California's Looming Green New Car Wreck


gavin newsom

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

California Gas Car Ban 2035 signals a shift to electric vehicles, raising grid reliability concerns, charging demand, and renewable energy challenges across solar, wind, and storage, amid rolling blackouts and carbon-free power mandates.

 

Key Points

An order ending new gasoline car sales by 2035 in California, accelerating EV adoption and pressuring the power grid.

✅ 25% EV fleet could add 232.5 GWh/day charging demand by 2040

✅ Solar and wind intermittency strains nighttime home charging

✅ Grid upgrades, storage, and load management become critical

 

On September 23, California Gov. Gavin Newsom issued an executive order that will ban the sale of gasoline-powered cars in the Golden State by 2035. Ignoring the hard lessons of this past summer, when California’s solar- and wind-reliant electric grid underwent rolling blackouts, Newsom now adds a huge new burden to the grid in the form of electric vehicle charging, underscoring the need for a much bigger grid to meet demand. If California officials follow through and enforce Newsom’s order, the result will be a green new car version of a train wreck.

In parallel, the state is moving on fleet transitions, allowing electric school buses only from 2035, which further adds to charging demand.

Let’s run some numbers. According to Statista, there are more than 15 million vehicles registered in California. Per the U.S. Department of Energy, there are only 256,000 electric vehicles registered in the state—just 1.7 percent of all vehicles, a share that will challenge state power grids as adoption grows.

Using the Tesla Model3 mid-range model as a baseline for an electric car, you’ll need to use about 62 kilowatt-hours (KWh) of power to charge a standard range Model 3 battery to full capacity. It will take about eight hours to fully charge it at home using the standard Tesla NEMA 14-50 charger, a routine that has prompted questions about whether EVs could crash the grid by households statewide.

Now, let’s assume that by 2040, five years after the mandate takes effect, also assuming no major increase in the number of total vehicles, California manages to increase the number of electric vehicles to 25 percent of the total vehicles in the state. If each vehicle needs an average of 62 kilowatt-hours for a full charge, then the total charging power required daily would be 3,750,000 x 62 KWh, which equals 232,500,000 KWh, or 232.5 gigawatt-hours (GWh) daily.

Utility-scale California solar electric generation according to the energy.ca.gov puts utility-scale solar generation at about 30,000 GWh per year currently. Divide that by 365 days and we get 80 GWh/day, predicted to double, to 160 GWh /day. Even if we add homeowner rooftop solar, and falling prices for solar and home batteries in the wake of blackouts, about half the utility-scale, at 40 GWh/day we come up to 200 GW/h per day, still 32 GWh short of the charging demand for a 25% electric car fleet in California. Even if rooftop solar doubles by 2040, we are at break-even, with 240GWh of production during the day.

Bottom-line, under the most optimistic best-case scenario, where solar operates at 100% of rated capacity (it seldom does), it would take every single bit of the 2040 utility-scale solar and rooftop capacity just to charge the cars during the day. That leaves nothing left for air conditioning, appliances, lighting, etc. It would all go to charging the cars, and that’s during the day when solar production peaks.

But there’s a much bigger problem. Even a grade-schooler can figure out that solar energy doesn’t work at night, when most electric vehicles will be charging at homes, even as some officials look to EVs for grid stability through vehicle-to-grid strategies. So, where does Newsom think all this extra electric power is going to come from?

The wind? Wind power lags even further behind solar power. According to energy.gov, as of 2019, California had installed just 5.9 gigawatts of wind power generating capacity. This is because you need large amounts of land for wind farms, and not every place is suitable for high-return wind power.

In 2040, to keep the lights on with 25 percent of all vehicles in California being electric, while maintaining the state mandate requiring all the state’s electricity to come from carbon-free resources by 2045, California would have to blanket the entire state with solar and wind farms. It’s an impossible scenario. And the problem of intermittent power and rolling blackouts would become much worse.

And it isn’t just me saying this. The U.S. Environmental Protection Agency (EPA) agrees. In a letter sent by EPA Administrator Andrew Wheeler to Gavin Newsom on September 28, Wheeler wrote:

“[It] begs the question of how you expect to run an electric car fleet that will come with significant increases in electricity demand, when you can’t even keep the lights on today.

