Tesla's lead in China's red-hot electric vehicle market is shrinking, says rival XPeng


A XPeng Motor P7 electric vehicle

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

China EV Market sees surging deliveries as Tesla, XPeng, Nio, and Li Auto race for market share, driven by tech-forward infotainment, autonomous features, and strong P7 and G3 demand, signaling intensifying competition and rapid growth.

 

Key Points

China EV Market features rapid EV sales growth led by Tesla, XPeng, Nio, and Li Auto amid tech-driven competition.

✅ XPeng deliveries up 617% YoY in June; 459% YTD growth

✅ Nio and Li Auto post triple-digit quarterly gains

✅ Tech focus: infotainment, ADAS; models P7, G3, G3i

 

XPeng President and Vice Chairman Brian Gu is quick to praise the Tesla brand and acknowledge the EV maker's "commanding" market share in China, and in key markets like the California EV market as well. 

But in the same breath, the executive at the upstart China-based EV rival said his company and peers are fast closing the competitive gap with Tesla.

"I think the Chinese players are catching up very quickly," Gu said on Yahoo Finance Live. "Our product as well as some of the other products that are being introduced by the leading players are very good, and have comparable specs — as well as better features I think compared to Tesla."

That point is not lost in the sales data from the main China EV players, and mirrors the global EV surge seen in recent years.

XPeng said this week deliveries in June surged 617% year-over-year to 6,565. So far this year, deliveries have skyrocketed 459% to 30,738 fueled by demand for XPeng's P7 sedan and G3 SUV, despite concerns about the biggest threats to the EV boom among investors. 

June deliveries at Nio rose 116% from a year ago to 8,083, even as mainstream adoption hurdles remain industry-wide. For the quarter ending June 30, Nio delivered 21,896 vehicles marking a growth rate from a year ago of 112%. 

As for Li Auto, its June deliveries rose 321% from a year earlier to 7,713. Second quarter deliveries improved 166% year-over-year to 17,575.

Tesla reportedly sold 33,155 cars in China in June, up 122% year-over-year, even as its energy business outlook remains a focus for investors. 

"In the last few months, our growth has outpaced the industry as well as Tesla in China. But I think it's a long race because ultimately this market will not be dominated by one or two companies. It will probably be a number of players occupying probably large market share positions of 10% and above. That will likely be the trend, and we hope to be one of those top players," Gu explained. 

XPeng — which JPMorgan analysts estimate could grab 8% of China's electric car market by 2025 —currently has two models in the Chinese electric car market, as China's carmakers push into Europe too. They have gained notoriety in an increasingly crowded market for their tech-forward infotainment systems and autonomous technology.

The company's third model dubbed the G3i is expected to see deliveries begin in September, taking aim at smaller sedans such as the Toyota Camry. 

Shares of China's EV makers have cooled off this year despite their strong sales, and the U.S. EV market share dipped in early 2024 as well. XPeng shares are down 7% year-to-date, while Nio has shed 5%. Li Auto's stock is down 11% on the year. 

Related News

Arvato commissions first solar power plant

Arvato Ontario Solar Power Plant advances sustainability with rooftop photovoltaic panels, PPA financing, and green electricity, generating 800,000 kWh annually to cut logistics emissions, reduce energy costs, and support carbon-neutral supply chain operations.

 

Key Points

A rooftop PV system under a PPA, supplying low-cost green power to Arvato's Ontario, CA distribution center.

✅ 1,160 panels produce 800,000 kWh of renewable power yearly

✅ PPA model avoids upfront costs and lowers electricity rates

✅ Cuts center emissions by 72%; 45% roof coverage

 

Arvato continues to invest consistently in the sustainability of its distribution centers. To this end, the first solar power plant in the focus market has now been commissioned on the roof of the distribution center in Ontario, California. The solar power plant has 1,160 solar panels and generates more than 800,000 kilowatt hours (kWh) of green electricity annually. This reduces electricity costs and, with advances in battery storage, further cuts the logistics center's greenhouse gas emissions. Previously, the international supply chain and e-commerce service provider had converted five other distribution centers in the USA to green electricity.

