Shanghai Electric Signs Agreement to Launch PEM Hydrogen Production Technology R&D Center, Empowering Green Hydrogen Development in China


Shanghai Electric Logo

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Shanghai Electric PEM Hydrogen R&D Center advances green hydrogen via PEM electrolysis, modular megawatt electrolyzers, zero carbon production, and full-chain industrial applications, accelerating decarbonization, clean energy integration, and hydrogen economy scale-up across China.

 

Key Points

A joint R&D hub advancing PEM electrolysis, modular megawatt systems, and green hydrogen industrialization.

✅ Megawatt modular PEM electrolyzer design and system integration

✅ Zero-carbon hydrogen targeting mobility, chemicals, and power

✅ Full-chain collaboration from R&D to EPC and demonstration projects

 

Shanghai Electric has reached an agreement with the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (the "Dalian Institute") to inaugurate the Proton Exchange Membrane (PEM) Hydrogen Production Technology R&D Center on March 4. The two parties signed a project cooperation agreement on Megawatt Modular and High-Efficiency PEM Hydrogen Production Equipment and System Development, marking an important step forward for Shanghai Electric in the field of hydrogen energy.

As one of China's largest energy equipment manufacturers, Shanghai Electric is at the forefront in the development of green hydrogen as part of China's clean energy drive. During this year's Two Sessions, the 14th Five-Year Plan was actively discussed, in which green hydrogen features prominently, and Shell's 2060 electricity forecast underscores the scale of electrification. With strong government support and widespread industry interest, 2021 is emerging as Year Zero for the hydrogen energy industry.

Currently, Shanghai Electric and the Dalian Institute have reached a preliminary agreement on the industrial development path for new energy power generation and electrolyzed water hydrogen production. As part of the cooperation, both will also continue to enhance the transformational potential of PEM electrolyzed water hydrogen production, accelerate the development of competitive PEM electrolyzed hydrogen products, and promote industrial applications and scenarios, drawing on projects like Japan's large H2 energy system to inform deployment. Moreover, they will continue to carry out in-depth cooperation across the entire hydrogen energy industry chain to accelerate overall industrialization.

Hydrogen energy boasts the biggest potential of all the current forms of clean energy, and the key to its development lies in its production. At present, hydrogen production primarily stems from fossil fuels, industrial by-product hydrogen recovery and purification, and production by water electrolysis. These processes result in significant carbon emissions. The rapid development of PEM water electrolysis equipment worldwide in recent years has enabled current technologies to achieve zero carbon emissions, effectively realizing green, clean hydrogen. This breakthrough will be instrumental in helping China achieve its carbon peak and carbon-neutrality goals.

The market potential for hydrogen production from electrolyzed water is therefore massive. Forecasts indicate that, by 2050, hydrogen energy will account for approximately 10% of China's energy market, with demand reaching 60 million tons and annual output value exceeding RMB 10 trillion. The Hydrogen: Tracking Energy Integration report released by the International Energy Agency in June 2020 notes that the number of global electrolysis hydrogen production projects and installed capacity have both increased significantly, with output skyrocketing from 1 MW in 2010 to more than 25 MW in 2019. Much of the excitement comes from hydrogen's potential to join the ranks of natural gas as an energy resource that plays a pivotal role in international trade, as seen in Germany's call for hydrogen-ready power plants shaping future power systems, with the possibility of even replacing it one day. In PwC's 2020 The Dawn of Green Hydrogen report, the advisory predicts that experimental hydrogen will reach 530 million tons by mid-century.

Shanghai Electric set its focus on hydrogen energy years ago, given its major potential for growth as one of the new energy technologies of the future and, in particular, its ability to power new energy vehicles. In 2016, the Central Research Institute of Shanghai Electric began to invest in R&D for key fuel cell systems and stack technologies. In 2020, Shanghai Electric's independently-developed fuel cell engine, which boasts a power capacity of 66 kW and can start in cold temperature environments of as low as -30°C, passed the inspection test of the National Motor Vehicle Product Quality Inspection Center. It adopts Shanghai Electric's proprietary hydrogen circulation system, which delivers strong power and impressive endurance, with the potential to replace gasoline and diesel engines in commercial vehicles.

