Italy : Enel Green Power and Sapio sign an agreement to supply green hydrogen produced by NextHy in Sicily


hydrogen electricity

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Sicily Green Hydrogen accelerates decarbonization via renewable energy, wind farm electrolysis, hydrogen storage, and distribution from Enel Green Power and Sapio at the NextHy industrial lab in Carlentini and Sortino Sicily hub.

 

Key Points

Sicily Green Hydrogen is an Enel-Sapio plan to produce hydrogen via wind electrolysis for industrial decarbonization.

✅ 4 MW electrolyzer powered by Carlentini wind farm

✅ Estimated 200+ tons annual green H2 production capacity

✅ Market distribution managed by Sapio across Sicily

 

This green hydrogen will be produced at the Sicilian industrial plant, an innovative hub that puts technology at the service of the energy transition, echoing hydrogen innovation funds that support similar goals worldwide

Activating a supply of green hydrogen produced using renewable energy from the Carlentini wind farm in eastern Sicily is the focus of the agreement signed by Enel Green Power and Sapio. The agreement provides for the sale to Sapio of the green hydrogen that will be produced, stored in clean energy storage facilities and made available from 2023 at the Carlentini and Sortino production sites, home to Enel Green Powers futuristic NextHy innitiative. Sapio will be responsible for developing the market and handling the distribution of renewable hydrogen to the end customer.

In contexts where electrification is not easily achievable, green hydrogen is the key solution for decarbonization as it is emission-free and offers a potential future for power companies alongside promising development prospects, commented Salvatore Bernabei, CEO of Enel Green Power. For this reason we are excited about the agreement with Sapio. It is an agreement that looks to the future by combining technological innovation and sustainable production.

Sapio is strongly committed to contributing to the EUs achievement of the UN SDGs, commented Alberto Dossi, President of the Sapio Group, and with this project we are taking a firm step towards sustainable development in our country. The agreement with EGP also gives us the opportunity to integrate green hydrogen into our business model, as jurisdictions propose hydrogen-friendly electricity rates to grow the hydrogen economy, which is based on our strong technological expertise in hydrogen and its distribution over 100 years in business. In this way we will also be able to give further support to the industrial activities we are already carrying out in Sicily.

The estimated 200+ tons of production capacity of the Sicilian hub is the subject of the annual supply foreseen in the agreement. Once fully operational, the green hydrogen will be produced mainly by a 4 MW electrolyzer, which is powered exclusively by the renewable energy of the existing wind farm, and to a lesser extent by the state-of-the-art electrolysis systems tested in the platform. Launched by Enel Green Power in September 2021, NextHys Hydrogen Industrial Lab is a unique example of an industrial laboratory in which production activity is constantly accompanied by technological research. In addition to the sectors reserved for full-scale production, there are also areas dedicated to testing new electrolyzers, components such as valves and compressors, and innovative storage solutions based on liquid and solid means of storage: in line with Enels open-ended approach, this activity will be open to the collaboration of more than 25 entities including partners, stakeholders and innovative startups. The entire complex is currently undergoing an environmental impact assessment at the Sicily Regions Department of Land and Environment.

It is an ambitious project with a sustainable energy source at its heart that will be developed at every link in the chain: thanks to the agreement with Sapio, in fact, at NextHy green hydrogen will now not only be produced, stored and moved on an industrial scale, but also purchased and used by companies that have understood that green hydrogen is the solution for decarbonizing their production processes. In this context, this experimental approach that is open to external contributions will allow the Enel Green Power laboratory team to test the project on an industrial scale, so as to create the best conditions for a commercial environment that can make the most of all present and future technologies for the generation, storage and transport of green hydrogen, including green hydrogen microgrids that demonstrate scalable integration. It is an initiative consistent with Enels Open Innovability spirit: meeting the challenges of the energy transition by focusing on innovation, ideas and their transformation into reality.

 

Related News

Related News

Electric car charging networks jostle for pole position amid Biden's push to electrify

EV Charging Infrastructure Expansion accelerates as DC fast charging, Level 2 stations, and 150-350 kW networks grow nationwide, driven by Biden's plan, ChargePoint, EVgo, and Electrify America partnerships at retailers like Walmart and 7-Eleven.

