California's Looming Green New Car Wreck


gavin newsom

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

California Gas Car Ban 2035 signals a shift to electric vehicles, raising grid reliability concerns, charging demand, and renewable energy challenges across solar, wind, and storage, amid rolling blackouts and carbon-free power mandates.

 

Key Points

An order ending new gasoline car sales by 2035 in California, accelerating EV adoption and pressuring the power grid.

✅ 25% EV fleet could add 232.5 GWh/day charging demand by 2040

✅ Solar and wind intermittency strains nighttime home charging

✅ Grid upgrades, storage, and load management become critical

 

On September 23, California Gov. Gavin Newsom issued an executive order that will ban the sale of gasoline-powered cars in the Golden State by 2035. Ignoring the hard lessons of this past summer, when California’s solar- and wind-reliant electric grid underwent rolling blackouts, Newsom now adds a huge new burden to the grid in the form of electric vehicle charging, underscoring the need for a much bigger grid to meet demand. If California officials follow through and enforce Newsom’s order, the result will be a green new car version of a train wreck.

In parallel, the state is moving on fleet transitions, allowing electric school buses only from 2035, which further adds to charging demand.

Let’s run some numbers. According to Statista, there are more than 15 million vehicles registered in California. Per the U.S. Department of Energy, there are only 256,000 electric vehicles registered in the state—just 1.7 percent of all vehicles, a share that will challenge state power grids as adoption grows.

Using the Tesla Model3 mid-range model as a baseline for an electric car, you’ll need to use about 62 kilowatt-hours (KWh) of power to charge a standard range Model 3 battery to full capacity. It will take about eight hours to fully charge it at home using the standard Tesla NEMA 14-50 charger, a routine that has prompted questions about whether EVs could crash the grid by households statewide.

Now, let’s assume that by 2040, five years after the mandate takes effect, also assuming no major increase in the number of total vehicles, California manages to increase the number of electric vehicles to 25 percent of the total vehicles in the state. If each vehicle needs an average of 62 kilowatt-hours for a full charge, then the total charging power required daily would be 3,750,000 x 62 KWh, which equals 232,500,000 KWh, or 232.5 gigawatt-hours (GWh) daily.

Utility-scale California solar electric generation according to the energy.ca.gov puts utility-scale solar generation at about 30,000 GWh per year currently. Divide that by 365 days and we get 80 GWh/day, predicted to double, to 160 GWh /day. Even if we add homeowner rooftop solar, and falling prices for solar and home batteries in the wake of blackouts, about half the utility-scale, at 40 GWh/day we come up to 200 GW/h per day, still 32 GWh short of the charging demand for a 25% electric car fleet in California. Even if rooftop solar doubles by 2040, we are at break-even, with 240GWh of production during the day.

Bottom-line, under the most optimistic best-case scenario, where solar operates at 100% of rated capacity (it seldom does), it would take every single bit of the 2040 utility-scale solar and rooftop capacity just to charge the cars during the day. That leaves nothing left for air conditioning, appliances, lighting, etc. It would all go to charging the cars, and that’s during the day when solar production peaks.

But there’s a much bigger problem. Even a grade-schooler can figure out that solar energy doesn’t work at night, when most electric vehicles will be charging at homes, even as some officials look to EVs for grid stability through vehicle-to-grid strategies. So, where does Newsom think all this extra electric power is going to come from?

The wind? Wind power lags even further behind solar power. According to energy.gov, as of 2019, California had installed just 5.9 gigawatts of wind power generating capacity. This is because you need large amounts of land for wind farms, and not every place is suitable for high-return wind power.

In 2040, to keep the lights on with 25 percent of all vehicles in California being electric, while maintaining the state mandate requiring all the state’s electricity to come from carbon-free resources by 2045, California would have to blanket the entire state with solar and wind farms. It’s an impossible scenario. And the problem of intermittent power and rolling blackouts would become much worse.

And it isn’t just me saying this. The U.S. Environmental Protection Agency (EPA) agrees. In a letter sent by EPA Administrator Andrew Wheeler to Gavin Newsom on September 28, Wheeler wrote:

“[It] begs the question of how you expect to run an electric car fleet that will come with significant increases in electricity demand, when you can’t even keep the lights on today.