As the technology matures, hydrogen has entered a stage of accelerated industrialization, with international moves such as Egypt's hydrogen MoU with Eni signaling broader momentum. Shanghai Electric is leveraging the opportunities to propel its development and the green energy transformation. As part of these efforts, Shanghai Electric established a Hydrogen Energy Division in 2020 to further accelerate the development and bring about a new era of green, clean energy.

As one of the largest energy equipment manufacturing companies in China, Shanghai Electric, with its capability for project development, marketing, investment and financing and engineering, procurement and construction (EPC), continues to accelerate the development and innovation of new energy. The Company has a synergistic foundation and resource advantages across the industrial chain from upstream power generation, including China's nuclear energy development efforts, to downstream chemical metallurgy. The combined elements will accelerate the pace of Shanghai Electric's entry into the field of hydrogen production.

Currently, Shanghai Electric has deployed a number of leading green hydrogen integrated energy industry demonstration projects in Ningdong Base, one of China's four modern coal chemical industry demonstration zones. Among them, the Ningdong Energy Base "source-grid-load-storage-hydrogen" project integrates renewable energy generation, energy storage, hydrogen production from electrolysis, and the entire industrial chain of green chemical/metallurgy, where applications like green steel production in Germany illustrate heavy-industry decarbonization.

In December 2020, Shanghai Electric inked a cooperation agreement to develop a "source-grid-load-storage-hydrogen" energy project in Otog Front Banner, Inner Mongolia. Equipped with large-scale electrochemical energy storage and technologies such as compressed air energy storage options, the project will build a massive new energy power generation base and help the region to achieve efficient cold, heat, electricity, steam and hydrogen energy supply.

Related News

Fact check: Claim on electric car charging efficiency gets some math wrong

EV Charging Coal and Oil Claim: Fact-check of kWh, CO2 emissions, and electricity grid mix shows 70 lb coal or ~8 gallons oil per 66 kWh, with renewables and natural gas reducing lifecycle emissions.

 

Key Points

A viral claim on EV charging overstates oil use; accurate figures depend on grid mix: ~70 lb coal or ~8 gallons oil.

✅ About 70 lb coal or ~8 gal oil per 66 kWh, incl. conversion losses

✅ EVs average ~100 g CO2 per mile vs ~280 g for 30 mpg cars

✅ Grid mix includes renewables, nuclear, natural gas; oil use is low

 

The claim: Average electric car requires equivalent of 85 pounds of coal or six barrels of oil for a single charge

The Biden administration has pledged to work towards decarbonizing the U.S. electricity grid by 2035. And the recently passed $1.2 trillion infrastructure bill provides funding for more electric vehicle (EV) charging infrastructure, including EV charging networks across the country under current plans.

However, a claim that electric cars require an inordinate amount of oil or coal energy to charge has appeared on social media, even as U.S. plug-ins traveled 19 billion miles on electricity in 2021.

“An average electric car takes 66 KWH To charge. It takes 85 pounds of coal or six barrels of oil to make 66 KWH,” read a Dec 1 Facebook post that was shared nearly 500 times in a week. “Makes absolutely no sense.” 

The post included a stock image of an electric car charging, though actual charging costs depend on local rates and vehicle efficiency.

This claim is in the ballpark for the coal comparison, but the math on the oil usage is wildly inaccurate.

It would take roughly 70 pounds of coal to produce the energy required to charge a 66 kWh electric car battery, said Ian Miller, a research associate at the MIT Energy Initiative. That's about 15 pounds less than is claimed in the post.

The oil number is much farther off.

While the post claims that it takes six barrels of oil to charge a 66 kWh battery, Miller said the amount is closer to 8 gallons  — the equivalent of 20% of one barrel of oil.

He said both of his estimates account for energy lost when fossil fuels are converted into electricity. 

"I think the most important question is, 'How do EVs and gas cars compare on emissions per distance?'," said Miller. "In the US, using average electricity, EVs produce roughly 100 grams of CO2 per mile."

He said this is more than 60% less than a typical gasoline-powered car that gets 30 mpg, aligning with analyses that EVs are greener in all 50 states today according to recent studies. Such a vehicle produces roughly 280 grams of CO2 per mile.

Lifecycle analyses also show that the CO2 from making an EV battery is not equivalent to driving a gasoline car for years, which often counters common misconceptions.