“The truth is that if the state were driving 100 percent electric vehicles today, the state would be dealing with even worse power shortages than the ones that have already caused a series of otherwise preventable environmental and public health consequences.”


California’s green new car wreck looms large on the horizon. Worse, can you imagine electric car owners’ nightmares when California power companies shut off the power for safety reasons during fire season? Try evacuating in your electric car when it has a dead battery.

Gavin Newsom’s “no more gasoline cars sold by 2035” edict isn’t practical, sustainable, or sensible, much like the 2035 EV mandate in Canada has been criticized by some observers. But isn’t that what we’ve come to expect with any and all of these Green New Deal-lite schemes?

 

Related News

Related News

Four effective ways to meet US decarbonization goals

US Grid Decarbonization demands balancing renewables, reliability, and resilience with smart transmission, storage, siting, and demand response, leveraging digital asset management to modernize infrastructure while meeting climate goals and rising electricity consumption.

 

Key Points

Low-carbon power while maintaining reliability via renewables, storage, transmission, and digital operations.

✅ Siting wind and solar requires community engagement and environmental review

✅ Balance variable renewables with storage, flexible load, and firm capacity

✅ Modernize transmission and digitize asset data for reliable operations

 

Last week, over 13,000 energy and technology leaders arrived in Dallas for DISTRIBUTECH International to share knowledge, showcase new technology advancements, and discuss initiatives to prepare for the future of energy. Among the many topics discussed was the critical need to balance rising energy demands and environmental pressures while understanding why the grid isn't 100% renewable today alongside effective climate change solutions.

The most widespread source of energy consumption is electricity. According to The U.S. Energy Information Administration, 2020 electricity consumption rates were roughly 3.8 trillion kWh - 13 times higher than in 1950. With our ever-increasing reliance on electricity, renewables' share of generation is also rising and this number is sure to grow exponentially in the coming years.

How can the US achieve meaningful decarbonization goals without sacrificing reliable and stable energy? Here are 4 of the biggest challenges and practical ways to meet them:


Siting New Solar and Wind Farms
Building renewable energy sources is more difficult than it seems. Scouting for sites is fraught with issues such as community opposition due to local aesthetics and clean energy's hidden costs around disruption to the environment and recreation.

NIMBY (Not In My Backyard) is an influential source of opposition. Local residents join together in an effort to prevent shore front views in wealthy coastal areas from obstruction, which are needed to support offshore wind farms. These farms can also negatively impact local fisheries, while outdoor sports and entertainment activities such as sailing, waterskiing, fishing, or swimming may be disrupted, which are equally opposed by NIMBY advocates.

Utilities must take these concerns into account when scouting for renewable energy sites.

 

Maintaining Consistent Availability of Generation Capacity
The capacity to generate consistent, reliable electricity is both a regional and nationwide concern.

Wind and solar farms depend on a consistent level of wind velocity and sunny periods, yet wind and solar could meet 80% of U.S. demand and regional concerns must be considered. For example, the southwestern United States is an ideal location for large commercial solar arrays. Areas in the north are more problematic since fall and winter days are shorter, reducing their ability to consistently generate energy. The Midwest is a prime location for wind-based generation since it experiences a consistent level of wind throughout the year.

Nighttime periods and cloudy days virtually eliminate solar farms as a consistent energy source while loss of available winds impacts the reliability of wind as a base load supply of energy generation.

 

Pivoting From Current Energy Usage Models
Over the last 20 years, utilities have been heavily involved with normalizing consumer energy consumption curves, pursuing grid resilience strategies to manage variability. Due to the high cost of siting new fossil fuel facilities, building new electric grid interconnections, and the high commodity pricing for imported power, utilities were driven to modify their customers’ energy usage patterns.

These consumption regulating policies included:

  • Time of use metering to entice customers to use high energy devices at night
  • Installation of energy monitoring devices on high use customer equipment to enable the utility to reduce energy demand during peak use periods
  • Charging electric vehicles overnight

With fundamental changes occurring in how energy is generated, the availability of renewable power during low or no-sun periods and lower wind levels will require utilities to alter their energy consumption models.

 

Utilizing Government Support of New Electric Infrastructure
With the proposed government infusion of funds, including a rule to boost renewable transmission, to build and modernize infrastructures, utility leaders will be ideally positioned to drastically improve the reliability of the US electric grid.

Utilities will be involved in aggressive transmission line building projects to ensure the effective distribution of energy across multiple state lines, aligning with the U.S. grid overhaul for renewables underway today. This expansive build out of the US transmission and distribution system will create a dramatic increase in the need to accurately document the location and details of the new utility assets for current tracking and future analysis needs.

Energy leaders must seek advanced technology to provide them with solutions for precisely this purpose. Manual, paper-based field data collection must be replaced with digital workflows which automate and simplify asset data capture and analysis. Continued reliance on manual methods will cause them to lag behind the industry and impede their ability to support renewable energy for the modern era.

 

Related News

View more

Canada must commit to 100 per cent clean electricity

Canada Green Investment Gap highlights lagging EV and clean energy funding as peers surge. With a green recovery budget pending, sustainable finance, green bonds, EV charging, hydrogen, and carbon capture are pivotal to decarbonization.

 

Key Points

Canada lags peers in EV and clean energy investment, urging faster budget and policy action to cut emissions.

✅ Per capita climate spend trails US and EU benchmarks

✅ EVs, hydrogen, charging need scaled funding now

✅ Strengthen sustainable finance, green bonds, disclosure

 

Canada is being outpaced on the international stage when it comes to green investments in electric vehicles and green energy solutions, environmental groups say.

The federal government has an opportunity to change course in about three weeks, when the Liberals table their first budget in over two years, the International Institute for Sustainable Development (IISD) argued in a new analysis endorsed by nine other climate action, ecology and conservation organizations.

“Canada’s international peers are ramping up commitments for green recovery, including significant investments from many European countries,” states the analysis, “Investing for Tomorrow, Today,” published March 29.

“To keep up with our global peers, sufficient investments and strengthened regulations, including EV sales regulations, must work in tandem to rapidly decarbonize all sectors of the Canadian economy.”

Deputy Prime Minister and Finance Minister Chrystia Freeland confirmed last week that the federal budget will be tabled April 19. The Liberals are expected to propose between $70 billion and $100 billion in fiscal stimulus to jolt the economy out of its pandemic doldrums.

The government teased a coming economic “green transformation” late last year when Freeland released the fall economic statement, promising to examine federal green bonds, border carbon adjustments and a sustainable finance market, with tweaks like tightening the climate-risk disclosure obligations of corporations.

The government has also proposed a wide range of green measures in its new climate plan released in December — which the think tank called the “most ambitious” in Canada’s history — including energy retrofit programs, boosting hydrogen and other alternative fuels, and rolling out carbon capture technology in a grid where 18% of electricity still came from fossil fuels in 2019.

But the possible “three-year stimulus package to jumpstart our recovery” mentioned in the fall economic statement came with the caveat that the COVID-19 virus would have to be “under control.” While vaccines are being administered, Canada is currently dealing with a rise of highly transmissible variants of the virus.

Freeland spoke with United States Vice-President Kamala Harris on March 25, highlighting potential Canada-U.S. collaboration on EVs alongside the “need to support entrepreneurs, small businesses, young people, low-wage and racialized workers, the care economy, and women” in the context of an economic recovery.

Biden is contemplating a climate recovery plan that could exceed US$2 trillion as Canada looks to capitalize on the U.S. auto pivot to EVs to spur domestic industry. Per capita, that is over 8 times what Canada has announced so far for climate-related spending in the wake of the pandemic, according to a new analysis from green groups.
U.S. President Joe Biden is contemplating a climate and clean energy recovery plan that could “exceed US$2 trillion,” White House officials told reporters this month. “Per capita, that is over eight times what Canada has announced so far for climate-related spending in the wake of the pandemic,” the IISD-led analysis stated.

Biden’s election platform commitment of $508 billion over 10 years in clean energy was also seen as “significantly higher per capita than Canada’s recent commitments.”

Since October 2020, Canada has announced $36 billion in new climate-focused funding, a 2035 EV mandate and other measures, the groups found. By comparison, they noted, a political agreement in Europe proposed that a minimum of 37 per cent of investments in each national recovery plan should support climate action. France and Germany have also committed tens of billions of dollars to support clean hydrogen.

As for electric vehicles (EVs), the United Kingdom has committed $4.9 billion, while Germany has put up $7.5 billion to expand EV adoption and charging infrastructure and sweeten incentive programs for prospective buyers, complementing Canada’s ambitious EV goals announced domestically. The U.K. has also committed $3.5 billion for bike lanes and other active transportation, the groups noted.

Canada announced $400 million over five years this month for a new network of bike lanes, paths, trails and bridges, the first federal fund dedicated to active transportation.

 

Related News

View more

France Hits Record: 20% Of Market Buys Electric Cars

France Plug-In Electric Car Sales September 2023 show rapid EV adoption: 45,872 plug-ins, 30% market share, BEV 19.6%, PHEV 10.2%, with Tesla Model Y leading registrations amid sustained year-over-year growth.

 

Key Points

France registered 45,872 plug-ins in September 2023, a 30% share, with BEVs at 19.6% and PHEVs at 10.2%.

✅ Tesla Model Y led BEVs with 5,035 registrations in September

✅ YTD plug-in share 25%; BEV 15.9%, PHEV 9.1% across passenger cars

✅ Total market up 9% YoY to 153,916; plug-ins up 35% YoY

 

New passenger car registrations in France increased in September by nine percent year-over-year to 153,916, mirroring global EV market growth trends, taking the year-to-date total to 1,286,247 (up 16 percent year-over-year).

The market has been expanding every month this year (recovering slightly from the 2020-2022 collapse and the period when EU EV share grew during lockdowns across the bloc) and also is becoming more and more electrifying thanks to increasing plug-in electric car sales.

According to L’Avere-France, last month 45,872 new passenger plug-in electric cars were registered in France (35 percent more than a year ago), which represented almost 30 percent of the market, aligning with the view that the age of electric cars is arriving ahead of schedule. That's a new record share for rechargeable cars and a noticeable jump compared to just over 24 percent a year ago.

What's even more impressive is that passenger all-electric car registrations increased to over 30,000 (up 34 percent year-over-year), taking a record share of 19.6 percent of the market. That's basically one in five new cars sold, and in the U.S., plug-ins logged 19 billion electric miles in 2021 as a benchmark.

Plug-in hybrids are also growing (up 35% year-over-year), and with 15,699 units sold, accounted for 10.2 percent of the market (a near record value).


Plug-in car sales in France – September 2023

So far this year, more than 341,000 new plug-in electric vehicles have been registered in France, including over 321,000 passenger plug-in cars (25 percent of the market), while in the U.S., EV sales are soaring into 2024 as well.

Plug-in car registrations year-to-date (YOY change):

  • Passenger BEVs: 204,616 (up 45%) and 15.9% market share
  • Passenger PHEVs: 116,446 (up 31%) and 9.1% market share
  • Total passenger plug-ins: 321,062 (up 40%) and 25% market share
  • Light commercial BEVs: 20,292 (up 111%)
  • Light commercial PHEVs: 281 (down 38%)
  • Total plug-ins: 341,635 (up 43%)

For reference, in 2022, more than 346,000 new plug-in electric vehicles were registered in France (including almost 330,000 passenger cars, which was 21.5 percent of the market).

We can already tell that the year 2023 will be very positive for electrification in France, with a potential to reach 450,000 units or so, though new EV incentive rules could reshape the competitive landscape.


Models
In terms of individual models, the Tesla Model Y again was the most registered BEV with 5,035 new registrations in September. This spectacular result enabled the Model Y to become the fifth best-selling model in the country last month (Tesla, as a brand, was seventh).

The other best-selling models are usually small city cars - Peugeot e-208 (3,924), Dacia Spring (2,514), Fiat 500 electric (2,296), and MG4 (1,945), amid measures discouraging Chinese EVs in France. Meanwhile, the best-selling electric Renault - the Megane-e - was outside the top five BEVs, which reveals to us how much has changed since the Renault Zoe times.

After the first nine months of the year, the top three BEVs are the Tesla Model Y (27,458), Dacia Spring (21,103), and Peugeot e-208 (19,074), slightly ahead of the Fiat 500 electric (17,441).

 

Related News

View more

Will EV Supply Miss the Demand Mark in the Short and Medium Term?

EV Carpocalypse signals potential mismatch between electric vehicle production and demand, as charging infrastructure, utility coordination, and plug-in hybrid strategies lag forecasts, while state mandates and market-share plays drive cautious, data-informed scaling.

 

Key Points

EV Carpocalypse describes overbuilt EV supply versus demand amid charging rollout, mandates, and risk-managed scaling.

✅ Forecasts vs actual EV demand may diverge in near term

✅ Charging infrastructure and utilities lag vehicle output

✅ Mandates and PHEVs cushion adoption while data guides scaling

 

According to Forbes contributor David Kiley, and Wards Automotive columnist John McElroy, there may be an impending “carpocalypse” of electric vehicles on the way. Sounds very damning and it’s certainly not the upbeat tone I’ve taken on nearly every piece of EV demand content I’ve authored but the author, Kiley does bring up some interesting points worth considering. EV Adoption is happening, and it’s certainly doing so at ever faster rates as the market nears an EV inflection point today. The infrastructure (charging stations, utility cooperation) is being built out more slowly than vehicle manufacturers are producing cars but, as the GM president on EV hurdles has noted, the issue seems to be just that, maybe even the short and medium term plans for EV manufacturing are too aggressive.

#google#

With new EV and plug-in hybrid vehicle sales representing a mere .6% of new car cales in the US, a sign that EV sales remain behind gas cars even as new models proliferate, car makers are are going to be spending more than $100 billion to come out with more than a hundred models of battery electric vheicles which also includes PHEVs and the fear is these vehicles aren’t going to sell in the numbers that automakers and industry analysts may have expected. But forecasts are just that, forecasts, even as U.S. EV sales surge into 2024 suggest momentum. So there’s a valid argument to be made that they’ll either overshoot the true mark or come in way below the actual amount. With nine U.S. states mandating that 15% of new cars sold be EVs by 2025, you could say that at least automakers have supporters in state government helping to push the new technology into the hands of more drivers.

Still, it’s anyone’s guess as to what true adoption will be, and a brief Q1 2024 market share dip underscores lingering volatility. The use of big data and just in time manufacturing will ensure that manufacturers will miss the mark on EVs by less than they have in the past, and will able to cope with breaking even on these vehicles for the sake of gobbling up precious early stage market share. After all, many vendors have up to this point been very willing to break even or make a loss on their lease-only EVs or on EV or hybrid financing in order to gain that share and build out their brand awareness and technical prowess. With some stops and starts, demand will meet supply or supply may need to meet demand but either way, the EV adoption wave is coming to a driveway near you. 

 

Related News

View more

UK Renewable energy projects worth billions stuck on hold

UK Renewable Grid Connection Delays threaten the 2035 zero-carbon electricity target as National Grid queues stall wind and solar projects, investors, and infrastructure, slowing clean energy deployment, curtailing capacity build-out, and risking net-zero progress.

 

Key Points

Prolonged National Grid queues delaying wind and solar connections, jeopardizing the UK's 2035 clean power target.

✅ Up to 15-year waits for grid connections

✅ Over £200bn projects stuck in the queue

✅ Threatens zero-carbon electricity by 2035

 

The UK currently has a 2035 target for 100% of its electricity to be produced without carbon emissions, while Ireland's green electricity progress offers a nearby benchmark within the next four years.

But meeting the target will require a big increase in the number of renewable projects across the country. It is estimated as much as five times more solar and four times as much wind is needed, with growth in UK offshore wind expected to play a key role here.

The government and private investors have spent £198bn on renewable power infrastructure since 2010, alongside European wind investments recorded last year. But now energy companies are warning that significant delays to connect their green energy projects to the system will threaten their ability to bring more green power online.

A new wind farm or solar site can only start supplying energy to people's homes once it has been plugged into the grid.

Energy companies like Octopus Energy, one of Europe's largest investors in renewable energy, say they have been told by National Grid that they need to wait up to 15 years for some connections, even as a new 10 GW contract aims to speed UK grid additions - far beyond the government's 2035 target.

'Longest grid queues in Europe'
There are currently more than £200bn worth of projects sitting in the connections queue, the BBC has calculated.

Around 40% of them face a connection wait of at least a year, according to National Grid's own figures. That represents delayed investments worth tens of billions of pounds, reflecting stalled grid spending that slows renewable rollouts.

"We currently have one of the longest grid queues in Europe," according to Zoisa North-Bond, chief executive of Octopus Energy Generation.

The problem is so many new renewable projects are applying for connections, the grid cannot keep up with required network expansion such as new pylons in Scotland being discussed nationwide.

The system was built when just a few fossil fuel power plants were requesting a connection each year, but now there are 1,100 projects in the queue, a challenge mirrored by U.S. grid hurdles in moving toward 100% renewables today.

 

Related News

View more

EV Boom Unexpectedly Benefits All Electricity Customers

Electric Vehicles Lower Electricity Rates by boosting demand, enabling fixed-cost recovery, and encouraging off-peak charging that balances the grid, reduces peaker plant use, and funds utility upgrades, with V2G poised to expand system benefits.

 

Key Points

By boosting off-peak demand and utility revenue, EVs spread fixed costs, cut peaker use, and stabilize the grid.

✅ Off-peak charging flattens load, reducing peaker plant reliance

✅ Higher kWh sales spread fixed grid costs across more users

✅ V2G can supply power during peaks and emergencies

 

Electric vehicles (EVs) are gaining popularity, and it appears they might be offering an unexpected benefit to everyone – including those who don't own an EV.  A new study by the non-profit research group Synapse Energy Economics suggests that the growth of electric cars is actually contributing to lower electricity rates for all ratepayers.


How EVs Contribute to Lower Rates

The study explains several factors driving this surprising trend:

  • Increased Electricity Demand: Electric vehicles require additional electricity, boosting rising electricity demand on the grid.
  • Optimal Charging Times: Many EV owners take advantage of off-peak charging discounts. Charging cars overnight, when electricity demand is typically low, helps to balance state power grids and reduce the need for expensive "peaker" power plants, which are only used to meet occasional spikes in demand.
  • Revenue for Utilities: Electric car charging can generate substantial revenue for utilities, potentially supporting investment in grid improvements, energy storage solutions and renewable energy projects that can bring long-term benefits to all customers.


A Significant Impact

The Synapse Energy Economics study analyzed data from 2011 to 2021 and concluded that EV drivers already contributed over $3 billion more to the grid than their associated costs. That, in turn, reduced monthly electricity bills for all customers.


Benefits May Grow

While the impact on electricity rates has been modest so far, experts anticipate the benefits to grow as EV adoption rates increase. Vehicle-to-grid (V2G) technology, which allows EVs to feed stored power back into the grid during emergencies or high-demand periods, has the potential to further optimize electricity usage patterns and create additional benefits for electric utilities and customers.


National Implications

The findings of this study offer hope to other regions seeking to increase electric vehicle adoption rates and support California's grid stability efforts, which is a key step towards reducing transportation-related greenhouse gas emissions. This news may alleviate concerns about potential electricity rate hikes driven by EV adoption and suggests that the benefits will be broadly shared.


More than Just Environmental Benefits

Electric vehicles bring a clear environmental advantage by reducing reliance on fossil fuels. However, this unexpected economic benefit could further strengthen the case for accelerating the adoption of electric vehicles. This news might encourage policymakers and the public to consider additional incentives or policies, including vehicle-to-building charging approaches, to promote the transition to this cleaner mode of transportation knowing it can yield benefits beyond environmental goals.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified