Tesla's lead in China's red-hot electric vehicle market is shrinking, says rival XPeng


A XPeng Motor P7 electric vehicle

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

China EV Market sees surging deliveries as Tesla, XPeng, Nio, and Li Auto race for market share, driven by tech-forward infotainment, autonomous features, and strong P7 and G3 demand, signaling intensifying competition and rapid growth.

 

Key Points

China EV Market features rapid EV sales growth led by Tesla, XPeng, Nio, and Li Auto amid tech-driven competition.

✅ XPeng deliveries up 617% YoY in June; 459% YTD growth

✅ Nio and Li Auto post triple-digit quarterly gains

✅ Tech focus: infotainment, ADAS; models P7, G3, G3i

 

XPeng President and Vice Chairman Brian Gu is quick to praise the Tesla brand and acknowledge the EV maker's "commanding" market share in China, and in key markets like the California EV market as well. 

But in the same breath, the executive at the upstart China-based EV rival said his company and peers are fast closing the competitive gap with Tesla.

"I think the Chinese players are catching up very quickly," Gu said on Yahoo Finance Live. "Our product as well as some of the other products that are being introduced by the leading players are very good, and have comparable specs — as well as better features I think compared to Tesla."

That point is not lost in the sales data from the main China EV players, and mirrors the global EV surge seen in recent years.

XPeng said this week deliveries in June surged 617% year-over-year to 6,565. So far this year, deliveries have skyrocketed 459% to 30,738 fueled by demand for XPeng's P7 sedan and G3 SUV, despite concerns about the biggest threats to the EV boom among investors. 

June deliveries at Nio rose 116% from a year ago to 8,083, even as mainstream adoption hurdles remain industry-wide. For the quarter ending June 30, Nio delivered 21,896 vehicles marking a growth rate from a year ago of 112%. 

As for Li Auto, its June deliveries rose 321% from a year earlier to 7,713. Second quarter deliveries improved 166% year-over-year to 17,575.

Tesla reportedly sold 33,155 cars in China in June, up 122% year-over-year, even as its energy business outlook remains a focus for investors. 

"In the last few months, our growth has outpaced the industry as well as Tesla in China. But I think it's a long race because ultimately this market will not be dominated by one or two companies. It will probably be a number of players occupying probably large market share positions of 10% and above. That will likely be the trend, and we hope to be one of those top players," Gu explained. 

XPeng — which JPMorgan analysts estimate could grab 8% of China's electric car market by 2025 —currently has two models in the Chinese electric car market, as China's carmakers push into Europe too. They have gained notoriety in an increasingly crowded market for their tech-forward infotainment systems and autonomous technology.

The company's third model dubbed the G3i is expected to see deliveries begin in September, taking aim at smaller sedans such as the Toyota Camry. 

Shares of China's EV makers have cooled off this year despite their strong sales, and the U.S. EV market share dipped in early 2024 as well. XPeng shares are down 7% year-to-date, while Nio has shed 5%. Li Auto's stock is down 11% on the year. 

Related News

U.S. Electric Vehicle Sales Soar Into 2024

U.S. EV Sales Growth reflects rising consumer demand, expanding market share, new tax credits, and robust charging infrastructure, as automakers boost output and quarterly sales under the Inflation Reduction Act drive adoption across states.

 

Key Points

It is the rise in U.S. EV sales and market share, driven by incentives, charging growth, and automaker investment.

✅ Quarterly EV sales and share have risen since Q3 2021.

✅ Share topped 10% in Q3 2023, with states far above.

✅ IRA credits and chargers lower costs and boost adoption.

 

Contrary to any skepticism, the demand for electric vehicles (EVs) in the United States is not dwindling. Data from the Alliance for Automotive Innovation highlights a significant and ongoing increase in EV sales from 2021 through the third quarter of 2023. An upward trend in quarterly sales (depicted as bars on the left axis) and EV sales shares (illustrated by the red line on the right axis) is evident. Sales surged from about 125,000 in Q1 2021 to 185,000 in Q4 2021, and from around 300,000 in Q1 2023 to 375,000 by Q3 2023. Notably, by Q3 2023, annual U.S. EV sales exceeded 1 million for the first time, a milestone often cited as the tipping point for mass adoption in the U.S., marking a 58% increase over the same period in 2022.

EV sales have shown consistent quarterly growth since Q3 2021, and the proportion of EVs in total light-duty vehicle sales is also on the rise. EVs’ share of new sales increased from roughly 3% in Q1 2021 to about 7% in 2022, and further to over 10% in Q3 2023, though they are still behind gas cars in overall market share, for now. For context, according to the U.S. Environmental Protection Agency’s Automotive Trends Report, EVs have reached a 10% market share more quickly than conventional hybrids without a plug, which took about 25 years.

State-level data also indicates that several states exceed national averages in EV sales. California, for example, saw EVs comprising nearly 27% of sales through September 2023, even as a brief Q1 2024 market share dip has been noted nationally. Additionally, 12 states plus the District of Columbia had EV sales shares between 10% and 20% through Q3 2023.

EV sales data by automaker reveal that most companies sold more EVs in Q2 or Q3 2023 than in any previous quarter, mirroring global growth that went from zero to 2 million in five years. Except for Ford, each automaker sold more EVs in the first three quarters of 2023 than in all of 2022. EV sales in Q3 2023 notably increased compared to Q3 2022 for companies like BMW, Tesla, and Volkswagen.

Despite some production scalebacks by Ford and General Motors, these companies, along with others, remain dedicated to an electric future and expect to sell more EVs than ever. The growing consumer interest in EVs is also reflected in recent surveys by McKinsey, J.D. Power, and Consumer Reports, and echoed in Europe where the share of electric cars grew during lockdown months, showing an increasing intent to purchase EVs and a declining interest in gasoline vehicles.

Furthermore, the Inflation Reduction Act of 2022 introduces new tax credits, potentially making EVs more affordable than gasoline counterparts. Investments in charging infrastructure are also expected to increase, especially as EV adoption could drive a 38% rise in U.S. electricity demand, with over $21 billion allocated to boost public chargers from around 160,000 in 2023 to nearly 1 million by 2030.

The shift to EVs is crucial for reducing climate pollution, enhancing public health, and generating economic benefits and jobs, and by 2021 plug-in vehicles had already traveled 19 billion miles on electricity, underscoring real-world progress toward these goals. The current data and trends indicate a robust and positive future for EVs in the U.S., reinforcing the need for strong standards to further encourage investment and consumer confidence in electric vehicles.

 

Related News

View more

Nova Scotia EV Charging Infrastructure Faces Urgent Upgrade Needs

Nova Scotia EV charging infrastructure remains limited, with only 14 fast chargers across the province. As electric vehicle adoption grows, urgent upgrades are needed to support long-distance travel and public charging convenience.

 

Nova Scotia EV charging infrastructure

Nova Scotia EV charging infrastructure refers to the province’s public and private network of stations that power electric vehicles (EVs).

✅ Limited availability of fast-charging stations for long-distance travel

✅ Growing demand as EV adoption increases province-wide

✅ Key factor in reducing range anxiety and promoting clean transportation

 

Nova Scotia’s EV charging network is struggling to keep pace with a growing fleet of electric vehicles. As of today, only 14 public DC fast chargers are operational across the province, a significant shortfall for drivers navigating long distances. This creates not only logistical hurdles but also growing consumer hesitation — particularly as EV sales continue to surge across Canada.

In response, the Canadian government has announced a $1.1 million (US$0.88 million) investment into a new smart-charging pilot program. Led by Nova Scotia Power, this initiative will explore how electric vehicles can better integrate with the local grid using a centralized, utility-managed control system. Up to 200 participants are expected to join the program, which aims to test both smart charging and vehicle-to-grid (V2G) technologies.

These systems allow EVs to act as distributed energy storage, helping to manage electricity demand and improve renewable energy integration — a strategy already being tested in other jurisdictions. For example, Ontario’s charging network expansion has provided a model for scaling fast-charging accessibility. Similarly, British Columbia has recently accelerated its rollout of faster charging stations to support mass EV adoption.

The Nova Scotia pilot will assess local EV charging behaviors, including drivers’ willingness to participate in V2G services based on incentives, driving patterns, and access to clean power. “We know customers want clean, affordable, reliable energy for their homes and businesses,” says Dave Landrigan, VP Commercial at Nova Scotia Power. “Through our electric vehicle smart charging pilot, we will test these technologies to learn how they can benefit all customers, creating clean, smarter options without changing a person’s driving habits.”

The funding comes through Natural Resources Canada’s Electric Vehicle Infrastructure Demonstration program, which supports the development of cutting-edge charging and hydrogen refueling solutions across the country. To date, the federal government has invested over $600 million to support EV affordability and infrastructure deployment, with a particular focus on a coast-to-coast fast-charging network.

At the same time, other provinces are stepping up their leadership roles. In Québec, Hydro-Québec is expanding its EV ecosystem through a strategic partnership with Propulsion Québec, a key industry cluster for sustainable mobility. Their focus includes reliable public charging, clean grid integration, and stakeholder collaboration — all essential factors for scalable transportation electrification.

“In Québec, we are fortunate to be able to make transportation electrification possible by easily replacing gas imported from outside with our clean energy,” said France Lampron, Director – Transportation Electrification at Hydro-Québec. “To do this, we need to develop synergies between various stakeholders in the sustainable mobility sector.”

While Nova Scotia’s current fast-charging availability is limited, the province now has an opportunity to follow a similar trajectory. With funding in place, stakeholder alignment, and public interest growing, the expansion of Nova Scotia EV charging infrastructure could soon match the pace of rising EV demand. As governments and utilities nationwide focus on electrification, Nova Scotia’s pilot may lay the groundwork for a more connected, cleaner transportation future.

 

Related News

 

 

View more

Canadian electricity associations aligning goals toward net-zero by 2050

Electricity Alliance Canada champions clean power, electrification, and net-zero, uniting renewable energy, hydropower, nuclear, wind, and solar to decarbonize Canada with sustainable, reliable, affordable electricity across sectors by 2050, economywide growth.

 

Key Points

A national coalition advancing clean power and electrification to help achieve Canada's net-zero by 2050.

✅ Coalition of six Canadian electricity associations

✅ Promotes electrification and clean, reliable power

✅ Aims net-zero by 2050, coal phase-out by 2030

 

Six of Canada’s leading electricity associations have created a coalition to promote clean power’s role, amid a looming power challenge for the country, in a sustainable energy future.

The Electricity Alliance Canada’s mandate is to enable, promote and advocate for increased low or no-carbon electricity usage throughout the economy to help achieve the nation’s net-zero emissions target of 100 percent by 2050, with net-zero electricity regulations permitting some natural gas generation along the way.

The founding members are the Canadian Electricity Association, the Canadian Nuclear Association, the Canadian Renewable Energy Association, Electricity Human Resources Canada, Marine Renewables Canada, and WaterPower Canada, and they aim to incorporate lessons from Europe's power crisis as collaboration advances.

“Electricity will power Canada’s energy transition and create many new well-paying jobs,” reads the joint statement by the six entities. “We are pleased to announce this enhanced collaboration to advance discussion and implement strategies that promote greater electrification in a way that is sustainable, reliable and affordable. Electricity Alliance Canada looks forward to working with governments and energy users to capture the full potential of electricity to contribute to Canada’s net-zero target.”

Canada is much further along than many nations when it comes decarbonizing its power generation sector, yet it is expected to miss 2035 clean electricity goals without accelerated efforts. More than 80 percent of its electricity mix is fueled by non-emitting hydroelectric and nuclear as well as wind, solar and marine renewable generation, according to the Alliance. By contrast, the U.S. portion of non-emitting electricity resources is closer to 40 percent or less.

The remainder of its coal-fired power plants are scheduled to be phased out by 2030, according to reports, though scrapping coal-fired electricity could be costly and ineffective according to one report.

Hydropower leads the way in Canada, with nearly 500 generating plant producing an average of 355 TWh per year, according to the Canadian Hydropower Association. Nuclear plants such as Ontario Power Generation’s Darlington station and Bruce Power also contribute massive-scale and carbon-free electricity capacity, as debates over Ontario's renewable future continue.

Observers note that clean, affordable electricity in Ontario should be a prominent election issue this year.

 

Related News

View more

U.S. to work with allies to secure electric vehicle metals

US EV Battery Minerals Strategy prioritizes critical minerals with allies, lithium and copper sourcing, battery recycling, and domestic processing, leveraging the Development Finance Corporation to strengthen EV supply chains and reduce reliance on China.

 

Key Points

A US plan to secure critical minerals with allies, boost recycling, and expand domestic processing for EV batteries.

✅ DFC financing for allied lithium and copper projects

✅ Battery recycling to diversify critical mineral supply

✅ Domestic processing with strong environmental standards

 

The United States must work with allies to secure the minerals needed for electric vehicle batteries, addressing pressures on cobalt reserves that could influence supply, and process them domestically in light of environmental and other competing interests, the White House said on Tuesday.

The strategy, first reported by Reuters in late May, will include new funding to expand international investments in electric vehicles (EV) metal projects through the U.S. Development Finance Corporation, as well as new efforts to boost supply from EV battery recycling initiatives.

The U.S. has been working to secure minerals from allied countries, including Canada and Finland, with projects such as Alberta lithium development showing potential. The 250-page report outlining policy recommendations mentioned large lithium supplies in Chile and Australia, the world's two largest producers of the white battery metal.

President Joe Biden's administration will also launch a working group to identify where minerals used in EV batteries and other technologies can be produced and processed domestically.

Securing enough copper, lithium and other raw materials to make EV batteries, amid lithium supply concerns heightened by recent disruptions, is a major obstacle to Biden’s aggressive EV adoption plans, with domestic mines facing extensive regulatory hurdles and environmental opposition.

The White House acknowledged China's role as the world's largest processor of EV metals and said it would expand efforts, including a 100% EV tariff on certain imports, to lessen that dependency.

"The United States cannot and does not need to mine and process all critical battery inputs at home. It can and should work with allies and partners to expand global production and to ensure secure global supplies," it said in the report.

The White House also said the Department of the Interior and others agencies will work to identify gaps in mine permitting laws to ensure any new production "meets strong standards" in terms of both the environment and community input.

The report noted Native American opposition to Lithium Americas Corp's (LAC.TO) Thacker Pass lithium project in Nevada, as well as plans by automaker Tesla Inc (TSLA.O) to produce its own lithium.

The steps come after Biden, who has made fighting climate change and competing with China centerpieces of his agenda, ordered a 100-day review of gaps in supply chains in key areas, including EVs.

Democrats are pushing aggressive climate goals, as Canada EV manufacturing accelerates in parallel, to have a majority of U.S.-manufactured cars be electric by 2030 and every car on the road to be electric by 2040.

As part of the recommendations from four executive branch agencies, Biden is being advised to take steps to restore the country's strategic mineral stockpile and expand funding to map the mineral resources available domestically.

Some of those steps would require the support of Congress, where Biden's fellow Democrats have only slim majorities.

The Energy Department already has $17 billion in authority through its Advanced Technology Vehicles Manufacturing Loan program to fund some investments, and is also launching a lithium-battery workforce initiative to build critical skills.

The program’s administrators will focus on financing battery manufacturers and companies that refine, recycle and process critical minerals, the White House said.

 

Related News

View more

Renewables Are Ready to Deliver a Renewable World - Time for Action for 100% Renewable Energy Globally

100% Renewable Energy Transition unites solar, wind, hydropower, geothermal, and bioenergy with storage, smart grids, and sector coupling, delivering decarbonization, energy security, and lower LCOE amid post-Fukushima policy shifts and climate resilience goals.

 

Key Points

It is a pathway using all renewables plus storage and grids to fully decarbonize power, heat, transport, and industry.

✅ Integrates solar, wind, hydro, geothermal, and bioenergy

✅ Uses storage, smart grids, and sector coupling for reliability

✅ Requires enabling policies, finance, and rapid deployment

 

Renewable energy organizations representing different spheres of the renewable energy community have gathered on the occasion of the tenth anniversary of the Great East Japan Earthquake and Fukushima nuclear accident to emphasize that renewable energies are not only available in abundance, with global renewable power on course to shatter more records, but ready to deliver a renewable world.

The combination of all renewable technologies, be it bioenergy, geothermal energy, hydropower, ocean energy, solar energy or wind power, in particular in combination with storage options, can satisfy all energy needs of mankind, be it for power, heating/cooling, transportation, or industrial processes.

Renewables have seen tremendous growth rates and cost reduction over the past two decades, but there are still many barriers that need to be addressed for a faster renewable energy deployment to eventually achieve global 100% renewable energy, as outlined in an on the road to 100% renewables initiative that charts the path. It is up to political decision-makers to create the legislative and regulatory conditions so that the renewable energy community can act as fast as needed.

Such rapid switch towards renewables is not only a must in light of nuclear risks and the growing threats of climate change, but also the necessary response to the current pandemic situation. And it will allow those hundreds of millions of humans in unserved areas to get for the first time ever access to modern energy services, as noted by a new IRENA report that details how renewables can decarbonise the energy sector and improve lives.

Speakers from the renewable energy community presented today in a joint webinar that a renewable future is a realistic vision, representing:

Energy Watch Group, Global100RE Platform, Global100RE Strategy Group, International Geothermal Association, ISEP Japan, REN Alliance, World Bioenergy Association, World Wind Energy Association.

Dr. Tetsunari Iida, Director of the Institute for Sustainable Energy Policies ISEP Japan:

Ten years ago, on 11 March 2021, the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident occurred. It is a "coincidence of global history" that it now coincides with the starting point of the 100% renewable energy initiative that is accelerating around the world.

The world has changed dramatically since 311. Germany, Italy, Switzerland, Taiwan, South Korea, China and many other countries were all shocked by 311 and shifted their focus from nuclear power to renewable energy, and in the U.S. clean energy industries are setting sights on market majority to accelerate this trend. The next ten years will be the decade in which this perception will rapidly become the "new reality". 311 was the "starting point" for a structural energy shift in world history.

Hans-Josef Fell, former MP, President of the Energy Watch Group and co-initiator of the Global100RE Strategy Group:

The disasters of Fukushima and Chernobyl are urging the entire world to quickly end the use of atomic energy, and many call for a fossil fuel lockdown to catalyze a climate revolution alongside the transition. Contrary to what is often claimed, nuclear energy cannot make a contribution to climate protection, but only creates immense problems with toxic radioactivity emissions, nuclear waste, atomic bomb material and the dangers of a nuclear catastrophe. In contrast, 100% renewable energies until 2030 can help achieve climate protection and a simultaneous nuclear phase-out, according to a recently published statement by a world-leading group of energy researchers from the USA, EU and Australia.

Their research suggests that a 100% renewable energy supply, including storage systems, can provide full energy security for all of mankind by 2030 and will even be cheaper than the existing nuclear and fossil energy supply, and with over 30% of global electricity already from renewables, momentum is strong. The only requirement for implementation is the right decisions taken by decision makers both in governments and industry. All technical and economic prerequisites for a disruptive conversion of the global energy supply to 100% renewable energies are already in place.

Hon. Peter Rae AO, President of WWEA and Honorary Chairman of the REN Alliance:

40 years ago, the idea of developing nuclear power appealed to me as a non-polluting method of generating electricity. So I studied it. How to deal with waste and how to ensure it would not create a danger to life. Along came Chernobyl and other accidents. Storage of waste was leaving dangerous hiding places while some waste was alleged to be dumped at sea. I became more and more concerned. There were demonstrations that the existing methods were dangerous and required very strict construction and operational tolerances - up went the cost. Long delays and huge cost increases. I had visited nuclear power stations and talked to expert proponents in UK, France, US, Taiwan and Australia, and debates such as New Zealand's electricity future reflect similar concerns. The more I did the more certain I became that it was not the way to go. Then Fukushima put the dangers and cost beyond doubt.

Let's get on with the rollover to renewables.

Dr. Marit Brommer, Executive Director of the International Geothermal Association IGA:

The IGA is proud to work with all renewable energy associations to continuously provide a unified voice to a cleaner energy future. The Geothermal sector is proven to be a partner of choice for many locations in the world serving baseload power and clean heat to customers. We are particularly interested in the increased attention system integration gets, which underpins the importance of all renewables coming together at events such as the webinar organised by the WWEA.

Christian Rakos, President of the World Bioenergy Association:

The IPCC has emphasized the important role of sustainable bioenergy for climate protection. Recent advances in technology allow us to use feedstock from forestry, wood processing and agricultural production in an efficient and clean way. Today, bioenergy already contributes 12 - 13% to global final energy demand. Importantly, contribution from bioenergy is more than 5 times as much as nuclear energy worldwide. Together with other renewable energy technologies such as solar, wind, geothermal and hydropower, bioenergy can increase the contribution in a substantial way to meet the energy demands of all end use sectors and meet the international energy and climate goals.

Stefan Gsanger, Secretary General of the World Wind Energy Association and Co-chair of the Global100RE Platform:

The switch to a renewable energy future requires new political and economic thinking: from centralised structures with few large actors towards decentralised, participatory models with millions of communities and citizens playing an active role, not only as consumers but also as producers of energy. To make this new paradigm the predominant energy paradigm is the true challenge of the energy transformation which we as the world community are facing. If we manage this shift well and on time, billions of people across the globe, in industrialised and developing countries alike, will benefit and will face a bright future.

 

Related News

View more

'Consumer Reports' finds electric cars really do save money in the long run

Electric Vehicle Ownership Costs include lower maintenance, repair, and fuel expenses; Consumer Reports shows BEV and PHEV TCO beats ICE over 200,000 miles, with per-mile savings compounding through electricity prices and reduced service.

 

Key Points

Lifetime EV expenses, typically lower than ICE, due to cheaper electricity, reduced maintenance, and fewer repairs.

✅ BEV: $0.012/mi to 50k; $0.028/mi after; vs ICE up to $0.06/mi

✅ PHEV: $0.021/mi to 50k; $0.031/mi after; still below ICE

✅ Savings increase over 200k miles from fuel and service reductions

 

Electric vehicles are a relatively new technology, and the EV age is arriving ahead of schedule today. Even though we technically saw the first battery-powered vehicles more than 100 years ago, they haven’t really become viable transportation in the modern world until recently, and they are greener than ever in all 50 states as the grid improves.

As viable as they may now be, however, it still seems they’re unarguably more expensive than their conventional internal-combustion counterparts, prompting many to ask whether it’s time to buy an electric car today. Well, until now.

Lower maintenence costs and the lower price of electricity versus gasoline (see the typical cost to charge an electric vehicle in most regions) actually make electric cars much cheaper in the long run, despite their often higher purchase price, according to a new survey by Consumer Reports. The information was collected using annual reliability surveys conducted by CR in 2019 and 2020.

In the first 50,000 miles (80,500 km), battery electric vehicles cost just US$0.012 per mile for maintenence and repairs, while plug-in hybrid models bump that number up to USD$0.021. Compare these numbers to the typical USD$0.028 cost for internal combustion vehicles, and it becomes clear the more you drive, the more you will save, and across the U.S. plug-ins logged 19 billion electric miles in 2021 to prove the point. After 50,000 miles, the costs for BEV and PHEV vehicles is US$0.028 and US$0.031 respectively, while ICE vehicles jump to US$0.06 per mile.

To put it more practically, if you chose to buy a Model 3 instead of a BMW 330i, you’d see a total US$17,600 in savings over the lifetime of the vehicle, aligning with evidence that EVs are better for the planet and your budget as well, based on average driving. In the SUV sector, buying a Tesla Model Y instead of a Lexus crossover would save US$13,400 (provided the former’s roof doesn’t fly off) and buying a Nissan Leaf over a Honda Civic would save US$6,000 over the lifetime of the vehicles.

CR defines the vehicle’s “lifetime” as 200,000 miles (320,000 km). Ergo the final caveat: while it sounds like driving electric means big savings, you might only see those returns after quite a long period of ownership, though some forecasts suggest that within a decade adoption will be nearly universal for many drivers.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified