California's Looming Green New Car Wreck


gavin newsom

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

California Gas Car Ban 2035 signals a shift to electric vehicles, raising grid reliability concerns, charging demand, and renewable energy challenges across solar, wind, and storage, amid rolling blackouts and carbon-free power mandates.

 

Key Points

An order ending new gasoline car sales by 2035 in California, accelerating EV adoption and pressuring the power grid.

✅ 25% EV fleet could add 232.5 GWh/day charging demand by 2040

✅ Solar and wind intermittency strains nighttime home charging

✅ Grid upgrades, storage, and load management become critical

 

On September 23, California Gov. Gavin Newsom issued an executive order that will ban the sale of gasoline-powered cars in the Golden State by 2035. Ignoring the hard lessons of this past summer, when California’s solar- and wind-reliant electric grid underwent rolling blackouts, Newsom now adds a huge new burden to the grid in the form of electric vehicle charging, underscoring the need for a much bigger grid to meet demand. If California officials follow through and enforce Newsom’s order, the result will be a green new car version of a train wreck.

In parallel, the state is moving on fleet transitions, allowing electric school buses only from 2035, which further adds to charging demand.

Let’s run some numbers. According to Statista, there are more than 15 million vehicles registered in California. Per the U.S. Department of Energy, there are only 256,000 electric vehicles registered in the state—just 1.7 percent of all vehicles, a share that will challenge state power grids as adoption grows.

Using the Tesla Model3 mid-range model as a baseline for an electric car, you’ll need to use about 62 kilowatt-hours (KWh) of power to charge a standard range Model 3 battery to full capacity. It will take about eight hours to fully charge it at home using the standard Tesla NEMA 14-50 charger, a routine that has prompted questions about whether EVs could crash the grid by households statewide.

Now, let’s assume that by 2040, five years after the mandate takes effect, also assuming no major increase in the number of total vehicles, California manages to increase the number of electric vehicles to 25 percent of the total vehicles in the state. If each vehicle needs an average of 62 kilowatt-hours for a full charge, then the total charging power required daily would be 3,750,000 x 62 KWh, which equals 232,500,000 KWh, or 232.5 gigawatt-hours (GWh) daily.

Utility-scale California solar electric generation according to the energy.ca.gov puts utility-scale solar generation at about 30,000 GWh per year currently. Divide that by 365 days and we get 80 GWh/day, predicted to double, to 160 GWh /day. Even if we add homeowner rooftop solar, and falling prices for solar and home batteries in the wake of blackouts, about half the utility-scale, at 40 GWh/day we come up to 200 GW/h per day, still 32 GWh short of the charging demand for a 25% electric car fleet in California. Even if rooftop solar doubles by 2040, we are at break-even, with 240GWh of production during the day.

Bottom-line, under the most optimistic best-case scenario, where solar operates at 100% of rated capacity (it seldom does), it would take every single bit of the 2040 utility-scale solar and rooftop capacity just to charge the cars during the day. That leaves nothing left for air conditioning, appliances, lighting, etc. It would all go to charging the cars, and that’s during the day when solar production peaks.

But there’s a much bigger problem. Even a grade-schooler can figure out that solar energy doesn’t work at night, when most electric vehicles will be charging at homes, even as some officials look to EVs for grid stability through vehicle-to-grid strategies. So, where does Newsom think all this extra electric power is going to come from?

The wind? Wind power lags even further behind solar power. According to energy.gov, as of 2019, California had installed just 5.9 gigawatts of wind power generating capacity. This is because you need large amounts of land for wind farms, and not every place is suitable for high-return wind power.

In 2040, to keep the lights on with 25 percent of all vehicles in California being electric, while maintaining the state mandate requiring all the state’s electricity to come from carbon-free resources by 2045, California would have to blanket the entire state with solar and wind farms. It’s an impossible scenario. And the problem of intermittent power and rolling blackouts would become much worse.

And it isn’t just me saying this. The U.S. Environmental Protection Agency (EPA) agrees. In a letter sent by EPA Administrator Andrew Wheeler to Gavin Newsom on September 28, Wheeler wrote:

“[It] begs the question of how you expect to run an electric car fleet that will come with significant increases in electricity demand, when you can’t even keep the lights on today.