 

Key Points

The nationwide build-out of public EV chargers, focusing on DC fast charging, kW capacity, and retailer partnerships.

✅ DC fast chargers at 150-350 kW cut charge times

✅ Retailers add ports: Walmart and 7-Eleven expand access

✅ Investments surge via ChargePoint, EVgo, Electrify America

 

Today’s battery-electric vehicles deliver longer range at a lower cost, are faster and more feature-laden than earlier models. But there’s one particular challenge that still must be addressed: charging infrastructure across the U.S.

That’s a concern that President Joe Biden wants to address, with $174 billion of his proposed infrastructure bill to be used to promote the EV boom while expanding access. About 10 percent of that would help fund a nationwide network of 500,000 chargers.

However, even before a formal bill is delivered to Congress, the pace at which public charging stations are switching on is rapidly accelerating.

From Walmart to 7-Eleven, electric car owners can expect to find more and more charging stations available, as automakers strike deals with regulators, charger companies and other businesses, even as control of charging remains contested.

7-Eleven convenience chain already operates 22 charging stations and plans to grow that to 500 by the end of 2022. Walmart now lets customers charge up at 365 stores around the country and plans to more than double that over the next several years.

According to the Department of Energy, there were 20,178 public chargers available at the end of 2017. That surged to 41,400 during the first quarter of this year, as electric utilities pursue aggressive charging plans.

The vast majority of those available three years ago were “Level 2,” 240-volt AC chargers that would take as much as 12 hours to fully recharge today’s long-range BEVs, like the Tesla Model 3 or Ford Mustang Mach-E. Increasingly, new chargers are operating at 400 volts and even 800 volts, delivering anywhere from 50 to 350 kilowatts. The new Kia EV6 will be able to reach 80 percent of its full capacity in just 18 minutes.

“Going forward, unless there is a limit to the power we can access at a particular location, all our new chargers will have 150 to 350 kilowatt capacity,” Pat Romano, CEO of ChargePoint, one of the world’s largest providers of chargers, told NBC News.

ChargePoint saw its first-quarter revenues jump by 24 percent to $40.5 million this year, a surge largely driven by rapid growth in the EV market. Sales of battery cars were up 45 percent during the first quarter, compared to a year earlier. To take advantage of that growth, ChargePoint added another 6,000 active ports — the electric equivalent of a gas pump — during the quarter. It now has 112,000 active charge ports.

In March, ChargePoint became the world’s first publicly traded global EV charging network. It completed a SPAC-style merger with Switchback Energy Acquisition Corporation. Rival EVgo plans to go through a similar deal this month with the "blank check" company Climate Change Crisis Real Impact Acquisition Corporation (CRIS), which has valued the charge provider at $2.6 billion.

“We look forward to highlighting EVgo’s leadership position and its significant opportunity for long-term growth in the climate critical electrification of transport sector,” CRIS CEO David Crane said Tuesday, ahead of an investor meeting with EVgo.

Electrify America, another emerging giant, has its own deep-pocket backer. The suburban Washington, D.C.-based firm was created using $2 billion of the settlement Volkswagen agreed to pay to settle its diesel emissions scandal. It is doling that out in regular tranches and just announced $200 million in additional investments — much of that to set up new chargers.

Industry investments in BEVs will top $250 million this decade, and could even reach $500 billion. That's encouraging automakers like Volkswagen, Ford and General Motors to tie up with individual charger companies, including plans to build 30,000 chargers nationwide.

In 2019, GM set up a partnership with Bechtel to build a charger network that will stretch across the U.S.

Others are establishing networks of their own, as Tesla has done with its Supercharger network.

Each charging network is leveraging relationships to speed up installations. Ford is offering buyers of its Mustang Mach-E 250 kilowatt-hours of free energy through Electrify America stations and is also partnering with Bank of America to “let you charge where you bank,” the automaker said.

Even if Biden gets his infrastructure plan through Congress quickly, other government agencies are already getting in to the charger business, even as state power grids brace for increased loads. That includes New York State which, in May, announced plans to put 150 new ports into place by year-end.

"Expanding high-speed charging in local markets across the state is a crucial step in encouraging more drivers to choose EVs,” said Gov. Andrew Cuomo, adding that, "public-private partnerships enable New York to build a network of fast, affordable and reliable electric vehicle public charging stations in a nimble and affordable way."