“The truth is that if the state were driving 100 percent electric vehicles today, the state would be dealing with even worse power shortages than the ones that have already caused a series of otherwise preventable environmental and public health consequences.”


California’s green new car wreck looms large on the horizon. Worse, can you imagine electric car owners’ nightmares when California power companies shut off the power for safety reasons during fire season? Try evacuating in your electric car when it has a dead battery.

Gavin Newsom’s “no more gasoline cars sold by 2035” edict isn’t practical, sustainable, or sensible, much like the 2035 EV mandate in Canada has been criticized by some observers. But isn’t that what we’ve come to expect with any and all of these Green New Deal-lite schemes?

 

Related News

Related News

Should California accelerate its 100% carbon-free electricity mandate?

California 100% Clean Energy by 2030 proposes accelerating SB 100 with solar, wind, offshore wind, and battery storage to decarbonize the grid, enhance reliability, and reduce blackouts, leveraging transmission upgrades and long-duration storage solutions.

 

Key Points

Proposal to accelerate SB 100 to 2030, delivering a carbon-free grid via renewables, storage, and new transmission.

✅ Accelerates SB 100 to a 2030 carbon-free electricity target

✅ Scales solar, wind, offshore wind, and battery storage capacity

✅ Requires transmission build-out and demand response for reliability

 

Amid a spate of wildfires that have covered large portions of California with unhealthy air, an environmental group that frequently lobbies the Legislature in Sacramento is calling on the state to accelerate by 15 years California's commitment to derive 100 percent of its electricity from carbon-free sources.

But skeptics point to last month's pair of rolling blackouts and say moving up the mandate would be too risky.

"Once again, California is experiencing some of the worst that climate change has to offer, whether it's horrendous air quality, whether it's wildfires, whether it's scorching heat," said Dan Jacobson, state director of Environment California. "This should not be the new normal and we shouldn't allow this to become normal."

Signed by then-Gov. Jerry Brown in 2018, Senate Bill 100 commits California by 2045 to use only sources of energy that produce no greenhouse gas emissions to power the electric grid, a target that echoes Minnesota's 2050 carbon-free plan now under consideration.

Implemented through the state's Renewable Portfolio Standard, SB 100 mandates 60 percent of the state's power will come from renewable sources such as solar and wind within the next 10 years. By 2045, the remaining 40 percent can come from other zero-carbon sources, such as large hydroelectric dams, a strategy aligned with Canada's electricity decarbonization efforts toward climate pledges.

SB 100 also requires three state agencies _ the California Energy Commission, the California Public Utilities Commission and the California Air Resources Board _ to send a report to the Legislature reviewing various aspects of the legislation.

The topics include scenarios in which SB 100's requirements can be accelerated. Following an Energy Commission workshop earlier this month, Environment California sent a six-page note to all three agencies urging a 100 percent clean energy standard by 2030.

The group pointed to comments by Gov. Gavin Newsom after he toured the devastation in Butte County caused by the North Complex fire.

"Across the entire spectrum, our (state) goals are inadequate to the reality we are experiencing," Newsom said Sept. 11 at the Oroville State Recreation Area.

Newsom "wants to look at his climate policies and see what he can accelerate," Jacobson said. "And we want to encourage him to take a look at going to 100 percent by 2030."

Jacobson said Newsom cam change the policy by issuing an executive order but "it would probably take some legislative action" to codify it.

However, Assemblyman Jim Cooper, a Democrat from the Sacramento suburb of Elk Grove, is not on board.

"I think someday we're going to be there but we can't move to all renewable sources right now," Cooper said. "It doesn't work. We've got all these burned-out areas that depend upon electricity. How is that working out? They don't have it."

In mid-August, California experienced statewide rolling blackouts for the first time since 2001.

The California Independent System Operator _ which manages the electric grid for about 80 percent of the state _ ordered utilities to ratchet back power, fearing the grid did not have enough supply to match a surge in demand as people cranked up their air conditioners during a stubborn heat wave that lingered over the West.

The outages affected about 400,000 California homes and businesses for more than an hour on Aug. 14 and 200,000 customers for about 20 minutes on Aug. 15.

The grid operator, known as the CAISO for short, avoided two additional days of blackouts in August and two more in September thanks to household utility customers and large energy users scaling back demand.