The project started as early as November 2019 with an intensive site investigation. An extensive catalogue of measures and criteria had to be worked through to install and commission the solar power plant on the roof system. After a rigorous process involving numerous stakeholders, the new solar modules were installed in August 2022, similar to utility-scale deployments like the largest solar array in Washington seen recently. However, further approvals and permits were required before the solar system could be officially commissioned, a common step for solar power plants worldwide. Once official permission for the operation was granted, the switch could be flipped in February 2023, and production of environmentally friendly solar electricity could begin.

The photovoltaic system is operated under a Purchase Power Agreement (PPA), a model widely used in corporate renewable energy projects today. This unique financing mechanism is available in twenty-six U.S. states, including California. While a third-party developer installs, owns and operates the solar panels, Arvato purchases the electricity generated. This allows companies in the U.S. to support clean energy projects while buying low-cost electricity without having to finance upfront costs. "The PPA and the resulting benefits were quite critical to the success of this project," says Christina Greenwell, Microsoft AOC F&L Client Services Manager at Arvato, who managed the project from start to finish. "It allows us to reduce our electricity costs while supporting Bertelsmann's ambitious goal of becoming carbon neutral by 2030."

The 1,160 solar panels were added to an existing system of 920 panels owned by the logistics center's landlord. In total, the panels now cover 45 percent of the roof space at the Ontario distribution center. The emissions generated by the distribution center are now reduced by 72 percent with the new solar panels and clean power generation. As Bertelsmann plans to switch all its sites worldwide to 100 percent green electricity, renewable energy certificates will, as seen when Bimbo Canada signed agreements to offset 100 percent of its electricity for its operations, offset the remaining emissions.

"The new solar power plant is a significant step on our path to carbon neutrality and demonstrates our commitment to finding innovative solutions that reduce our carbon footprint," said Mitat Aydindag, President of North America at Arvato. "All employees at the site are pleased that our Ontario distribution center is now a pioneer and is providing effective support in achieving our ambitious climate goal in 2030."

Similar facility-level efforts include the Bright Feeds Berlin solar project underscoring momentum across industrial operations.

 

Related News

View more

BC Hydro electric vehicle fast charging site operational in Lillooet

BC Hydro Lillooet EV fast charging launches a pull-through, DC fast charger hub for electric trucks, trailers, and cars, delivering 50-kW clean hydroelectric power, range-topups, and network expansion across B.C. with reliable public charging.

 

Key Points

A dual 50-kW pull-through DC fast charging site in Lillooet supporting EV charging for larger trucks and trailers.

✅ Dual 50-kW units add ~50 km range in 10 minutes

✅ Pull-through bays fit trucks, trailers, and long-wheelbase EVs

✅ Part of BC Hydro network expansion across B.C.

 

A new BC Hydro electric vehicle fast charging site is now operational in Lillooet with a design that accommodates larger electric trucks and trailers.

'We are working to make it easier for drivers in B.C. to go electric and take advantage of B.C.'s clean, reliable hydroelectricity,' says Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. 'Lillooet is a critical junction in BC Hydro's Electric Highway fast charging network and the unique design of this dual station will allow for efficient charging of larger vehicles.'

The Lillooet station opened in early March. It is in the parking lot at Old Mill Plaza at 155 Main Street and includes two 50-kilowatt charging units. Each unit can add 50 kilometres of driving to an average electric vehicle with BC Hydro's faster charging initiatives continuing to improve speeds, in about 10 minutes. The station is one of three in the province that can accommodate large trucks and trailers because of it's 'pull-through' design. The other two are in Powell River and Fraser Lake.

'As the primary fuel supplier for electric vehicles, we are building out more charging stations to ensure we can accommodate the volume and variety of electric vehicles that will be on B.C. roads in the coming years,' says Chris O'Riley, President and CEO of BC Hydro. 'BC Hydro will add 325 charging units to its network at 145 sites, and is piloting vehicle-to-grid technology to support grid flexibility within the next five years.'