“The truth is that if the state were driving 100 percent electric vehicles today, the state would be dealing with even worse power shortages than the ones that have already caused a series of otherwise preventable environmental and public health consequences.”


California’s green new car wreck looms large on the horizon. Worse, can you imagine electric car owners’ nightmares when California power companies shut off the power for safety reasons during fire season? Try evacuating in your electric car when it has a dead battery.

Gavin Newsom’s “no more gasoline cars sold by 2035” edict isn’t practical, sustainable, or sensible, much like the 2035 EV mandate in Canada has been criticized by some observers. But isn’t that what we’ve come to expect with any and all of these Green New Deal-lite schemes?

 

Related News

Related News

Asset Management Firm to Finance Clean Coal Technologies Inc.

Clean Coal Technologies Pristine Funding secures investment from a New York asset manager via Black Diamond, advancing commercialization, Tulsa testing, Wyoming relocation, PRB coal enhancement, and cleaner energy innovation to support global coal exports.

 

Key Points

Capital from a New York asset manager backs Pristine commercialization, testing, and Wyoming relocation to boost PRB coal.

✅ Investment via Black Diamond funds Tulsa test operations.

✅ Permanent relocation planned near a Wyoming mine site.

✅ First Pristine M module to enhance PRB coal quality.

 

Clean Coal Technologies, Inc., an emerging cleaner-energy company utilizing patented and proven technology to convert untreated coal into a cleaner burning and more efficient fuel, announced today that the company has secured funding for their Pristine technology through commercialization, a move reminiscent of Bruce C project funding activity, from a major New York-based Asset Management company. This investment will be made through Black Diamond with all funds earmarked for test procedures at the plant near Tulsa, OK, at a time when rare new coal plants are appearing, and the plant's move to a permanent location in Wyoming. The first tranche is being paid immediately.

"Securing this investment will confidently carry us through to the construction of our first commercial module enabling management to focus on the additional tests that have been requested from multiple parties, even as US coal demand faces headwinds across the market," stated CEO of Clean Coal Technologies, Inc., Robin Eves. "At this time we have begun scheduling plant visits with both US government agency and coal industry officials along with key international energy consortiums that are monitoring transitions such as Alberta's coal phaseout policies."

"We're now able to finalize our negotiations in Wyoming where the permitting process has begun and where we will permanently relocate the test facility later this year following completion of the aforementioned tests," added CCTI COO/CFO, Aiden Neary. "This event also paves the way forward to commence the process of constructing the first commercial Pristine M facility. That plant is planned to be in Wyoming near an operating mine where our process can be used to enhance the quality of PRB coal to make it more competitive globally, even as regions like western Europe see coal-to-renewables conversions at legacy plants, and help restore the US coal export market."

 

 

Related News

View more

Electric-ready ferry for Kootenay Lake to begin operations in 2023

Kootenay Lake Electric-Ready Ferry advances clean technology in BC, debuting as a hybrid diesel-electric vessel with shore power conversion planned, capacity and terminal upgrades to cut emissions, reduce wait times, and modernize inland ferry service.

 

Key Points

Hybrid diesel-electric ferry replacing MV Balfour, boosting capacity, and aiming for full electric conversion by 2030.

✅ Doubles vehicle capacity; runs with MV Osprey 2000 in summer

✅ Hybrid-ready systems installed; shore power to enable full electric

✅ Terminal upgrades at Balfour and Kootenay Bay improve reliability

 

An electric-ready ferry for Kootenay Lake is scheduled to begin operations in 2023, aligning with first electric passenger flights planned by Harbour Air, the province announced in a Sept. 3 press release.

Construction of the $62.9-million project will begin later this year, which will be carried out by Western Pacific Marine Ltd., reflecting broader CIB-supported ferry investments in B.C. underway.

“With construction beginning here in Canada on the new electric-ready ferry for Kootenay Lake, we are building toward a greener future with made-in-Canada clean technology,” said Catherine McKenna, the federal minister of infrastructure and communities.