CAISO Chief Executive Officer Steve Berberich said the outages were not due to renewable energy sources in California's power mix. "This was a matter of running out of capacity to serve load" across all hours, Berberich told the Los Angeles Times.

California has plenty of renewable resources _ especially solar power _ during the day. The challenge comes when solar production rapidly declines as the sun goes down, especially between 7 p.m. and 8 p.m. in what grid operators call the "net load peak."

The loss of those megawatts of generation has to be replaced by other sources. And in an electric grid, system operators have to balance supply and demand instantaneously, generating every kilowatt that is demanded by customers who expect their lighting/heating/air conditioning to come on the moment they flip a switch.

Two weeks after the rotating outages, the State Water Resources Control Board voted to extend the lives of four natural gas plants in the Los Angeles area. Natural gas accounts for the largest single source of California's power mix _ 34.23 percent. But natural gas is a fossil fuel, not a carbon-free resource.

Jacobson said moving the mandate to 2030 can be achieved by more rapid deployment of renewable sources across the state.

The Public Utilities Commission has already directed power companies to ramp up capacity for energy storage, such as lithium-ion batteries that can be used when solar production falls off.

Long-term storage is another option. That includes pumped hydro projects in which hydroelectric facilities pump water from one reservoir up to another and then release it. The ensuing rush of water generates electricity when the grid needs it.

Environment California also pointed to offshore wind projects along the coast of Central and Northern California that it estimates could generate as much as 3 gigawatts of power by 2030 and 10 gigawatts by 2040. Offshore wind supporters say its potential is much greater than land-based wind farms because ocean breezes are stronger and steadier.

Gary Ackerman, a utilities and energy consultant with more than four decades of experience in power issues affecting states in the West, said the 2045 mandate was "an unwise policy to begin with" and to accommodate a "swift transition (to 2030), you're going to put the entire grid and everybody in it at risk."

But Ackerman's larger concern is whether enough transmission lines can be constructed in California to bring the electricity where it needs to go.

"I believe Californians consider transmission lines in their backyard about the same way they think about low-income housing _ it's great to have, but not in my backyard," Ackerman said. "The state is not prepared to build the infrastructure that will allow this grandiose build-out."

Cooper said he worries about how much it will cost the average utility customer, especially low and middle-income households. The average retail price for electricity in California is 16.58 cents per kilowatt-hour, compared to 10.53 nationally, according to the U.S. Energy Information Administration.

"What's sad is, we've had 110-degree days and there are people up here in the Central Valley that never turned their air conditioners on because they can't afford that bill," Cooper said.

Jacobson said the utilities commission can intervene if costs get too high. He also pointed to a recent study from the Goldman School of Public Policy at UC Berkeley that predicted the U.S. can deliver 90 percent clean, carbon-free electric grid by 2035 that is reliable and at no extra cost in consumers' bills.

"Every time we wait and say, 'Oh, what about the cost? Is it going to be too expensive?' we're just making the cost unbearable for our kids and grandkids," Jacobson said. "They're the ones who are going to pay the billions of dollars for all the remediation that has to happen ... What's it going to cost if we do nothing, or don't go fast enough?"

The joint agency report on SB 100 from the Energy Commission, the Public Utilities Commission and the Air Resources Board is due at the beginning of next year.

 

Related News

View more

Biden's Climate Bet Rests on Enacting a Clean Electricity Standard

Clean Electricity Standard drives Biden's infrastructure, grid decarbonization, and utility mandates, leveraging EPA regulation, renewables, nuclear, and carbon capture via reconciliation to reach 80% clean power by 2030 amid partisan Congress.

 

Key Points

A federal mandate to reach 80% clean U.S. power by 2030 using incentives and EPA rules to speed grid decarbonization.

✅ Targets 80% clean electricity by 2030 via Congress or reconciliation

✅ Mix of renewables, nuclear, gas with carbon capture allowed

✅ Backup levers: EPA rules, incentives, utility planning shifts

 

The true measure of President Biden’s climate ambition may be the clean electricity standard he tucked into his massive $2.2 trillion infrastructure spending plan.

Its goal is striking: 80% clean power in the United States by 2030.

The details, however, are vague. And so is Biden’s plan B if it fails—an uncertainty that’s worrisome to both activists and academics. The lack of a clear backup plan underscores the importance of passing a clean electricity standard, they say.

If the clean electricity standard doesn’t survive Congress, it will put pressure on the need to drive climate policy through targeted spending, said John Larsen, a power system analyst with the Rhodium Group, an economic consulting firm.

“I don’t think the game is lost at all if a clean electricity standard doesn’t get through in this round,” Larsen said. “But there’s a difference between not passing a clean electricity standard and passing the right spending package.”

In his few months in office, Biden has outlined plans to bring the United States back into the international Paris climate accord, pause oil and gas leasing on public lands, boost the electric vehicle market, and target clean energy investments in vulnerable communities, including plans to revitalize coal communities across the country, most affected by climate change.

But those are largely executive orders and spending proposals—even as early assessments show mixed results from climate law—and unlikely to last beyond his administration if the next president favors fossil fuel usage over climate policy. The clean electricity standard, which would decarbonize 80% of the electrical grid by 2030, is different.

It transforms Biden’s climate vision from a goal into a mandate. Passing it through Congress makes it that much harder for a future administration to undo. If Biden is in office for two terms, the United States would see a rate of decarbonization unparalleled in its history that would set a new bar for most of the world’s biggest economies.

But for now, the clean electricity standard faces an uncertain path through Congress and steep odds to getting enacted. That means there’s a good chance the administration will need a plan B, observers said.

Exactly what kind of climate spending can pass Congress is the very question the White House and congressional Democrats will be working on in the next few months, including upgrades to an aging power grid that affect renewables and EVs, as the infrastructure bill proceeds through Congress.

Negotiations are fraught already. Congress is almost evenly split between a party that wants to curtail the use of fossil fuels and another that wants to grow them, and even high energy prices have not necessarily triggered a green transition in the marketplace.

Senate Minority Leader Mitch McConnell (R-Ky.) said last week that “100% of my focus is on stopping this new administration.” He made similar comments at the start of the Obama administration and blocked climate policy from getting through Congress. He also said last week that no Republican senators would vote for Biden’s infrastructure spending plan.

A clean electricity standard has been referred to as the “backbone” of Biden’s climate policy—a way to ensure his policies to decarbonize the economy outlast a future president who would seek to roll back his climate work. Advocates say hitting that benchmark is an essential milestone in getting to a carbon-free grid by 2035. Much of President Obama’s climate policy, crafted largely through regulations and executive orders, proved vulnerable to President Trump’s rollbacks.

Biden appears to have learned from those lessons and wants to chart a new course to mitigate the worst effects of climate change. He’s using his majority in the House and Senate to lock in whatever he can before the 2022 midterms, when Democrats are expected to lose the House.

To pass a clean electricity standard, virtually every Democrat must be on board, and even then, the only chance of success is to pass a bill through the budget reconciliation process that can carry a clean electricity standard. Some Senate Democrats have recently hinted that they were willing to split the bill into pieces to get it through, while others are concerned that although this approach might win some GOP support on traditional infrastructure such as roads and bridges, it would isolate the climate provisions that make up more than half of the bill.

The most durable scenario for rapid electricity-sector decarbonization is to lock in a bipartisan clean electricity standard into legislation with 60 votes in the Senate, said Mike O’Boyle, the director of electricity policy for Energy Innovation. Because that’s highly unlikely—if not impossible—there are other paths that could get the United States to the 80% goal within the next decade.

“The next best approach is to either, or in combination, pursue EPA regulation of power plant pollution from existing and new power plants as well as to take a reconciliation-based approach to a clean electricity standard where you’re basically spending federal dollars to provide incentives to drive clean electricity deployment as opposed to a mandate per se,” he said.

Either way, O’Boyle said the introduction of the clean electricity standard sets a new bar for the federal government that likely would drive industry response even if it doesn’t get enacted. He compared it to the Clean Power Plan, Obama’s initiative to limit power plant emissions. Even though the plan never came to fruition, because of a Clean Power Plan rollback, it left a legacy that continues years later and wasn’t negated by a president who prioritized fossil fuels over the climate, he said.

“It never got enacted, but it still created a titanic shift in the way utilities plan their systems and proactively reposition themselves for future carbon regulation of their electricity systems,” O’Boyle said. “I think any action by the Biden administration or by Congress through reconciliation would have a similar catalytic function over the next couple years.”

Some don’t think a clean electricity standard has a doomed future. Right now, its provisions are vague. But they can be filled in in a way that doesn’t alienate Republicans or states more hesitant toward climate policy, said Sally Benson, an engineering professor at Stanford University and an expert on low-carbon energy systems. The United States is overdue for a federal mandate that lasts through multiple administrations. The only way to ensure that happens is to get Republican support.

She said that might be possible by making the clean electricity standard more flexible. Mandate the goals, she said, not how states get there. Going 100% renewable is not going to sell in some states or with some lawmakers, she added. For some regions, flexibility will mean keeping nuclear plants open. For others, it would mean using natural gas with carbon capture, Benson said.

While it might not meet the standards some progressives seek to end all fossil fuel usage, it would have a better chance of getting enacted and remaining in place through multiple presidents, she said. In fact, a clean electricity standard would provide a chance for carbon capture, which has been at the center of Republican climate policy proposals. Benson said carbon capture is not economical now, but the mandate of a standard could encourage investments that would drive the sector forward more rapidly.

“If it’s a plan that people see as shutting the door to nuclear or to natural gas plus carbon capture, I think we will face a lot of pushback,” she said. “Make it an inclusive plan with a specific goal of getting to zero emissions and there’s not one way to do it, meaning all renewables—I think that’s the thing that could garner a lot of industrial support to make progress.”

In addition to industry, Biden’s proposed clean electricity standard would drive states to do more, said Larsen of the Rhodium Group. Several states already have their own version of a clean energy standard and have driven much of the national progress on carbon emissions reduction in the last four years, he said. Biden has set a new benchmark that some states, including those with some of the biggest economies in the United States, would now likely exceed, he said.

“It is rare for the federal government to get out in front of leading states in clean energy policy,” he said. “This is not usually how climate policy diffusion works from the state level to the federal level; usually it’s states go ahead and the federal government adopts something that’s less ambitious.”

 

Related News

View more

Can the UK grid cope with the extra demand from electric cars?

UK EV Grid Capacity leverages smart charging, V2G, renewable energy, and interconnectors to manage peak demand as adoption grows, with National Grid upgrades, rapid chargers, and efficiency gains enabling a reliable, scalable charging infrastructure nationwide.

 

Key Points

UK EV grid capacity is the power network's readiness to meet EV demand using smart charging, V2G, and upgrades.

✅ Smart charging shifts load to off-peak, cheaper renewable hours

✅ V2G enables EVs to supply power and balance peak demand

✅ National Grid upgrades and interconnectors expand capacity

 

The surge of electric vehicles (EVs) on our roads raises a crucial question: can the UK's electricity grid handle the additional demand? While this is a valid concern, it's important to understand the gradual nature of EV adoption, ongoing grid preparations, and innovative solutions being developed.

A Gradual Shift, Not an Overnight Leap

Firstly, let's dispel the myth of an overnight transition. EV adoption will unfold progressively, driven by factors like affordability and the growing availability of used models. The government's ZEV mandate outlines a clear trajectory, with a gradual rise from 22% EV sales in 2024 to 80% by 2030. This measured approach allows for strategic grid improvements to accommodate the increasing demand.

Preparing the Grid for the Future

Grid preparations for the EV revolution have been underway for years. Collaborations between the government, electricity providers, service stations, and charging point developers are ensuring grid coordination across the system. Renewable energy sources like offshore wind farms, combined with new nuclear power and international interconnections, are planned to meet the anticipated 120 terawatt-hour increase in demand. Additionally, improvements in energy efficiency have reduced overall electricity consumption, creating further capacity.

Addressing Peak Demand Challenges

While millions of EVs charging simultaneously might seem like they could challenge power grids, solutions are being implemented to manage peak demand:

1. Smart Charging: This technology allows EVs to charge during off-peak hours when renewable electricity is abundant and cheaper. This not only benefits the grid but also saves owners money. The UK government's EV Smart Charge Points Regulations ensure all new chargers have this functionality.

2. Vehicle-to-Grid (V2G) Technology: This futuristic concept transforms EVs into energy storage units, often described as capacity on wheels, allowing owners to sell their unused battery power back to the grid during peak times. This not only generates income for owners but also helps balance the grid and integrate more renewable energy.

3. Sufficient Grid Capacity: Despite concerns, the grid currently has ample capacity. The highest peak demand in recent years (62GW in 2002) has actually decreased by 16% due to energy efficiency improvements. Even with widespread EV adoption, the expected 10% increase in demand remains well within the grid's capabilities with proper management in place.

National Grid's Commitment:

National Grid and other electric utilities are actively involved in upgrading and expanding the grid to accommodate the clean energy transition. This includes collaborating with distribution networks, government agencies, and industry partners to ensure the necessary infrastructure (wires and connections) is in place for a decarbonized transport network.

Charging Infrastructure: Addressing Anxiety

The existing national grid infrastructure, with its proximity to roads and train networks, provides a significant advantage for EV charging point deployment. National Grid Electricity Distribution is already working on innovative projects to install required infrastructure, such as:

  • Bringing electricity networks closer to motorway service areas for faster and easier connection.
  • Leading projects like the Electric Boulevard (inductive charging) and Electric Nation (V2G charging) to showcase innovative solutions.
  • Participating in the Take Charge project, exploring new ways to facilitate rapid EV charging infrastructure growth.

Government Initiatives:

The UK government's Rapid Charging Fund aims to roll out high-powered, open-access charge points across England, while the Local EV Infrastructure Fund supports local authorities in providing charging solutions for residents without off-street parking, including mobile chargers for added flexibility.

While the rise of EVs presents new challenges, the UK is actively preparing its grid and infrastructure to ensure a smooth transition. With gradual adoption, ongoing preparations, and innovative solutions, the answer to the question Will electric vehicles crash the grid? is a resounding yes. The future of clean transportation is bright, and the grid is ready to power it forward.

 

Related News

View more

Wind power grows despite Covid-19

Global Wind Power Growth will hit record installations, buoying renewable energy, offshore wind, onshore capacity, and economic recovery, as GWEC forecasts resilient post-Covid markets led by China and the US with strong investment and jobs.

 

Key Points

Global Wind Power Growth is the forecast rise in capacity driving renewable energy, jobs, and lower emissions.

✅ 71.3 GW installed in 2020; only 6% below pre-Covid forecast

✅ 348 GW added by 2024; nearly 1,000 GW total capacity

✅ Offshore wind resilient; 6.5 GW in 2020, China-led

 

Wind power will continue to show record growth, as renewables set to shatter records over the next five years despite the impacts of the Covid-19 crisis, and will make a crucial contribution to economic recovery... According to the latest market outlook by GWEC Market Intelligence, 71.3GW of wind power capacity is expected to be installed in 2020, which is only a 6% reduction from pre-Covid forecasts. This is a significant increase from original predictions that expected wind power installations to be reduced by up to 20 per cent due to the pandemic, demonstrating the resilience of the wind power industry across the globe.

From 2020 to 2024, the cumulative global wind energy market will grow at a compound annual rate of 8.5% and installing 348GW of new capacity, bringing total global wind power capacity to nearly 1,000GW by the end of 2024, which is an increase of 54% for total wind power installations compared to 2019. While some project completion dates have been pushed into 2021 due to the pandemic, next year is expected to be a record year for the wind industry with 78GW of new wind capacity forecasted to be installed in 2021. Over 50% of the onshore wind capacity added between 2020 to 2024 will be installed in China and the US, where U.S. solar and wind growth is supported by favourable government plans, led by installation rushes to meet subsidy deadlines.

The offshore wind sector has been largely shielded from the impacts of the Covid-19 crisis, GWEC Market Intelligence has indeed increased its forecast for offshore wind by 5 per cent to 6.5 GW of new installations in 2020, another record year for the industry, as offshore wind's $1 trillion outlook comes into focus, led by the installation rush in China. Up until 2024, over 48GW of new offshore wind capacity is expected to be installed, with another 157GW forecasted to be installed from 2025 to 2030 across key markets such as offshore wind in the UK and Asia.

“While the Covid-19 crisis has impacted every industry across the world, wind power has continued to grow and thrive. This is no surprise given the cost competitiveness of wind energy and the need to rapidly reproduce carbon emissions. Fossil fuel industries face market fluctuations and require bailouts to stay afloat, while wind turbines across the world have continued to spin and provide affordable, clean energy to citizens everywhere," says Ben Backwell, CEO of GWEC.

“Thanks to the localised nature of wind power supply chains and project construction, the sector has continued to generate billions in local investment and thousands of jobs to support economic recovery. However, in order to tap into the full potential of wind power to drive a green recovery, governments must ensure that energy markets and policies allow a continued ramp up in investment in wind and other renewables, and avoid unintended effects such as the Solar ITC extension impact on the US wind market, while disincentivising investment in expensive and declining fossil fuel industries," he says.

Biggest markets

China and the US will continue to be the two main markets driving growth over the next few years, with U.S. wind power surges underscoring the momentum. "We have increased or maintained our forecasts for onshore wind in regions such as Latin America, North America, Africa, and the Middle East over the next five years, with only minor decreases in Asia Pacific and Europe. However, these reductions are not necessarily a direct impact of Covid-19, but also a symptom of pre-existing regulatory issues, such as protracted permitting procedures, which are slowing down installations. In particular, offshore wind has demonstrated its resilience by exceeding our pre-pandemic forecasts for 2020, and will be an important source of growth in the decade ahead," Feng Zhao, strategy director at GWEC.

“We have seen a series of carbon neutrality commitments by major economies such as China, Japan and South Korea over the past few weeks. Since wind power is a key technology for decarbonisation, building on the evolution in 2016, these targets will increase the forecast for wind power over the next few decades. However, the right enabling regulatory and policy frameworks must be in place to accelerate renewable energy growth to meet these targets. China, the world’s largest wind power market and largest carbon emitter, has pledged to go carbon-neutral by 2060. To have a chance at achieving this target, we need to be installing 50GW of wind power per year in China from now until 2025, and then 60GW from 2026 onwards. It is crucial that governments firm up carbon neutrality targets with tangible actions to drive wind and other renewable energy growth at the levels needed to achieve these aims”, he says.

 

Related News

View more

US renewable energy hit record 28% in April.

U.S. Renewable Energy Record 28% signals a cleaner power grid as wind, solar, and hydroelectric output soar; EIA data shows cost-competitive clean energy reshaping the electricity mix and reducing carbon emissions across regions.

 

Key Points

EIA-reported April share of electricity from wind, solar, and hydro, reflecting cost-driven growth in U.S. clean power.

✅ Wind, solar additions dominated recent U.S. capacity buildouts

✅ Lower levelized costs make renewables most competitive

✅ Seasonal factors and outages lowered fossil and nuclear output

 

The amount of electricity generated by renewable resources hit a record 28% in April, a breakthrough number that shows how important renewable energy has become in U.S. energy markets as it surpassed coal in 2022 overall.

"It's a 'Wow' moment," said Peter Kelly-Detwiler, an energy analyst and author of "The Energy Switch," a recent book about the transition to a carbon-free energy economy.

The percentage of U.S. electricity produced by renewable energy from wind, solar and hydroelectric dams has been steadily rising, from 8.6% in April 2001 to this April's 28%. Those numbers were released this week by the U.S. Energy Information Administration, which tracks energy data for the nation.

What explains the surge?
There are several reasons. At the top is that wind and solar installations dominated U.S. energy buildouts.

"Basically, the only things we've added to the grid in the past decade are wind, solar and natural gas," said Harrison Fell, an economist and engineer at Columbia University, where he co-leads the Power Sector and Renewables Research Initiative.

That's happening for two reasons. The first is cost. Renewables are simply the most economically competitive power currently available, Kelly-Detwiler said.

In 2021, the cost of producing a megawatt-hour of electricity from a new wind turbine was $26 to $50. The same amount of electricity from the cheapest type of natural gas plant ranged from $45 to $74, according to Lazard, a financial advisory firm that publishes annual estimates of the cost of producing electricity. 

Federal and state mandates and incentives to increase the amount of clean energy used also help, Fell said, as renewables reached 25.5% of U.S. electricity recently. 

"When you do the math on what's the most profitable thing to add, it's often going to be wind and solar at this stage," he said.

Was weather a factor?
Yes. April tends to be a particularly windy month, and this spring was windier than most, Fell said.

There's also less power coming into the grid from fossil fuels and nuclear in the spring. That's because electricity demand is generally lower because of the mild weather and fossil fuel and nuclear power plants use the time for maintenance and refueling, which reduces their production, he said.

Another surprise was that in April, wind and solar power together produced more electricity than nuclear plants nationwide. 

Historically, nuclear power plants, which are carbon-neutral, have reliably produced about 20% of America's electricity. In April that number dropped to 18% while wind and solar combined stood at 19.6%.

The nuclear decrease is partly a result of the shutdown of two plants in the past year, Indian Point in New York state and Palisades in Michigan, as well as scheduled closures for maintenance.

Will the trend continue?
When all U.S. carbon-neutral energy sources are added together – nuclear, wind, hydroelectric and solar – almost 46% of U.S. electricity in April came from sources that don't contribute greenhouse gases to the environment, federal data shows.  

"It's a milestone," Kelly-Detwiler said. "But in a few years, we'll look back and say, 'This was a nice steppingstone to the next 'Wow!' moment."

 

Related News

View more

General Motors to add 3,000 jobs focused on electric vehicles

General Motors EV Hiring expands software development, engineering, and IT roles for electric vehicles, Ultium batteries, and autonomous tech, offering remote jobs, boosting diversity and inclusion, and accelerating zero-emission mobility and customer experience initiatives.

 

Key Points

GM plan to hire 3,000 software, engineering, and IT staff to speed EV programs, remote work, and customer experience.

✅ 3,000 hires in software, engineering, IT

✅ Focus on EVs, Ultium batteries, autonomous tech

✅ Remote roles, diversity, inclusion priorities

 

General electrical safety involves practices and procedures designed to prevent electric shock, arc flash, and other hazards associated with electrical systems. Whether at home, in the workplace, or industrial environments, following established safety guidelines helps protect people, property, and equipment from electrical accidents. General Motors plans to hire 3,000 new employees largely focused on software development as the company accelerates its plans for electric vehicles, the automaker announced Monday.

GM said the jobs will be focused on engineering, design and information technology “to increase diversity and inclusion and contribute to GM’s EV and customer experience priorities.” The hiring is expected through the first quarter of 2021, as the company addresses EV adoption challenges in key markets. Many of the positions will be remote as GM begins to offer “more remote opportunities than ever before,” the company said.

“As we evolve and grow our software expertise and services, it’s important that we continue to recruit and add diverse talent,” GM President Mark Reuss said in a release. “This will clearly show that we’re committed to further developing the software we need to lead in EVs, enhance the customer experience and become a software expertise-driven workforce.”

General Motors CEO on third-quarter earnings, rise in demand for trucks and more
The hiring blitz comes as the automaker expects to increase focus on electric vehicles, including offering at least 20 new electric vehicles globally by 2023, while competitors like Ford accelerate EV investment as well. GM earlier this year said it planned to invest $20 billion in electric and autonomous vehicles by 2025, including a tentative Ontario EV plant commitment.

Ken Morris, GM vice president of autonomous and electric vehicles programs, told reporters on a call Monday that the automaker has pulled forward at least two upcoming electric vehicles following the GMC Hummer EV, which is the first vehicle on GM’s next-generation electric vehicle platform with its proprietary Ultium battery cells.

“We’re moving as fast as we can in terms of developing vehicles virtually, more so than we ever have by far,” Morris said. “We are doing things virtually, more effective than we ever have.”

Shares of the automaker reached a new 52-week high of $39.72 ahead of the Monday announcement. The stock was up 5% during midday trading Monday following market optimism about a Covid-19 vaccine and President-elect Joe Biden outlining priorities that would support electric vehicles nationwide.

The race between Tesla, GM, Rivian and others to dominate electric pickup trucks
“We’re looking forward to working with the Biden administration and support policies that will foster greater adoption of EVs across all 50 states and encourage investments in R&D and manufacturing,” Morris said. “At the end of the day, climate change is a global concern and the best way to remove automobile emissions from the environmental equation is all-electric, zero-emissions future.”

At the same time, gas-electric hybrids continue to gain momentum in the U.S., shaping consumer transition paths.

The additional jobs are separate from a previous announcement by GM to hire 1,100 new employees as part of a $2.3 billion joint venture with LG Chem to produce Ultium cells in northeast Ohio.

GM employed about 164,000 people globally in 2019, down from 215,000 in 2015 as the company has restructured and cut operations in recent years.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.