One of the big questions is how many charging stations actually are needed. There are 168,000 gas stations in the U.S., according to the Dept. of Energy. But the goal is not a one-for-one match, stressed ChargePoint CEO Romano, because “80 percent of EV owners today charge at home, and energy storage promises added flexibility, … and we expect that to continue to be the case."

But there are still many potential owners who won’t be able to set up their own chargers, and a network will still be needed for those driving long distances. Until that happens, many motorists will be reluctant to switch.

 

Related News

View more

There's Room For Canada-U.S. Collaboration As Companies Turn To Electric Cars

Canada EV Supply Chain aligns electric vehicle manufacturing, batteries, and autonomous tech with cross-border trade, leveraging lithium, cobalt, and rare earths as GM, Ford, and Project Arrow scale zero-emissions innovation and domestic sourcing.

 

Key Points

Canada's integrated resources, battery tech, and manufacturing network supporting EV production and cross-border trade.

✅ Leverages lithium, cobalt, and rare earths for battery supply

✅ Integrates GM, Ford, and Project Arrow manufacturing hubs

✅ Aligns with autonomous tech, hydrogen, and zero-emissions goals

 

The storied North American automotive industry, the ultimate showcase of Canada’s high-tensile trade ties with the United States, is about to navigate a dramatic hairpin turn.

But as the Big Three veer into the all-electric, autonomous era, some Canadians want to seize the moment to capitalize on the U.S. pivot and take the wheel.

“There’s a long shadow between the promise and the execution, but all the pieces are there,” says Flavio Volpe, president of the Automotive Parts Manufacturers’ Association.

“We went from a marriage on the rocks to one that both partners are committed to. It could be the best second chapter ever.”

Volpe is referring specifically to GM, which announced late last month an ambitious plan to convert its entire portfolio of vehicles to an all-electric platform by 2035, even as a 2035 EV mandate debate unfolds.

But that decision is just part of a market inflection point across the industry, with existential ramifications for one of the most tightly integrated cross-border manufacturing and supply-chain relationships in the world.

China is already working hard to become the “source of a new way” to power vehicles, President Joe Biden warned last week.

“We just have to step up.”

Canada has both the resources and expertise to do the same, says Volpe, whose ambitious Project Arrow concept — a homegrown zero-emissions vehicle named for the 1950s-era Avro interceptor jet — is designed to showcase exactly that.

“We’re going to prove to the market, we’re going to prove to the (manufacturers) around the planet, that everything that goes into your zero-emission vehicle can be made or sourced here in Canada,” he says.

“If somebody wants to bring what we did over the line and make 100,000 of them a year, I’ll hand it to them.”

GM earned the ire of Canadian auto workers in 2018 by announcing the closure of its assembly plant in Oshawa, Ont. It later resurrected the facility with a $170-million investment to retool it for autonomous vehicles.

“It was, ‘You closed Oshawa, how dare you?’ And I was one of the ‘How dare you’ people,” Volpe says.

“Well, now that they’ve reopened Oshawa, you sit there and you open your eyes to the commitment that General Motors made.”

Ford, too, has entered the fray, promising $1.8 billion to retool its sprawling landmark facility in Oakville, Ont., to build EVs, as EV assembly deals help put Canada in the race.

‘Range anxiety’
It’s a leap of faith of sorts, considering what market experts say is ongoing consumer doubt about EVs, including shortages and wait times that persist.

“Range anxiety” — the persistent fear of a depleted battery at the side of the road — remains a major concern, even though it’s less of a problem than most people think.

Consulting firm Deloitte Canada, which has been tracking automotive consumer trends for more than a decade, found three-quarters of future EV buyers it surveyed planned to charge their vehicles at home overnight.

“The difference between what is a perceived issue in a consumer’s mind and what is an actual issue is actually quite negligible,” Ryan Robinson, Deloitte’s automotive research leader, says in an interview.

“It’s still an issue, full stop, and that’s something that the industry is going to have to contend with.”

So, too, is price, especially with the end of the COVID-19 pandemic still a long way off. Deloitte’s latest survey, released last month, found 45 per cent of future buyers in Canada hope to spend less than $35,000 — a tall order when most base electric-vehicle models hover between $40,000 and $45,000.

