiety

✅ Lower operating costs vs gas: fuel, maintenance, incentives

✅ Home Level 2 charging recommended; plan for road trips

 

Electric cars now drive farther, charge faster and come in nearly every price range. But when GMC began promoting its Hummer EV pickup truck to be released this year, it became even clearer that electric cars are primed to go mainstream for many buyers.

Once the domain of environmentalists, then early adopters, electric vehicles may soon have even truck bros kicking the gasoline habit, though sales are still behind gas cars in many markets.

With many models now available or coming soon — and arriving ahead of schedule for several automakers — including a knockoff of the lovable Volkswagen Microbus — you may be wondering if it’s finally time to buy or lease one.

Here are the essential questions to answer before you do.

(Full disclosure: I’m a convert myself after six years and 70,000 gas-free miles.)


1. Can you afford an electric car?
Electric vehicles tend to be pricy to buy but can be more affordable to lease. Finding federal, state and local government incentives can also reduce sticker shock. And, even if the monthly payment is higher than a comparable gas car, operating costs are lower.

Gas vehicles cost an average of $3,356 per year to fuel, tax and insure, while electric cost just $2,722, according to a study by Self Financial, and Consumer Reports finds EVs save money in the long run too. Find out how much you can save with the Department of Energy calculator.

 

2. How far do you need to drive on a single charge?
Although almost 60 percent of all car trips in America were less than 6 miles in 2017, according to the Department of Energy, the phrase “range anxiety” scared many would-be early adopters.

Teslas became popular in part because they offered 250 miles of range. But the range of many electric vehicles between charges is now over 200 miles; even the modestly priced Chevrolet Bolt can travel 259 miles on a single charge.

Still, electric vehicles have a “road trip problem,” according to Josh Sadlier, director of content strategy for car site Edmunds.com. “If you like road trips, you almost have to have two cars — one for around town and one for longer trips,” he says.

 

3. Where will you charge it?
If you live in an apartment without a charging station, this could be a deal breaker.

The number of public chargers increased by 60 percent worldwide in 2019, according to the International Energy Agency. While these stations — some of which are free — are more available, most electric vehicle owners install a home station for faster charging.

Electric vehicles can be charged by plugging into a common 120-volt household outlet, but it’s slow, and understanding charging costs can help you plan home use. To speed up charging, many electric vehicle owners wind up buying a 240-volt charging station and having an electrician install it for a total cost of $1,200, according to the home remodeling website Fixr.

4. What will you use the car for?
While there are a few luxury electric SUVs on the market, most electric vehicles are smaller sedans or hatchbacks with limited cargo capacity. However, the coming wave of electric cars are more versatile, and many experts expect that within a decade these options will be commonplace, including vans, such as the Microbus, and trucks, such as an electric version of the popular Ford F-150 pickup.

5. Do you enjoy performance?
This is where electric vehicles really shine. According to automotive experts, electric cars beat their gas counterparts in these ways:

Immediate response with great low-end acceleration, particularly in the 0-30 mph range.
Sure-footed handling due to the heavy battery mounted under the car, giving it a low center of gravity.
No “shift shock” from changing gears in a conventional gas car’s transmission.
Little noise except from the wind and tires.

 

Other factors
Once you consider the big questions, here are other reasons to make an electric car your next choice:

Reduced environmental guilt. There is a persistent myth that electric vehicles simply move the emissions from the tailpipe to the power generating station. Yes, producing electricity produces emissions, but many electric vehicle owners charge at night when much of the electricity would otherwise be unused. According to research published by the BBC and evidence that they are better for the planet in many scenarios electric cars reduce emissions by an average of 70 percent, depending on where people live.

Less time refueling. It takes only seconds to plug in at home, and the electric vehicle will recharge while you’re doing other things. No more searching for gas stations and standing by as your tank gulps down gasoline.

No oil changes. Dealers like a constant stream of drivers coming in for oil changes so they can upsell other services. Electric vehicles have fewer moving parts and require fewer trips to the dealership for maintenance.

Carpool lanes and other perks. Check your state regulations to see if an electric vehicle gets you access to the carpool lane, free parking or other special advantages.

Enjoy the technology. Yes, electric vehicles are more expensive, but they also tend to offer top-of-the-line comfort, safety features and technology compared with their gas counterparts.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.