"If you switch to an electric vehicle, even if you're using fossil fuels (to charge), it's just simply not true that you'll be using more fossil fuel," said Jessika Trancik, a professor at the Massachusetts Institute of Technology who studies the environmental impact of energy systems.  

However, she emphasized electric cars in the U.S. are not typically charged using only energy from coal or oil, and that electricity grids can handle EVs with proper management.

The U.S. electricity grid relies on a diversity of energy sources, of which oil and coal together make up about 20 percent, according to a DOE spokesperson. This amount is likely to continue to drop as renewable energy proliferates in the U.S., even as some warn that state power grids will be challenged by rapid EV adoption. 

"Switching to an electric vehicle means that you can use other sources, including less carbon-intensive natural gas, and even less carbon-intensive electricity sources like nuclear, solar and wind energy, which also carry with them health benefits in the form of reduced air pollutant emissions," said Trancik. 

Our rating: Partly false
Based on our research, we rate PARTLY FALSE the claim that the average electric car requires the equivalent of 85 pounds of coal or six barrels of oil for a single charge. The claim is in the ballpark on coal consumption, as an MIT researcher estimates that around 70 pounds. But the oil usage is only about 8 gallons, which is 20% of one barrel. And the actual sources of energy for an electric car vary depending on the energy mix in the local electric grid. 

 

Related News

View more

Canada and British Columbia invest in green energy solutions

British Columbia Green Infrastructure Funding expands CleanBC Communities Fund projects, from EV charging stations to sewage heat recovery, delivering low-carbon heat in Vancouver and supporting Indigenous communities and COVID-19 recovery through the Green Infrastructure Stream.

 

Key Points

A joint federal-provincial program backing CleanBC to fund EV chargers, sewage heat recovery, and low-carbon heat.

✅ Funds EV charging across Vancouver Island and northern B.C.

✅ Expands sewage heat recovery via Vancouver's NEU

✅ Joint federal, provincial, local, and Indigenous partners

 

The governments of Canada and British Columbia are investing in infrastructure to get projects under way that meet people's needs, address the effects of the COVID-19 pandemic, and help communities restart their economies.  

Strategic investments in green infrastructure are key to creating clean healthy communities, making life more affordable, and building a clean electricity future for Canada.

Today, the Honourable Jonathan Wilkinson, Minister of Environment and Climate Change and Member of Parliament for North Vancouver, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities, and the Honourable George Heyman, B.C. Minister of Environment and Climate Change Strategy, announced funding for 11 projects, alongside initiatives like the province's hydrogen project, to help B.C. communities save energy and reduce pollution.  

In Vancouver, the Sewage Heat Recovery Expansion Project will increase the capacity of the Neighbourhood Energy Utility (NEU) to provide buildings in the False Creek area with low-carbon heat and hot water. The NEU recycles waste heat and uses a mix of renewable and conventional natural gas to reduce harmful emissions.

Funding is also going towards expanding the network of Level-2 electric vehicle (EV) charging stations across the province. More than 80 new stations will be installed in communities across mid-Vancouver Island, as well as northern and central B.C., making clean transportation options, supported by incentives for zero-emission vehicles, more viable for more people.

These, along with the other projects announced today, will create jobs and strengthen local economies now while promoting sustainable growth and residents' long-term health and well-being.

The Government of Canada is investing more than $28.5 million in these projects through the Green Infrastructure Stream (GIS) of the Investing in Canada plan, and local and Indigenous communities are contributing more than $13 million. The Government of British Columbia is contributing nearly $18 million through the CleanBC Communities Fund, part of the federal Investing in Canada plan's Green Infrastructure Stream, which also supports rebates for home and workplace charging initiatives.

Quotes

"Expanding electric vehicle charging stations across Vancouver Island will make clean transportation more viable for more people. Encouraging green energy solutions like this is essential to building strong resilient communities. Canada's Infrastructure plan invests in thousands of projects, creates jobs across the country, and builds stronger communities."

The Honourable Jonathan Wilkinson, Minister of Environment and Climate Change and Member of Parliament for North Vancouver, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities

"This investment through the Green Infrastructure Stream is a great example of how federal partnerships with all levels of government can ensure a sustainable future for generations. Amidst COVID-19, we can rebuild better with a green recovery."

Hedy Fry, Member of Parliament for Vancouver Centre

"People deserve access to clean air, clean energy and clean economic opportunities and by investing in new clean infrastructure projects, we will reduce pollution, build better buildings, improve transportation options with EV charger rebates and make life more affordable for people. By working together with the City of Vancouver and other B.C. communities, along with the federal government, we're helping build back a stronger, better B.C. for everyone following the impacts of COVID-19 through our CleanBC plan."

The Honourable George Heyman, Minister of Environment and Climate Change Strategy Government

"This is an important investment when it comes to addressing the climate emergency our city is facing. Nearly 60 per cent of carbon pollution created in Vancouver comes from burning natural gas to heat our buildings and provide hot water. This investment from our provincial and federal partners will help us greatly expand the Neighbourhood Energy Utility to reduce our carbon footprint even further."

His Worship, Kennedy Stewart, Mayor of Vancouver

Quick facts

Through the Investing in Canada Plan, the Government of Canada is investing more than $180 billion over 12 years in public transit projects, green infrastructure, social infrastructure, trade and transportation routes, and Canada's rural and northern communities.
The Government of Canada has invested $4.2 billion in 525 infrastructure projects across British Columbia under the Investing in Canada plan.
To support Canadians and communities during the COVID-19 pandemic, a new stream has been added to the over $33-billion Investing in Canada Infrastructure Program to help fund pandemic-resilient infrastructure. Existing program streams have also been adapted to include more eligible project categories.
The new Canada Healthy Communities Initiative will provide up to $31 million in existing federal funding to support communities as they deploy innovative ways to adapt spaces and services to respond to immediate and ongoing needs arising from COVID-19 over the next two years.
The 11 projects are part of the first intake of the CleanBC Communities Fund, which committed more than $63 million in joint federal-provincial funding. Additional projects from the first intake will be announced soon.
The second intake for the CleanBC Communities Fund is now open for applications from local governments, Indigenous groups, not-for-profits and for-profit organizations in B.C.

 

Related News

View more

Zero-emissions electricity by 2035 is possible

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

View more

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

France's new EV incentive rules toughen market for Chinese cars

France EV Incentive Rules prioritize EU-made electric vehicles, tying subsidies to manufacturing emissions and carbon footprint, making Stellantis, Renault, and Tesla Model Y eligible while excluding many China-built models under a new eligibility list.

 

Key Points

Links EV subsidies to manufacturing emissions, favoring EU-made models and restricting many China-built cars.

✅ Subsidies tied to lifecycle manufacturing emissions.

✅ EU production favored; many China-built EVs excluded.

✅ Eligible: Stellantis, Renault, Tesla Model Y; not Model 3.

 

France's revamped new EV rules on consumer cash incentives for electric car purchases favour vehicles made in France and Europe over models manufactured in China, a government list of eligible car types published recently has showed.

Some 65% of electric cars sold in France will be eligible for the scheme, which from Friday will include new criteria covering the amount of carbon emitted in the manufacturing of an electric vehicle (EV).

The list of eligible models includes 24 produced by Franco-Italian group Stellantis (STLAM.MI) and five by French carmaker Renault (RENA.PA). Elon Musk's Tesla (TSLA.O) Model Y will be eligible but not its Model 3.

Electric vehicle brand MG Motors, owned by China's SAIC, said it expects the new rules to weigh on the French EV market, despite the global surge in EV sales seen in recent years.

"There are cars that will entirely lose their competitiveness", an MG spokesperson told Reuters, adding that the brand had decided not to apply for the bonus scheme for its MG4 model because it was "designed to exclude us".

French Finance Minister Bruno Le Maire hailed what he called the new rules' incentive for automakers to reduce their carbon footprint.

"We will no longer be subsidising car production that emits too much CO2," he said in a statement.

President Emmanuel Macron's government has wanted to make French and European-made EVs more affordable for domestic consumers relative to cheaper vehicles produced in China, amid a record EV market share in the country.

The average retail price of an EV in Europe, even as the EU EV share grew during lockdown months, was more than 65,000 euros ($71,000) in the first half of 2023, compared with just over 31,000 euros in China, according to research by Jato Dynamics.

The French government already offered buyers a cash incentive of between 5,000 and 7,000 euros to get more electric cars on the road, at a total cost of 1 billion euros ($1.1 billion) per year.

However, in the absence of cheap European-made EVs, a third of all incentives are going to consumers buying EVs made in China, French finance ministry officials say. The trend has helped spur a surge in imports and a growing competitive gap with domestic producers.

China's auto industry relies heavily on coal-generated electricity, meaning many Chinese-made EVs will henceforth not qualify.

The Ademe agency overseeing the process studied the eligibility of almost 500 EV models and their variants to include in the scheme.

Dacia, the low-cost Renault brand, saw its Spring model imported from China excluded from the list.

Tesla's Model 3 is made in China. The Model Y, which is larger and more expensive, is made mainly in Berlin and was the top selling EV in France over the first 11 months of the year, amid forecasts that EVs could dominate within a decade in many markets.

 

Related News

View more

Nova Scotia EV Charging Infrastructure Faces Urgent Upgrade Needs

Nova Scotia EV charging infrastructure remains limited, with only 14 fast chargers across the province. As electric vehicle adoption grows, urgent upgrades are needed to support long-distance travel and public charging convenience.

 

Nova Scotia EV charging infrastructure

Nova Scotia EV charging infrastructure refers to the province’s public and private network of stations that power electric vehicles (EVs).

✅ Limited availability of fast-charging stations for long-distance travel

✅ Growing demand as EV adoption increases province-wide

✅ Key factor in reducing range anxiety and promoting clean transportation

 

Nova Scotia’s EV charging network is struggling to keep pace with a growing fleet of electric vehicles. As of today, only 14 public DC fast chargers are operational across the province, a significant shortfall for drivers navigating long distances. This creates not only logistical hurdles but also growing consumer hesitation — particularly as EV sales continue to surge across Canada.

In response, the Canadian government has announced a $1.1 million (US$0.88 million) investment into a new smart-charging pilot program. Led by Nova Scotia Power, this initiative will explore how electric vehicles can better integrate with the local grid using a centralized, utility-managed control system. Up to 200 participants are expected to join the program, which aims to test both smart charging and vehicle-to-grid (V2G) technologies.

These systems allow EVs to act as distributed energy storage, helping to manage electricity demand and improve renewable energy integration — a strategy already being tested in other jurisdictions. For example, Ontario’s charging network expansion has provided a model for scaling fast-charging accessibility. Similarly, British Columbia has recently accelerated its rollout of faster charging stations to support mass EV adoption.

The Nova Scotia pilot will assess local EV charging behaviors, including drivers’ willingness to participate in V2G services based on incentives, driving patterns, and access to clean power. “We know customers want clean, affordable, reliable energy for their homes and businesses,” says Dave Landrigan, VP Commercial at Nova Scotia Power. “Through our electric vehicle smart charging pilot, we will test these technologies to learn how they can benefit all customers, creating clean, smarter options without changing a person’s driving habits.”

The funding comes through Natural Resources Canada’s Electric Vehicle Infrastructure Demonstration program, which supports the development of cutting-edge charging and hydrogen refueling solutions across the country. To date, the federal government has invested over $600 million to support EV affordability and infrastructure deployment, with a particular focus on a coast-to-coast fast-charging network.

At the same time, other provinces are stepping up their leadership roles. In Québec, Hydro-Québec is expanding its EV ecosystem through a strategic partnership with Propulsion Québec, a key industry cluster for sustainable mobility. Their focus includes reliable public charging, clean grid integration, and stakeholder collaboration — all essential factors for scalable transportation electrification.

“In Québec, we are fortunate to be able to make transportation electrification possible by easily replacing gas imported from outside with our clean energy,” said France Lampron, Director – Transportation Electrification at Hydro-Québec. “To do this, we need to develop synergies between various stakeholders in the sustainable mobility sector.”

While Nova Scotia’s current fast-charging availability is limited, the province now has an opportunity to follow a similar trajectory. With funding in place, stakeholder alignment, and public interest growing, the expansion of Nova Scotia EV charging infrastructure could soon match the pace of rising EV demand. As governments and utilities nationwide focus on electrification, Nova Scotia’s pilot may lay the groundwork for a more connected, cleaner transportation future.

 

Related News

 

 

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified