Shanghai Electric Signs Agreement to Launch PEM Hydrogen Production Technology R&D Center, Empowering Green Hydrogen Development in China


Shanghai Electric Logo

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Shanghai Electric PEM Hydrogen R&D Center advances green hydrogen via PEM electrolysis, modular megawatt electrolyzers, zero carbon production, and full-chain industrial applications, accelerating decarbonization, clean energy integration, and hydrogen economy scale-up across China.

 

Key Points

A joint R&D hub advancing PEM electrolysis, modular megawatt systems, and green hydrogen industrialization.

✅ Megawatt modular PEM electrolyzer design and system integration

✅ Zero-carbon hydrogen targeting mobility, chemicals, and power

✅ Full-chain collaboration from R&D to EPC and demonstration projects

 

Shanghai Electric has reached an agreement with the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (the "Dalian Institute") to inaugurate the Proton Exchange Membrane (PEM) Hydrogen Production Technology R&D Center on March 4. The two parties signed a project cooperation agreement on Megawatt Modular and High-Efficiency PEM Hydrogen Production Equipment and System Development, marking an important step forward for Shanghai Electric in the field of hydrogen energy.

As one of China's largest energy equipment manufacturers, Shanghai Electric is at the forefront in the development of green hydrogen as part of China's clean energy drive. During this year's Two Sessions, the 14th Five-Year Plan was actively discussed, in which green hydrogen features prominently, and Shell's 2060 electricity forecast underscores the scale of electrification. With strong government support and widespread industry interest, 2021 is emerging as Year Zero for the hydrogen energy industry.

Currently, Shanghai Electric and the Dalian Institute have reached a preliminary agreement on the industrial development path for new energy power generation and electrolyzed water hydrogen production. As part of the cooperation, both will also continue to enhance the transformational potential of PEM electrolyzed water hydrogen production, accelerate the development of competitive PEM electrolyzed hydrogen products, and promote industrial applications and scenarios, drawing on projects like Japan's large H2 energy system to inform deployment. Moreover, they will continue to carry out in-depth cooperation across the entire hydrogen energy industry chain to accelerate overall industrialization.

Hydrogen energy boasts the biggest potential of all the current forms of clean energy, and the key to its development lies in its production. At present, hydrogen production primarily stems from fossil fuels, industrial by-product hydrogen recovery and purification, and production by water electrolysis. These processes result in significant carbon emissions. The rapid development of PEM water electrolysis equipment worldwide in recent years has enabled current technologies to achieve zero carbon emissions, effectively realizing green, clean hydrogen. This breakthrough will be instrumental in helping China achieve its carbon peak and carbon-neutrality goals.

The market potential for hydrogen production from electrolyzed water is therefore massive. Forecasts indicate that, by 2050, hydrogen energy will account for approximately 10% of China's energy market, with demand reaching 60 million tons and annual output value exceeding RMB 10 trillion. The Hydrogen: Tracking Energy Integration report released by the International Energy Agency in June 2020 notes that the number of global electrolysis hydrogen production projects and installed capacity have both increased significantly, with output skyrocketing from 1 MW in 2010 to more than 25 MW in 2019. Much of the excitement comes from hydrogen's potential to join the ranks of natural gas as an energy resource that plays a pivotal role in international trade, as seen in Germany's call for hydrogen-ready power plants shaping future power systems, with the possibility of even replacing it one day. In PwC's 2020 The Dawn of Green Hydrogen report, the advisory predicts that experimental hydrogen will reach 530 million tons by mid-century.

Shanghai Electric set its focus on hydrogen energy years ago, given its major potential for growth as one of the new energy technologies of the future and, in particular, its ability to power new energy vehicles. In 2016, the Central Research Institute of Shanghai Electric began to invest in R&D for key fuel cell systems and stack technologies. In 2020, Shanghai Electric's independently-developed fuel cell engine, which boasts a power capacity of 66 kW and can start in cold temperature environments of as low as -30°C, passed the inspection test of the National Motor Vehicle Product Quality Inspection Center. It adopts Shanghai Electric's proprietary hydrogen circulation system, which delivers strong power and impressive endurance, with the potential to replace gasoline and diesel engines in commercial vehicles.

As the technology matures, hydrogen has entered a stage of accelerated industrialization, with international moves such as Egypt's hydrogen MoU with Eni signaling broader momentum. Shanghai Electric is leveraging the opportunities to propel its development and the green energy transformation. As part of these efforts, Shanghai Electric established a Hydrogen Energy Division in 2020 to further accelerate the development and bring about a new era of green, clean energy.

As one of the largest energy equipment manufacturing companies in China, Shanghai Electric, with its capability for project development, marketing, investment and financing and engineering, procurement and construction (EPC), continues to accelerate the development and innovation of new energy. The Company has a synergistic foundation and resource advantages across the industrial chain from upstream power generation, including China's nuclear energy development efforts, to downstream chemical metallurgy. The combined elements will accelerate the pace of Shanghai Electric's entry into the field of hydrogen production.

Currently, Shanghai Electric has deployed a number of leading green hydrogen integrated energy industry demonstration projects in Ningdong Base, one of China's four modern coal chemical industry demonstration zones. Among them, the Ningdong Energy Base "source-grid-load-storage-hydrogen" project integrates renewable energy generation, energy storage, hydrogen production from electrolysis, and the entire industrial chain of green chemical/metallurgy, where applications like green steel production in Germany illustrate heavy-industry decarbonization.

In December 2020, Shanghai Electric inked a cooperation agreement to develop a "source-grid-load-storage-hydrogen" energy project in Otog Front Banner, Inner Mongolia. Equipped with large-scale electrochemical energy storage and technologies such as compressed air energy storage options, the project will build a massive new energy power generation base and help the region to achieve efficient cold, heat, electricity, steam and hydrogen energy supply.

Related News

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

The government's 2035 electric vehicle mandate is delusional

Canada 2035 Zero-Emission Vehicle Mandate sets EV sales targets, raising concerns over affordability, battery materials like lithium and copper, charging infrastructure, grid capacity, renewable energy mix, and policy impacts across provinces.

 

Key Points

Mandate makes all new light-duty vehicles zero-emission by 2035, affecting costs, charging, and electric grid planning.

✅ 100% ZEV sales target for cars, SUVs, light trucks by 2035

✅ Cost pressures from lithium, copper, nickel; EVs remain pricey

✅ Grid, charging build-out needed; impacts vary by provincial mix

 

Whether or not you want one, can afford one or think they will do essentially nothing to stop global warming, electric vehicles are coming to Canada en masse. This week, the Canadian government set 2035 as the “mandatory target” for the sale of zero-emission SUVs and light-duty trucks as part of ambitious EV goals announced by Ottawa.

That means the sale of gasoline and diesel cars has to stop by then. Transport Minister Omar Alghabra called the target “a must.” The previous target was 2040.

It is a highly aspirational plan that verges on the delusional according to skeptics of an EV revolution who argue its scale is overstated, even if it earns Canada – a perennial laggard on the emission-reduction front – a few points at climate conferences. Herewith, a few reasons why the plan may be unworkable, unfair or less green than advertised.

Liberals say by 2035 all new cars, light-duty trucks sold in Canada will be electric, as Ottawa develops EV sales regulations to implement the mandate.

Parkland to roll out electric-vehicle charging network in B.C. and Alberta

Sticker shock: There is a reason why EVs remain niche products in almost every market in the world (the notable exception is in wealthy Norway): They are bloody expensive and often in short supply in many markets. Unless EV prices drop dramatically in the next decade, Ottawa’s announcement will price the poor out of the car market. Transportation costs are a big issue with the unrich. The 2018 gilets jaunes mass protests in France were triggered by rising fuel costs.

While some EVs are getting cheaper, even the least expensive ones are about double the price of a comparable product with an internal combustion engine. Most EVs are luxury items. The market leader in Canada and the United States is Tesla. In Canada the cheapest Tesla, the Model 3 (“standard range plus” version), costs $49,000 before adding options and subtracting any government purchase incentives. A high-end Model S can set you back $170,000.

To be sure, prices will come down as production volumes increase. But the price decline might be slow for the simple reason that the cost of all the materials needed to make an EV – copper, cobalt, lithium, nickel among them – is climbing sharply and may keep climbing as production increases, straining supply lines.

Lithium prices have doubled since November. Copper has almost doubled in the past year. An EV contains five times more copper than a regular car. Glencore, one of the biggest mining companies, estimated that copper production needs to increase by a million tonnes a year until 2050 to meet the rising demand for EVs and wind turbines, a daunting task given the dearth of new mining projects.

Will EVs be as cheap as gas cars in a decade or so? Impossible to say, but given the recent price trends for raw materials, probably not.

Not so green: There is no such thing as a zero-emission vehicle, even if that’s the label used by governments to describe battery-powered cars. So think twice if you are buying an EV purely to paint yourself green, as research finds they are not a silver bullet for climate change.

In regions in Canada and elsewhere in the world that produce a lot of electricity from fossil-fuel plants, driving an EV merely shifts the output of greenhouse gases and pollutants from the vehicle itself to the generating plant (according to recent estimates, about 18% of Canada’s electricity comes from coal, natural gas and oil; in the United States, 60 per cent).

An EV might make sense in Quebec, where almost all the electricity comes from renewable sources and policymakers push EV dominance across the market. An EV makes little sense in Saskatchewan, where only 17 per cent comes from renewables – the rest from fossil fuels. In Alberta, only 8 per cent comes from renewables.

The EV supply chain is also energy-intensive. And speaking of the environment, recycling or disposing of millions of toxic car batteries is bound to be a grubby process.

Where’s the juice?: Since the roofs of most homes in Canada and other parts of the world are not covered in solar panels, plugging in an EV to recharge the battery means plugging into the electrical grid. What if millions of cars get plugged in at once on a hot day, when everyone is running air conditioners?

The next few decades could emerge as an epic energy battle between power-hungry air conditioners, whose demand is rising as summer temperatures rise, and EVs. The strain of millions of AC units running at once in the summer of 2020 during California’s run of record-high temperatures pushed the state into rolling blackouts. A few days ago, Alberta’s electricity system operator asked Albertans not to plug in their EVs because air conditioner use was straining the electricity supply.

According to the MIT Technology Review, rising incomes, populations and temperatures will triple the number of air conditioners used worldwide, to six billion, by mid-century. How will any warm country have enough power to recharge EVs and run air conditioners at the same time? The Canadian government didn’t say in its news release on the 2035 EV mandate. Will it fund the construction of new fleets of power stations?

The wrong government policy: The government’s announcement made it clear that widespread EV use – more cars – is central to its climate policy. Why not fewer cars and more public transportation? Cities don’t need more cars, no matter the propulsion system. They need electrified buses, subways and trains powered by renewable energy. But the idea of making cities more livable while reducing emissions is apparently an alien concept to this government.

 

Related News

View more

New investment opportunities open up as Lithuania seeks energy independence

Lithuania Wind Power Investment accelerates renewable energy expansion with utility-scale wind farms, solar power synergies, streamlined permits, and grid integration to cut imports, boost energy independence, and align with EU climate policy.

 

Key Points

Lithuania Wind Power Investment funds wind projects to raise capacity, cut imports, and secure energy independence.

✅ 700-1000 MW planned across three wind farms over 3 years

✅ Simplified permitting and faster grid connections under new policy

✅ Supports EU climate goals and Lithuania's 2030 energy independence

 

The current unstable geopolitical situation is accelerating the European Union countries' investment in renewable energy, including European wind power investments across the region. After Russia launched war against Ukraine, the EU countries began to actively address the issues of energy dependence.

For example, Lithuania, a country by the Baltic Sea, imports about two-thirds of its energy from foreign countries to meet its needs, while Germany's solar boost underscores the region's shift. Following the start of the Russian invasion in Ukraine, the Lithuanian Government urgently submitted amendments to the documents regulating the establishment of wind and solar power plants to the Parliament for consideration.

One of Lithuania's priority goals is to accelerate the construction and development of renewable energy parks so that the country will achieve full energy independence in the next eight years, by 2030, mirroring Ireland's green electricity target in the near term. Lithuania is able to produce the amount of electricity that meets the country's needs.

Ramūnas Karbauskis, the owner of Agrokoncernas Group, one of the largest companies operating in the agricultural sector in the Baltic States, has no doubt that now is the best time to invest in the development of wind power plants in Lithuania. The group plans to build three wind farms over the next three years to generate a total of about 700-1000 MW of energy, and comparable projects like Enel's 450 MW wind farm illustrate the scale achievable. With such capacity, more than half a million residential buildings can be supplied with electricity.

According to Alina Adomaitytė, Deputy General Director of Agrokoncernas Group, the company plans to invest 1-1.4 billion Euros in wind power plants in three different regions of Lithuania.

"Lithuania is changing its policy by simplifying the procedure for the construction and development of wind and solar parks. This means that their construction time will be significantly shorter, unlike markets facing renewables backlogs causing delays. At present, the technologies have improved so much that such projects pay off quickly in market conditions," explains Adomaitytė.

Agrokoncernas Group plans to build wind farms on its own lands. This has the advantage of allowing more flexibility in planning construction and meeting the requirements for such parks.

"Lithuania is a very promising country for wind parks. It is a land of plains, and the Baltic Sea provides constant and sufficient wind power, and lessons from UK offshore wind show the potential for coastal regions. So far, there are not many such parks in Lithuania, and need for them is very high in order to achieve the goals of national energy independence," says the owner of the group.

According to Adomaitytė, until now the Agrokoncernas Group companies have specialized in agriculture, but now is a particularly favorable time to enter new business areas.

"We are open to investors. One of the strategic goals of our group is to contribute to the green energy revolution in Lithuania, which is becoming a strategic goal of the entire European Union, as seen in rising solar adoption in Poland across the region."

In addition to wind farms, Agrokoncernas Group is planning the construction of the most modern deep grain processing plant in Europe. This project is managed by Agrokoncernas GDP, a subsidiary of the group. The deep grain processing plant in Lithuania is to be built by 2026. It will operate on the principle of circular production, meaning that the plant will be environmentally friendly and there will be no waste in the production process itself.

 

Related News

View more

US Crosses the Electric-Car Tipping Point for Mass Adoption

EV Tipping Point signals the S-curve shift to mainstream adoption as new car sales pass 5%, with the US joining Europe and China; charging infrastructure, costs, and supply align to accelerate electric car market penetration.

 

Key Points

The EV tipping point is when fully electric cars reach about 5% of new sales, triggering rapid S-curve adoption.

✅ 5% of new car sales marks start of mass adoption

✅ Follows S-curve seen in phones, LEDs, internet

✅ Barriers ease: charging, cost declines, model availability

 

Many people of a certain age can recall the first time they held a smartphone. The devices were weird and expensive and novel enough to draw a crowd at parties. Then, less than a decade later, it became unusual not to own one.

That same society-altering shift is happening now with electric vehicles, according to a Bloomberg analysis of adoption rates around the world. The US is the latest country to pass what’s become a critical EV tipping point: an EV inflection point when 5% of new car sales are powered only by electricity. This threshold signals the start of mass EV adoption, the period when technological preferences rapidly flip, according to the analysis.

For the past six months, the US joined Europe and China — collectively the three largest car markets — in moving beyond the 5% tipping point, as recent U.S. EV sales indicate. If the US follows the trend established by 18 countries that came before it, a quarter of new car sales could be electric by the end of 2025. That would be a year or two ahead of most major forecasts.

How Fast Is the Switch to Electric Cars?
19 countries have reached the 5% tipping point, and an earlier-than-expected shift is underway—then everything changes

Why is 5% so important? 
Most successful new technologies — electricity, televisions, mobile phones, the internet, even LED lightbulbs — follow an S-shaped adoption curve, with EVs going from zero to 2 million in five years according to market data. Sales move at a crawl in the early-adopter phase, then surprisingly quickly once things go mainstream. (The top of the S curve represents the last holdouts who refuse to give up their old flip phones.)

Electric cars inline tout
In the case of electric vehicles, 5% seems to be the point when early adopters are overtaken by mainstream demand. Before then, sales tend to be slow and unpredictable, and still behind gas cars in most markets. Afterward, rapidly accelerating demand ensues.

It makes sense that countries around the world would follow similar patterns of EV adoption. Most impediments are universal: there aren’t enough public chargers, grid capacity concerns linger, the cars are expensive and in limited supply, buyers don’t know much about them. Once the road has been paved for the first 5%, the masses soon follow.

Thus the adoption curve followed by South Korea starting in 2021 ends up looking a lot like the one taken by China in 2018, which is similar to Norway after its first 5% quarter in 2013. The next major car markets approaching the tipping point this year include Canada, Australia, and Spain, suggesting that within a decade many drivers could be in EVs worldwide. 

 

Related News

View more

Scrapping coal-fired electricity costly, ineffective, says report

Canada Coal Phase-Out Costs highlight Fraser Institute findings on renewable energy, wind and solar integration, grid reliability, natural gas backup, GDP impacts, greenhouse gas emissions reductions, nuclear alternatives, and transmission upgrades across provincial electricity systems.

 

Key Points

Costs to replace coal with renewables, impacting taxpayers and ratepayers while ensuring grid reliability.

✅ Fraser Institute estimates $16.8B-$33.7B annually for renewables.

✅ Emissions cut from coal phase-out estimated at only 7.4% nationally.

✅ Natural gas backup and grid upgrades drive major cost increases.

 

Replacing coal-fired electricity with renewable energy will cost Canadian taxpayers and hydro ratepayers up to $33.7 billion annually, with only minor reductions in global greenhouse gas emissions linked to climate change, according to a new study by the Fraser Institute.

The report, Canadian Climate Policy and its Implications for Electricity Grids by University of Victoria economics professor G. Cornelis van Kooten, said replacing coal-fired electricity with wind and solar power would only cut Canada’s annual emissions by 7.4%,

Prime Minister Justin Trudeau’s has promised a reduction of 40%-45% compared to Canada’s 2005 emissions by 2030, and progress toward the 2035 clean electricity goals remains uncertain.

The study says emission cuts would be relatively small because coal accounted for only 9.2% of Canada’s electricity generation in 2017. (According to Natural Resources Canada, that number is lower today at 7.4%).

In 2019, the last year for which federal data are available, Canada’s electricity sector generated 8.4% of emissions nationally — 61.1 million tonnes out of 730 million tonnes.

“Despite what advocates, claim, renewable power — including wind and solar — isn’t free and, as Europe's power crisis lessons suggest, comes with only modest benefits to the environment,” van Kooten said.

“Policy makers should be realistic about the costs of reducing greenhouse gas emissions in Canada, which accounts for less than 2% of emissions worldwide.”

The report says the increased costs of operating the electricity grid across Canada — between $16.8 billion and $33.7 billion annually or 1% to 2% of Canada’s annual GDP — would result from having to retain natural gas, consistent with net-zero regulations allowing some natural gas in limited cases, as a backup to intermittent wind and solar power, which cannot provide baseload power to the electricity grid on demand.

Van Kooten said his cost estimates are conservative because his study “could not account for scenarios where the scale of intermittency turned out worse than indicated in our dataset … the costs associated with the value of land in other alternative uses, the need for added transmission lines, as analyses of greening Ontario's grid costs indicate, environmental and human health costs and the life-cycle costs of using intermittent renewable sources of energy, including costs related to the disposal of hazardous wastes from solar panels and wind turbines.”

If nuclear power was used to replace coal-fired electricity, the study says, costs would drop by half — $8.3 billion to $16.7 billion annually — but that’s unrealistic because of the time it takes to build nuclear plants and public opposition to them.

The study says to achieve the federal government’s target of reducing emissions to 40% to 45% below 2005 levels by 2030 and net-zero emissions by 2050, would require building 30 nuclear power plants before 2030, highlighting Canada’s looming power problem as described by analysts — meaning one plant of 1,000-megawatt capacity coming online every four months between now and 2030.

Alternatively, it would take 28,340 wind turbines, each with 2.5-megawatts capacity, or 1,050 turbines being built every four months, plus the costs of upgrading transmission infrastructure.

Van Kooten said he based his calculations on Alberta, which generates 39.8% of its electricity from coal and the cost of Ontario eliminating coal-fired electricity, even as Ontario electricity getting dirtier in coming years, which generated 25% of its electricity, between 2003 and 2014, replacing it with a combination of natural gas, nuclear and wind and solar power.

According to Natural Resources Canada, Nova Scotia generates 49.9% of its electricity from coal, Saskatchewan 42.9%, and New Brunswick 17.2%.

In 2018, the Trudeau government announced plans to phase-out traditional coal-fired electricity by 2030, though the Stop the Shock campaign seeks to bring back coal power in some regions. 

Canada and the U.K. created the “Powering Past Coal Alliance” in 2017, aimed at getting other countries to phase out the use of coal to generate electricity.

 

Related News

View more

More Electricity From Wind & Solar Than Nuclear For 1st Time In USA

U.S. Renewable Energy Share 2022 leads electricity generation trends, as wind and solar outpace nuclear and coal, per EIA data, with hydropower gains and grid growth highlighting rapid, sustainable capacity expansion nationwide.

 

Key Points

Renewables supplied over 25% of U.S. electricity in 2022, as wind and solar outpaced nuclear with double-digit growth.

✅ Renewables provided 25.52% of U.S. power Jan-Apr 2022.

✅ Wind and solar beat nuclear by 17.96% in April.

✅ Solar up 28.93%, wind up 24.25%; hydropower up 9.99%.

 

During the first four months of 2022, electrical generation by renewable energy sources accounted for over 25% of the nation’s electricity, projected to soon be about one-fourth as growth continues. In April alone, renewables hit a record April share of 29.3% — an all-time high.

And for the first time ever, the combination of just wind power and solar produce more electricity in April than the nation’s nuclear power plants — 17.96% more.

This is according to a SUN DAY Campaign analysis of data in EIA’s Electric Power Monthly report. The report also reveals that during the first third of this year, solar (including residential) generation climbed by 28.93%, while wind increased by 24.25%. Combined, solar and wind grew by 25.46% and accounted for more than one-sixth (16.67%) of U.S. electrical generation (wind: 12.24%, solar: 4.43%).

Hydropower also increased by 9.99% during the first four months of 2022. However, wind alone provided 70.89% more electricity than did hydropower. Together with contributions from geothermal and biomass, the mix of renewable energy sources expanded by 18.49%, and building on its second-most U.S. source in 2020 status helped underscore momentum as it provided about 25.5% of U.S. electricity during the first four months of 2022.

For the first third of the year, renewables surpassed coal and nuclear power by 26.13% and 37.80% respectively. In fact, electrical generation by coal declined by 3.94% compared to the same period in 2021 while nuclear dropped by 1.80%.

“Notwithstanding headwinds such as the COVID pandemic, grid access problems, and disruptions in global supply chains, solar and wind remain on a roll,” noted the SUN DAY Campaign’s executive director Ken Bossong. “Moreover, by surpassing nuclear power by ever greater margins, they illustrate the foolishness of trying to revive the soon-to-retire Diablo Canyon nuclear plant in California and the just-retired Palisades reactor in Michigan rather than focusing on accelerating renewables’ growth.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.