“You put all of that together and there’s still some major challenges that a lot of stakeholders that touch the automotive industry face,” Robinson says.

“It’s not just government, it’s not just automakers, but there are a variety of stakeholders that have a role to play in making sure that Canadians are ready to make the transition over to electric mobility.”

With protectionism no longer a dirty word in the United States and Biden promising to prioritize American workers and suppliers, the Canadian government’s job remains the same as it ever was: making sure the U.S. understands Canada’s mission-critical role in its own economic priorities.

“We’re both going to be better off on both sides of the border, as we have been in the past, if we orient ourselves toward this global competition as one force,” says Gerald Butts, vice-chairman of the political-risk consultancy Eurasia Group and a former principal secretary to Prime Minister Justin Trudeau.

“It served us extraordinarily well in the past ... and I have no reason to believe it won’t serve us well in the future.”

EV battery industry
Last month, GM announced a billion-dollar plan to build its new all-electric BrightDrop EV600 van in Ingersoll, Ont., at Canada’s first large-scale EV manufacturing plant for delivery vehicles.

That investment, Volpe says, assumes Canada will take the steps necessary to help build a homegrown battery industry out of the country’s rare-earth resources like lithium and cobalt that are waiting to be extracted in northern Ontario, Quebec and elsewhere, including projects such as a $1.6B battery plant in Niagara that signal momentum.

Given that the EV industry is still in his infancy, the free market alone won’t be enough to ensure those resources can be extracted and developed, he says.

“General Motors made a billion-dollar bet on Canada because it’s going to assume that the Canadian government — this one or the next one — is going to commit” to building that business.

Such an investment would pay dividends well beyond the auto sector, considering the federal Liberal government’s commitment to lowering greenhouse gas-emissions and meeting targets set out in the Paris climate accord.

“If you make investments in renewable energy and energy storage in Ontario using battery technology, you can build an industry at scale that the auto industry can borrow,” Volpe says.

Major manufacturing, retail and office facilities would be able to use that technology to help “shave the peak” off Canada’s GHG emissions and achieve those targets, all the while paving the way for a self-sufficient electric-vehicle industry.

“You’d be investing in the exact same technology you’d use in a car.”

There’s one problem, says Robinson: the lithium-ion batteries on roads right now might not be where the industry ultimately lands.

“We’re not done with with battery technology,” Robinson says. “What you don’t want to do is invest in a technology that is that is rapidly evolving, and could potentially become obsolete going forward.”

Fuel cells — energy-efficient, hydrogen-powered units that work like batteries, but without the need for constant recharging — continue to be part of the conversation, he adds.

“The amount of investment is huge, and you want to be sure that you’re making the right decision, so you don’t find yourself behind the curve just as all that capacity is coming online.”

 

Related News

View more

Biden's Climate Law Is Working, and Not Working

Inflation Reduction Act Clean Energy drives EV adoption and renewable power, but grid interconnection, permitting, and supply chain bottlenecks slow wind, solar, and offshore projects, risking emissions targets despite domestic manufacturing growth and tax incentives.

 

Key Points

An IRA push to scale EVs and renewables, meeting EV goals but lagging wind and solar amid grid and permitting delays.

✅ EV sales up 50%, 9.2% of 2023 new cars; growth may moderate.

✅ 32.3 GW added, below 46-79 GW/year needed for climate targets.

✅ Grid, permitting, and supply chain delays bottleneck wind and solar.

 

A year and a half following President Biden's enactment of an ambitious climate change bill, the landscape of the United States' clean energy transition, shaped by 2021 electricity lessons, presents a mix of successes and challenges. A recent study by a consortium of research organizations highlights that while electric vehicle (EV) sales have surged, aligning with the law's projections, the expansion of renewable energy sources like wind and solar has encountered significant hurdles.

The legislation, known as the Inflation Reduction Act, aimed for a dual thrust in America's climate strategy: boosting EV adoption, alongside EPA emission limits, and significantly increasing the generation of electricity from renewable resources. The Act, passed in 2022, was anticipated to propel the United States toward reducing its greenhouse gas emissions by approximately 40 percent from 2005 levels by the end of this decade, backed by extensive financial incentives for clean energy advancements.

Electric vehicle sales have indeed seen a remarkable uptick, with a more than 50 percent increase over the past year, as EV sales surge into 2024 across the market, culminating in EVs comprising 9.2 percent of all new car sales in the United States in 2023. This growth trajectory met the upper range of analysts' predictions post-law enactment, signaling a strong start toward achieving the Act's emission reduction targets.

However, the EV market faces uncertainties regarding the sustainability of this rapid growth. The initial surge in sales was largely driven by early adopters, and the market now confronts challenges such as high prices and limited charging infrastructure, while EVs still trail gas cars in overall market share. Despite these concerns, projections suggest that even a slowdown to 30-40 percent growth in EV sales for 2024 would align with the law's emission goals.

The renewable energy sector's progress is less straightforward. Despite achieving a record addition of 32.3 gigawatts of clean electricity capacity in the past year, the pace falls short of the projected 46 to 79 gigawatts needed annually to meet the United States' climate objectives. While there is potential for about 60 gigawatts of projects in the pipeline for this year, not all are expected to materialize on schedule, indicating a lag in the deployment of new renewable energy sources.

Logistical challenges are a significant barrier to scaling up renewable energy, especially as EV-driven electricity demand rises in the coming years. Lengthy grid connection processes, permitting delays, and local opposition hinder wind and solar project developments. Moreover, ambitious plans for offshore wind farms are hampered by supply chain issues and regulatory constraints.

To achieve the Inflation Reduction Act's ambitious targets, the United States needs to add 70 to 126 gigawatts of renewable capacity annually from 2025 to 2030—a formidable task given the current logistical and regulatory bottlenecks. The analysis underscores the urgency of addressing these non-cost barriers to unlock the full potential of the law's clean energy and emissions reduction ambitions.

In addition to promoting clean energy generation and EV adoption, the Inflation Reduction Act has spurred domestic manufacturing of clean energy technologies. With $44 billion invested in U.S. clean-energy manufacturing last year, this aspect of the law has seen considerable success, and permanent clean energy tax credits are being debated to sustain momentum, demonstrating the Act's capacity to drive economic and industrial transformation.

The law's impact extends to emerging clean energy technologies, offering tax incentives for advanced nuclear reactors, renewable hydrogen production, and carbon capture and storage projects. While these initiatives hold promise for further emissions reductions, their development and deployment are still in the early stages, with tangible outcomes expected in the longer term.

While the Inflation Reduction Act has catalyzed significant strides in certain areas of the United States' clean energy transition, including an EV inflection point in adoption trends, it faces substantial hurdles in fully realizing its objectives. Overcoming logistical, regulatory, and market challenges will be crucial for the nation to stay on course toward its ambitious climate goals, underscoring the need for continued innovation, investment, and policy refinement in the journey toward a sustainable energy future.

 

Related News

View more

Space-based solar power, once for science fiction, is gaining interest.

Space-Based Solar Power enables wireless energy transfer from orbital solar arrays, using microwave beaming to rectennas on Earth, delivering clean baseload power beyond weather and night limits, as demonstrated by Caltech and NASA.

 

Key Points

Space-based solar power beams microwaves from arrays to rectennas, delivering clean electricity beyond weather and night.

✅ Caltech demo proved wireless power transfer in space.

✅ Microwaves beam to rectennas for grid-scale clean energy.

✅ Operates above clouds, enabling continuous baseload supply.

 

Ali Hajimiri thinks there’s a better way to power the planet — one that’s not getting the attention it deserves. The Caltech professor of electrical engineering envisages thousands of solar panels floating in space, unobstructed by clouds and unhindered by day-night cycles, effectively generating electricity from the night sky for continuous delivery, wirelessly transmitting massive amounts of energy to receivers on Earth.

This year, that vision moved closer to reality when Mr. Hajimiri, together with a team of Caltech researchers, proved that wireless power transfer in space was possible: Solar panels they had attached to a Caltech prototype in space successfully converted electricity into microwaves and beamed those microwaves to receivers, as a demonstration of beaming power from space to devices about a foot away, lighting up two LEDs.

The prototype also beamed a tiny but detectable amount of energy to a receiver on top of their lab’s building in Pasadena, Calif. The demonstration marks a first step in the wireless transfer of usable power from space to Earth, and advances in low-cost solar batteries could help store and smooth that power flow — a power source that Mr. Hajimiri believes will be safer than direct sun rays. “The beam intensity is to be kept less than solar intensity on earth,” he said.

Finding alternative energy sources is one of the topics that will be discussed by leaders in business, science and public policy, including wave energy, during The New York Times Climate Forward event on Thursday. The Caltech demonstration was a significant moment in the quest to realize space-based solar power, amid policy moves such as a proposed tenfold increase in U.S. solar that would remake the U.S. electricity system — a clean energy technology that has long been overshadowed by other long-shot clean energy ideas, such as nuclear fusion and low-cost clean hydrogen.

If space-based solar can be made to work on a commercial scale, said Nikolai Joseph, a NASA Goddard Space Flight Center senior technology analyst, and integrate with peer-to-peer energy sharing networks, such stations could contribute as much as 10 percent of global power by 2050.

The idea of space-based solar energy has been around since at least 1941, when the science-fiction writer Isaac Asimov set one of his short stories, “Reason,” on a solar station that beamed energy by microwaves to Earth and other planets.

In the 1970s, when a fivefold increase in oil prices sparked interest in alternative energy, NASA and the Department of Energy conducted the first significant study on the topic. In 1995, under the direction of the physicist John C. Mankins, NASA took another look and concluded that investments in space-launch technology were needed to lower the cost and move closer to cheap abundant electricity before space-based solar power could be realized.

“There was never any doubt about it being technically feasible,” said Mr. Mankins, now president of Artemis Innovation Management Solutions, a technology consulting group. “The cost was too prohibitive.”

 

Related News

View more

NanoFlocell Wants To Sell Flow Battery Cars In The US

nanoFlowcell Bi-ION Flow Battery delivers renewable-energy storage for EVs and grids, using seawater-derived electrolyte, membrane stacks, fast refueling, low-cost materials, scalable tanks, and four-motor performance with long range and lightweight energy density.

 

Key Points

A flow cell using Bi-ION to power EVs and grids with fast refueling and scalable, low-cost storage.

✅ Seawater-derived Bi-ION electrolyte; safe, nonflammable, low cost

✅ Fast refueling via dual tanks; membrane stack generates power

✅ EV range up to 1200 miles; scalable for grid-scale storage

 

nanoFlowcell is a European company headquartered in London that focuses on flow battery technology. Flow batteries are an intriguing concept. Unlike lithium batteries or fuel cells, they store electricity in two liquid chambers separated by a membrane. They hold enormous potential for low cost, environmentally friendly energy storage because the basic materials are cheap and abundant. To add capacity, simply make the tanks larger.

While that makes flow batteries ideal for energy storage — whether in the basement of a building or as part of a grid scale installation that utilities weigh against options like hydrogen for power companies today in practice — their size and weight make them a challenge for use in vehicles. That hasn’t stopped nanoFlowcell from designing a number of concept and prototype vehicles over the past 10 years and introducing them to the public at the Geneva auto show. Its latest concept is a tasty little crumpet known as the Quantino 25.


The Flow Battery & Bi-ION Fluid
The thing that makes the nanoFlowcell ecosystem work is an electrically charged fluid called Bi- ION derived from seawater or reclaimed waste water. It works sort of like hydrogen in a fuel cell, a frequent rival in debates over the future of vehicles today for many buyers. Pump hydrogen in, run it through a fuel cell, and get electricity out. With the Quantino 25, which the company calls a “2+2 sports car,” you pump two liquids to the membrane interface to make electricity.

There are two 33-gallon tanks mounted low in the chassis much the way a lithium-ion battery pack fits into a normal electric car. Fill up with Bi-ION, and you have a car that will dash to 100 km/h in 2.5 seconds, thanks to its 4 electric motors with 80 horsepower each. And get this. According to Autoblog, the company says with full tanks, the Quantino 25 has a range of 1200 miles! Goodbye range anxiety, hello happy motoring.


We should point out that water weighs about 8 pounds per gallon, so the “fuel” to travel 1200 miles would weigh roughly 528 pounds. A conventional lithium-ion battery pack with its attendant cooling apparatus that could travel that far would weigh at least 3 times as much, even as EV battery recycling advances aim for a circular economy today. Granted, the Quantino 25 is not a production car and very few people have ever driven one, but that kind of range vs weight ratio has got to get your whiskers twitching a little in anticipation.

Actually, the folks at Autocar did drive an early prototype in 2016 at the TCS test track near Zurich, Switzerland, and determined that it was a real driveable car. My colleague Jennifer Sensiba reported in April of 2019 that the company’s Quantino test vehicle passed the 350,000 km mark (220,000 miles) with no signs of damage to the membrane or the pumps, and didn’t seem to have suffered any wear at all. The vehicle’s engineers pointed out that it had driven for 10,000 hours at this point. The company says it wants to offer its flow battery technology to EV manufacturers and give the system a 50,000-hour guarantee. That translates to well over 1 million miles of driving.

The problem, of course, is that there is no Bi-ION refueling infrastructure just yet, but that doesn’t mean someday there couldn’t be. Tesla had no Supercharger network when it first started either and things turned out reasonably well for Musk and company.


nanoFlowcell USA Announced
nanoFlowcell announced this week that it has established a new division based in New York to bring its flow battery technology to America. The mission of the new division is to adapt the nanoFlowcell process to US-specific applications and develop nanoFlowcell applications in America. Priority one is beginning series production of flow battery vehicles as well as the constructing a large scale bi-ION production facility that will provide transportable renewable energy and could complement vehicle-to-grid power models for communities for nanoFlowcell applications.

The Bi-ION electrolyte is a high density energy carrier that makes renewable energies storable and transportable in large quantities. The company says it will produce the energy carrier bi-ION from 100 percent renewable energy. Flow cell energy technology is an important solution to substantially reduce global greenhouse gas emissions as laid out in the Paris Agreement, the company says. Its many benefits include being a safe and clean energy source for many energy intensive processes and transportation services.


“Our nanoFlowcell flow cell and bi-ION energy carrier are key technologies for a successful energy transition,” says Nunzio La Vecchia, CEO of nanoFlowcell Holdings. “We need to make energy from renewable energy safe, storable and transportable to drive environmentally sustainable economic growth. This requires a well thought out strategy and the development of the appropriate infrastructure. With the establishment of nanoFlowcell USA, we are reaching an important milestone in this regard for our future corporate development.”


Focus On Renewable Energy
The production costs of Bi-ION are directly linked to the cost of electricity from renewable sources. With the accelerated expansion of renewable energy under the Inflation Reduction Act along with EV grid flexibility efforts across markets, nanoFlowcell expects the cost of electricity from solar power to be relatively low in the future which will further strengthen the competitiveness of energy sources such as Bi-ION.

“With the Inflation Reduction Act, the U.S. has made the largest investment in clean energy in U.S. history, and the potential implications for renewable energy are far-reaching.” But La Vecchia points out, “We will not seek government investments for nanoFlowcell USA to expand our manufacturing facilities and infrastructure in the United States. Where appropriate, we will enter into strategic partnerships to build and expand manufacturing and infrastructure, and to integrate nanoFlowcell technologies into all sectors of the economy.”

“More importantly, with nanoFlowcell USA, we want to help accelerate the decarbonization of the global economy and create economic, social and ecological prosperity. After all, estimates suggest that the clean energy sector will create 500,000 additional jobs. We want to do our part to make this happen.”


‍The Takeaway
nanoFlowcell is about more than electric cars. It wants to get involved in grid-scale energy storage, and moves like Mercedes-Benz energy storage venture signal momentum in the sector today. But to those of us soaking in the hot tub warmed by excess heat from a nearby data center here at CleanTechnica global headquarters, it seems that its contribution to emissions-free transportation could be enormous. Maybe some of those companies still chasing the hydrogen fuel cell dream, as a recent hydrogen fuel cell report notes Europe trailing Asia today, might find the company’s flow battery technology cheaper and more durable without all the headaches that go with making, storing, and transporting hydrogen.

A Bi-ION refueling station would probably cost less than a tenth as much as a hydrogen filling station. A link-up with a major manufacturer would make it easier to build out the infrastructure needed to make this dream a reality. Hey, people laughed at Tesla in 2010. If nothing else, this is a company we will be keeping our eye on.

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.