The new ferry — which is designed to provide passengers with a cleaner vessel informed by advances in electric ships and more accessibility — will replace and more than double the capacity of the MV Balfour, which will be retired from service.

“This is an exciting milestone for a project that will significantly benefit the Kootenay region as a whole,” said Michelle Mungall, MLA for Nelson-Creston. “The new, cleaner ferry will move more people more efficiently, improving community connections and local economies.”

Up to 55 vehicles can be accommodated on the new ship, and will run in tandem with the larger MV Osprey 2000 to help reduce wait times, a strategy also seen with Washington State Ferries hybrid-electric upgrades, during the summer months.

“The vessel will be fully converted to electric propulsion by 2030, once shore power is installed and reliability of the technology advances for use on a daily basis, as demonstrated by Harbour Air's electric aircraft testing on B.C.'s coast,” said the province.

They noted that they are working to electrify their inland ferry fleet by 2040, as part of their CleanBC initiative.

“The new vessel will be configured as a hybrid diesel-electric with all the systems, equipment and components for electric propulsion,” they said.

Other planned projects include upgrades to the Balfour and Kootenay Bay terminals, and minor dredging has been completed in the West Arm.

 

Related News

View more

UK electric car inquiries soar during fuel supply crisis

UK Petrol Shortages Drive EV Adoption as fuel crisis spurs electric vehicles, plug-in car demand, home charging, lower running costs, zero-emission mobility, ULEZ compliance, accelerating the shift from diesel to battery EVs.

 

Key Points

Fuel shortages push drivers to EVs, boosting inquiries and sales while highlighting the convenience of home charging.

✅ Surge in EV dealer inquiries and test drives

✅ Home charging avoids queues and fuel shortages

✅ Policy signals: ULEZ expansion, 2030 ICE ban

 

Sellers of plug-in vehicles say petrol shortages are driving people to adopt the new technology as the age of electric cars accelerates worldwide.

As petrol stations in parts of the UK started running out of fuel on Friday, business at Martin Miller’s electric car dealership in Guildford, Surrey, started soaring.

After what ended up being his company EV Experts busiest day ever, interest does not appear to be dying down. This week the diary is booked up with test drives and the business is low on stock amid supply constraints.

“People buy electric cars for environmental reasons, for cost-saving reasons and because the technology’s great, even though higher upfront prices remain a concern,” he said. “But Friday was one of those moments where people said, ‘Do you know what, this is a sign that we need to go electric’.”

While scenes of chaos play out at petrol stations across the country amid shortages, for many electric vehicle (EV) dealers the fuel crisis has led to an unexpected surge in inquiries and sales, even as some question an electric-car revolution narrative today.

EVA England, a non-profit representing new and prospective EV drivers, reports a rise in electric car inquiries and in interest at EV dealers, particularly in the last week.

“Saturday was bonkers but Friday even surpassed that, it was very strange,” said Miller, who founded his company four years ago. “I’ve now got trade-in cars with no petrol to move them.”

Along with existing factors such as the expansion of London’s ultra-low emission zone, the fuel crisis has proved to be another trigger point, he said. “People were using it as ‘this is the moment where I’m not going to put this off any longer’.”

The EV market is no longer the preserve of innovators and early adopters, he said, with the most popular models the Nissan Leaf, Volkswagen ID 3 and Jaguar I-Pace.

Ben Strzalko, the owner of Electric Cars UK in Leyland, Lancashire, said that as a small business it would take a few months to feel the knock-on effect of the fuel crisis on sales.

But every time there are problems with petrol or diesel, he said they acted as “one more tick for people making that transition to electric cars”.

He said “a lot of electric car owners will be chuffed to bits this last week” being able to plug in their cars at home. And as an EV driver himself, he admitted feeling a little smug as he drove past queues of 20 cars outside petrol stations over the weekend in his Tesla.

Matt Cleevely, the owner of Cleevely Electric Vehicles in Cheltenham, Gloucestershire, which specialises in used EVs, had a surge of inquiries over the weekend and on Monday morning from customers citing the fuel crisis as a reason for switching to electric.

He expects enthusiasm to continue rising, with petrol shortages adding “fuel to the fire”.

Although he feels sorry for non-EV drivers who have been unable to get fuel, he said as an electric car owner it was “very nice” not to have to worry about where to get petrol at the weekend.

“It’s very convenient that we’ve been able to just fuel up on our driveway. It’s one of the biggest pros of having an electric vehicle.”

The National Franchised Dealers Association also said multiple dealers have reported a spike in EV enquiries since the start of the crisis.

The Society of Motor Manufacturers and Traders reported “bumper growth” in the sale of plug-in cars in July, reflecting broader global market growth in recent years, with battery electric vehicles comprising 9% of sales. Plug-in hybrids accounted for 8% of sales and hybrid electric vehicles nearly 12%. Also in July, more electric vehicles were registered than diesel for the second consecutive month.

The UK has pledged to ban the sale of new petrol and diesel cars by 2030 and of new hybrids by 2035, a timeline that aligns with expectations that within a decade most driving could be electric.

Warren Philips, the volunteer communities director at EVA England, said the tipping point for EVs had already been reached but the fuel crisis “underlines how electric cars could work for the majority of people”.

He added: “The interest is already there, this just adds to it. And going forward with things like Cop26, with the climate crisis, with the cost of fuel probably going to rise … people will start looking at electric cars where you just skip that entire step.”

 

Related News

View more

Clean Energy Accounts for 50% of Germany's Electricity

Germany Renewable Energy Milestone marks renewables supplying 53% of power, with record onshore wind and peak solar; hydrogen-ready gas plants and grid upgrades are planned to balance variability amid Germany's coal phase-out.

 

Key Points

It marks renewables supplying 53% of Germany's power, driven by wind and solar records in the energy transition.

✅ 53% of generation and 52% of consumption in 2024

✅ Onshore wind hit record; June solar peaked

✅ 24 GW hydrogen-ready gas plants planned for grid balancing

 

For the first time, renewable energy sources have surpassed half of Germany's electricity production this year, as indicated by data from sustainable energy organizations.

Preliminary figures from the Center for Solar Energy and Hydrogen Research alongside the German Association of Energy and Water Industries (BDEW) show that the contribution of green energy has risen to 53%, echoing how renewable power surpassed fossil fuels in Europe recently, a significant increase from 44% in the previous year.

The year saw a record output from onshore wind energy, as investments in European wind power climbed, and an unprecedented peak in solar energy production in June, as reported by the organizations. Additionally, renewable sources constituted 52% of Germany's total power consumption, marking an increase of approximately five percentage points.

Germany, Europe's leading economy, heavily impacted by Russia's reduced natural gas supplies last year, as Europeans push back from Russian oil and gas across the region, has been leaning on renewable sources to bridge the energy gap. This shift comes even as the country temporarily ramped up coal usage last winter. Having phased out its nuclear power plants earlier this year, Germany aims for an 80% clean energy production by 2030.

In absolute numbers, Germany produced a record level of renewable energy this year, supported by a solar power boost during the energy crisis, approximately 267 billion kilowatt-hours, according to the associations. A decrease of 11% in overall energy production facilitated a reduced reliance on fossil fuels.

However, Europe's transition to more sustainable energy sources, particularly offshore wind, has encountered hurdles such as increased financing and component costs, even as neighbors like Ireland pursue an ambitious green electricity goal within four years. Germany continues to face challenges in expanding its renewable energy capacity, as noted by BDEW’s executive board chairwoman, Kerstin Andreae.

Andreae emphasizes that while energy companies are eager to invest in the transition, they often encounter delays due to protracted approval processes, bureaucratic complexities, and scarcity of land despite legislative improvements.

German government officials are close to finalizing a strategy this week for constructing multiple new gas-fired power plants, despite findings that solar plus battery storage can be cheaper than conventional power in Germany, a plan estimated to cost around 40 billion euros ($44 billion). This initiative is a critical part of Germany's strategy to mitigate potential power shortages that might result from the discontinuation of coal power, particularly given the variability in renewable energy sources.

A crucial meeting involving representatives from the Economy and Finance Ministries, along with the Chancellor's Office, is expected to occur late Tuesday. The purpose is to finalize this agreement, according to sources who requested anonymity due to restrictions on public disclosure.

The Economy Ministry, spearheading this project, confirmed that intensive discussions are ongoing, although no further details were disclosed.

Germany's plan involves utilizing approximately 24 gigawatts (GW) of energy from hydrogen, including emerging offshore green hydrogen options, and gas-fired power plants to compensate for the fluctuations in wind and solar power generation. However, the proposal has faced challenges, particularly regarding the allocation of public funds for these projects, with disagreements arising with the European Union's executive in Brussels.

Environmental groups have also expressed criticism of the strategy. They advocate for an expedited end to fossil fuel usage and remain skeptical about the energy sector's arguments favoring natural gas as a transitional fuel. Despite natural gas emitting less carbon dioxide than coal, environmentalists question its role in Germany's energy future.

 

 

Related News

View more

Canada’s Clean Energy Sector Growth

Canada’s clean energy sector is expanding as Indigenous communities lead electricity transmission projects, drive sustainable growth, and strengthen energy independence through renewable power, community ownership, and grid connections across remote and regional areas of Canada.

 

What is Canada’s Clean Energy Sector?

Canada’s clean energy sector encompasses industries and initiatives that generate, transmit, and manage low-carbon electricity to meet the country's national climate goals. It emphasizes Indigenous participation, renewable innovation, and equitable economic growth.

✅ Expands renewable electricity generation and transmission

✅ Builds Indigenous-led ownership and partnerships

✅ Reduces emissions through sustainable energy transition

 

Canada’s clean energy sector is entering a pivotal era of transformation, with Indigenous communities emerging as leading partners in expanding electricity transmission and renewable infrastructure, including grid modernization projects that are underway nationwide. These communities are not only driving projects that connect remote regions to the grid but also redefining what energy leadership and equity look like in Canada.

At a recent webinar co-hosted by the Canadian Climate Institute and the Indigenous Power Coalition, panellists discussed the growing wave of Indigenous-led electricity transmission projects and the policies needed to strengthen Indigenous participation. The event, moderated by Frank Busch, featured Margaret Kenequanash, CEO of Wataynikaneyap Power; Kahsennenhawe Sky-Deer, Grand Chief of the Mohawk Council of Kahnawà:ke; and Blaise Fontaine, Co-Founder of ProACTIVE Planning Inc. and Indigenous Power Coalition.

The discussion comes at a crucial moment for Canada’s clean energy transition. As the country races to meet its climate commitments and zero-emissions electricity by 2035 targets, demand for clean power is rising rapidly. Historically, energy development in Canada occurred on Indigenous lands without consent or fair participation, but today, Indigenous communities collectively represent the largest clean energy asset owners outside Crown and private utilities.

“There is a genuine appetite for Indigenous communities to not just own transmission projects but to also lead,” said Fontaine. He noted that Indigenous communities are increasingly setting the terms of engagement, selecting partners, and shaping projects in line with their cultural and environmental values.

One of the strongest examples of this transformation is the Wataynikaneyap (Watay) Power Project in northern Ontario, a 1,800-kilometre transmission line connecting 17 remote First Nations communities to the provincial grid. “Communities must fully understand what they are getting into, since it is their homelands that will be impacted,” said Kenequanash. She emphasized that the project’s success came from five years of inter-community meetings to agree on shared principles before any external engagement.

The panel also highlighted the Hertel–New York Interconnection Line, co-owned by Hydro-Québec and the Mohawk Council of Kahnawà:ke, as another milestone in Indigenous energy leadership. Sky-Deer noted that the project’s co-ownership model required Quebec’s National Assembly to pass Bill 13, a first-of-its-kind legal framework. “That was a breakthrough,” she said, “but it also shows that true partnership still depends on one-off exceptions rather than standard policy.”

Panellists agreed that Canada’s regulatory systems have not kept pace with Indigenous leadership. Fontaine called on governments to “think outside the box to avoid staying stuck in the status quo,” emphasizing the need for enabling policies that align with an electric, connected and clean vision for Canada while making Indigenous-led ownership the norm rather than the exception.

Financial readiness is another key factor driving Indigenous participation. Communities are now accessing capital through partnerships with financial institutions and government loan programs, and growing evidence that a 2035 zero-emissions grid is practical and profitable is strengthening investor confidence. The collaboration between the Mohawk Council of Kahnawà:ke and the Caisse de dépôt et placement du Québec exemplifies tailored financing and long-term investment that supports community ownership and sustainable growth.

True equity, however, goes beyond financial participation. “It’s not just about having a percentage stake,” Fontaine explained. “True equity means meaningful decision-making power and control.” Indigenous leaders are insisting on co-governance structures that align with their worldviews, prioritizing environmental protection, cultural respect, and intergenerational stewardship.

The benefits of this approach extend far beyond project economics. Communities involved in ownership experience tangible local benefits, including employment and training opportunities, as well as new investments in education and culture. Hydro-Québec’s $10 million contribution to the Kahnawà:ke Cultural Arts Center is one example of how partnerships can support cultural renewal and community development.

As Canada looks to build east–west electricity interties and expand renewable energy generation, including solar where Canada has lagged in deployment nationwide, Indigenous leadership is becoming increasingly central to national energy policy. Fontaine noted that this shift offers “even greater opportunities for Indigenous-led transmission as Canada connects its provinces rather than just exporting power south.”

In particular, Alberta's energy profile highlights both rapid growth in renewables and ongoing fossil fuel strength, informing intertie planning and market design.

On the National Truth and Reconciliation Day, panellists urged reflection on both the barriers that remain and the opportunities ahead. Indigenous leadership in Canada’s clean energy sector is proving that reconciliation can take tangible form, through ownership, partnership, and shared prosperity.

This transformation represents more than an energy transition; it’s a rebalancing of power, respect, and responsibility, carried out “in a good way,” as the panellists emphasized, and essential to building a clean, inclusive energy future for all Canadians while strengthening the global electricity market position of the country.

 

Related Articles

 

View more

There's Room For Canada-U.S. Collaboration As Companies Turn To Electric Cars

Canada EV Supply Chain aligns electric vehicle manufacturing, batteries, and autonomous tech with cross-border trade, leveraging lithium, cobalt, and rare earths as GM, Ford, and Project Arrow scale zero-emissions innovation and domestic sourcing.

 

Key Points

Canada's integrated resources, battery tech, and manufacturing network supporting EV production and cross-border trade.

✅ Leverages lithium, cobalt, and rare earths for battery supply

✅ Integrates GM, Ford, and Project Arrow manufacturing hubs

✅ Aligns with autonomous tech, hydrogen, and zero-emissions goals

 

The storied North American automotive industry, the ultimate showcase of Canada’s high-tensile trade ties with the United States, is about to navigate a dramatic hairpin turn.

But as the Big Three veer into the all-electric, autonomous era, some Canadians want to seize the moment to capitalize on the U.S. pivot and take the wheel.

“There’s a long shadow between the promise and the execution, but all the pieces are there,” says Flavio Volpe, president of the Automotive Parts Manufacturers’ Association.

“We went from a marriage on the rocks to one that both partners are committed to. It could be the best second chapter ever.”

Volpe is referring specifically to GM, which announced late last month an ambitious plan to convert its entire portfolio of vehicles to an all-electric platform by 2035, even as a 2035 EV mandate debate unfolds.

But that decision is just part of a market inflection point across the industry, with existential ramifications for one of the most tightly integrated cross-border manufacturing and supply-chain relationships in the world.

China is already working hard to become the “source of a new way” to power vehicles, President Joe Biden warned last week.

“We just have to step up.”

Canada has both the resources and expertise to do the same, says Volpe, whose ambitious Project Arrow concept — a homegrown zero-emissions vehicle named for the 1950s-era Avro interceptor jet — is designed to showcase exactly that.

“We’re going to prove to the market, we’re going to prove to the (manufacturers) around the planet, that everything that goes into your zero-emission vehicle can be made or sourced here in Canada,” he says.

“If somebody wants to bring what we did over the line and make 100,000 of them a year, I’ll hand it to them.”

GM earned the ire of Canadian auto workers in 2018 by announcing the closure of its assembly plant in Oshawa, Ont. It later resurrected the facility with a $170-million investment to retool it for autonomous vehicles.

“It was, ‘You closed Oshawa, how dare you?’ And I was one of the ‘How dare you’ people,” Volpe says.

“Well, now that they’ve reopened Oshawa, you sit there and you open your eyes to the commitment that General Motors made.”

Ford, too, has entered the fray, promising $1.8 billion to retool its sprawling landmark facility in Oakville, Ont., to build EVs, as EV assembly deals help put Canada in the race.

‘Range anxiety’
It’s a leap of faith of sorts, considering what market experts say is ongoing consumer doubt about EVs, including shortages and wait times that persist.

“Range anxiety” — the persistent fear of a depleted battery at the side of the road — remains a major concern, even though it’s less of a problem than most people think.

Consulting firm Deloitte Canada, which has been tracking automotive consumer trends for more than a decade, found three-quarters of future EV buyers it surveyed planned to charge their vehicles at home overnight.

“The difference between what is a perceived issue in a consumer’s mind and what is an actual issue is actually quite negligible,” Ryan Robinson, Deloitte’s automotive research leader, says in an interview.

“It’s still an issue, full stop, and that’s something that the industry is going to have to contend with.”

So, too, is price, especially with the end of the COVID-19 pandemic still a long way off. Deloitte’s latest survey, released last month, found 45 per cent of future buyers in Canada hope to spend less than $35,000 — a tall order when most base electric-vehicle models hover between $40,000 and $45,000.

“You put all of that together and there’s still some major challenges that a lot of stakeholders that touch the automotive industry face,” Robinson says.

“It’s not just government, it’s not just automakers, but there are a variety of stakeholders that have a role to play in making sure that Canadians are ready to make the transition over to electric mobility.”

With protectionism no longer a dirty word in the United States and Biden promising to prioritize American workers and suppliers, the Canadian government’s job remains the same as it ever was: making sure the U.S. understands Canada’s mission-critical role in its own economic priorities.

“We’re both going to be better off on both sides of the border, as we have been in the past, if we orient ourselves toward this global competition as one force,” says Gerald Butts, vice-chairman of the political-risk consultancy Eurasia Group and a former principal secretary to Prime Minister Justin Trudeau.

“It served us extraordinarily well in the past ... and I have no reason to believe it won’t serve us well in the future.”

EV battery industry
Last month, GM announced a billion-dollar plan to build its new all-electric BrightDrop EV600 van in Ingersoll, Ont., at Canada’s first large-scale EV manufacturing plant for delivery vehicles.

That investment, Volpe says, assumes Canada will take the steps necessary to help build a homegrown battery industry out of the country’s rare-earth resources like lithium and cobalt that are waiting to be extracted in northern Ontario, Quebec and elsewhere, including projects such as a $1.6B battery plant in Niagara that signal momentum.

Given that the EV industry is still in his infancy, the free market alone won’t be enough to ensure those resources can be extracted and developed, he says.

“General Motors made a billion-dollar bet on Canada because it’s going to assume that the Canadian government — this one or the next one — is going to commit” to building that business.

Such an investment would pay dividends well beyond the auto sector, considering the federal Liberal government’s commitment to lowering greenhouse gas-emissions and meeting targets set out in the Paris climate accord.

“If you make investments in renewable energy and energy storage in Ontario using battery technology, you can build an industry at scale that the auto industry can borrow,” Volpe says.

Major manufacturing, retail and office facilities would be able to use that technology to help “shave the peak” off Canada’s GHG emissions and achieve those targets, all the while paving the way for a self-sufficient electric-vehicle industry.

“You’d be investing in the exact same technology you’d use in a car.”

There’s one problem, says Robinson: the lithium-ion batteries on roads right now might not be where the industry ultimately lands.

“We’re not done with with battery technology,” Robinson says. “What you don’t want to do is invest in a technology that is that is rapidly evolving, and could potentially become obsolete going forward.”

Fuel cells — energy-efficient, hydrogen-powered units that work like batteries, but without the need for constant recharging — continue to be part of the conversation, he adds.

“The amount of investment is huge, and you want to be sure that you’re making the right decision, so you don’t find yourself behind the curve just as all that capacity is coming online.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.