Transportation accounts for about 40 per cent of greenhouse gas emissions in B.C. In September, BC Hydro revealed its Electrification Plan, with initiatives to encourage B.C. residents, businesses and industries to switch to hydroelectricity from fossil fuels to help reduce carbon emissions, alongside investments in clean hydrogen development to further decarbonize. The plan encourages switching from gas-powered cars to electric vehicles and is supported by provincial EV charger rebates for homes and workplaces.

BC Hydro's provincewide fast charging network currently includes, as part of B.C.'s expanding EV leadership across the province, 110 fast charging units at 76 sites in communities throughout B.C. The chargers are funded in a partnership with the Province of B.C. and Natural Resources Canada.

 

Related News

View more

Electric cars won't solve our pollution problems – Britain needs a total transport rethink

UK Transport Policy Overhaul signals bans on petrol and diesel cars, rail franchising reform, 15-minute cities, and active travel, tackling congestion, emissions, microplastics, urban sprawl, and public health with systemic, multimodal planning.

 

Key Points

A shift toward EVs, rail reform, and 15-minute cities to reduce emissions, congestion, and health risks.

✅ Phase-out of petrol and diesel car sales by 2030

✅ National rail franchising replaced with integrated operations

✅ Urban design: 15-minute cities, cycling, and active travel

 

Could it be true? That this government will bring all sales of petrol and diesel cars to an end by 2030, even as a 2035 EV mandate in Canada is derided by critics? That it will cancel all rail franchises and replace them with a system that might actually work? Could the UK, for the first time since the internal combustion engine was invented, really be contemplating a rational transport policy? Hold your horses.

Before deconstructing it, let’s mark this moment. Both announcements might be a decade or two overdue, but we should bank them as they’re essential steps towards a habitable nation.

We don’t yet know exactly what they mean, as the government has delayed its full transport announcement until later this autumn. But so far, nothing that surrounds these positive proposals makes any sense, and the so-called EV revolution often proves illusory in practice.

If the government has a vision for transport, it appears to be plug and play. We’ll keep our existing transport system, but change the kinds of vehicles and train companies that use it. But when you have a system in which structural failure is embedded, nothing short of structural change will significantly improve it.

A switch to electric cars will reduce pollution, though the benefits depend on the power mix; in Canada, Canada’s grid was 18% fossil-fuelled in 2019, for example. It won’t eliminate it, as a high proportion of the microscopic particles thrown into the air by cars, which are highly damaging to our health, arise from tyres grating on the surface of the road. Tyre wear is also by far the biggest source of microplastics pouring into our rivers and the sea. And when tyres, regardless of the engine that moves them, come to the end of their lives, we still have no means of properly recycling them.

Cars are an environmental hazard long before they leave the showroom. One estimate suggests that the carbon emissions produced in building each one equate to driving it for 150,000km. The rise in electric vehicle sales has created a rush for minerals such as lithium and copper, with devastating impacts on beautiful places. If the aim is greatly to reduce the number of vehicles on the road, and replace those that remain with battery-operated models, alongside EV battery recycling efforts, then they will be part of the solution. But if, as a forecast by the National Grid proposes, the current fleet is replaced by 35m electric cars, a University of Toronto study warns they are not a silver bullet, and we’ll simply create another environmental disaster.

Switching power sources does nothing to address the vast amount of space the car demands, which could otherwise be used for greens, parks, playgrounds and homes. It doesn’t stop cars from carving up community and turning streets into thoroughfares and outdoor life into a mortal hazard. Electric vehicles don’t solve congestion, or the extreme lack of physical activity that contributes to our poor health.

So far, the government seems to have no interest in systemic change. It still plans to spend £27bn on building even more roads, presumably to accommodate all those new electric cars. An analysis by Transport for Quality of Life suggests that this road-building will cancel out 80% of the carbon savings from a switch to electric over the next 12 years. But everywhere, even in the government’s feted garden villages and garden towns, new developments are being built around the car.

Rail policy is just as irrational, even though lessons from large electric bus fleets offer cleaner mass transit options. The construction of HS2, now projected to cost £106bn, has accelerated in the past few months, destroying precious wild places along the way, though its weak business case has almost certainly been destroyed by coronavirus.

If one thing changes permanently as a result of the pandemic, it is likely to be travel. Many people will never return to the office. The great potential of remote technologies, so long untapped, is at last being realised. Having experienced quieter cities with cleaner air, few people wish to return to the filthy past.

Like several of the world’s major cities, our capital is being remodelled in response, though why electric buses haven’t taken over remains a live question. The London mayor – recognising that, while fewer passengers can use public transport, a switch to cars would cause gridlock and lethal pollution – has set aside road space for cycling and walking. Greater Manchester hopes to build 1,800 miles of protected pedestrian and bicycle routes.

Cycling to work is described by some doctors as “the miracle pill”, massively reducing the chances of early death: if you want to save the NHS, get on your bike. But support from central government is weak and contradictory, and involves a fraction of the money it is spending on new roads. The major impediment to a cycling revolution is the danger of being hit by a car.

Even a switch to bicycles (including electric bikes and scooters) is only part of the answer. Fundamentally, this is not a vehicle problem but an urban design problem. Or rather, it is an urban design problem created by our favoured vehicle. Cars have made everything bigger and further away. Paris, under its mayor Anne Hidalgo, is seeking to reverse this trend, by creating a “15-minute city”, in which districts that have been treated by transport planners as mere portals to somewhere else become self-sufficient communities – each with their own shops, parks, schools and workplaces, within a 15-minute walk of everyone’s home.

This, I believe, is the radical shift that all towns and cities need. It would transform our sense of belonging, our community life, our health and our prospects of local employment, while greatly reducing pollution, noise and danger. Transport has always been about much more than transport. The way we travel helps to determine the way we live. And at the moment, locked in our metal boxes, we do not live well.

 

Related News

View more

Can food waste be turned into green hydrogen to produce electricity?

Food Waste to Green Hydrogen uses biological production to create clean energy, enabling waste-to-energy, decarbonization, and renewable hydrogen for electricity, industrial processes, and transport fuels, developed at Purdue University Northwest with Purdue Research Foundation licensing.

 

Key Points

A biological process converting food waste into renewable hydrogen for clean energy, electricity, industry, and transport.

✅ Enables rapid, scalable waste-to-hydrogen deployment

✅ Supports grid power, industrial heat, and mobility fuels

✅ Backed by patents, DOE grants, and licensing deals

 

West Lafayette, Indiana-based Purdue Research Foundation recently completed a licensing agreement with an international energy company – the name of which was not disclosed – for the commercialization of a new process discovered at Purdue University Northwest (PNW) for the biological production of green hydrogen from food waste. A second licensing agreement with a company in Indiana is under negotiation.


Food waste into green hydrogen
Researchers say that this new process, which uses food waste to biologically produce hydrogen, can be used as a clean energy source for producing electricity, as well as for chemical and industrial processes like green steel production or as a transportation fuel.

Robert Kramer, professor of physics at PNW and principal investigator for the research, says that more than 30% of all food, amounting to $48 billion, is wasted in the United States each year. That waste could be used to create hydrogen, a sustainable energy source alongside municipal solid waste power options. When hydrogen is combusted, the only byproduct is water vapor.

The developed process has a high production rate and can be implemented quickly to support large H2 energy systems in practice. The process is robust, reliable, and economically viable for local energy production and processes.

The research team has received five grants from the US Department of Energy and the Purdue Research Foundation totaling around $800,000 over the last eight years to develop the science and technology that led to this process, much like advances in advanced nuclear reactors drive clean energy innovation.

Two patents have been issued, and a third patent is currently in the final stages of approval. Over the next nine months, a scale-up test will be conducted, reflecting how power-to-gas storage can integrate with existing infrastructure. Based upon test results, it is anticipated that construction could start on the first commercial prototype within a year.

Last week, a facility designed to turn non-recyclable plastics into green hydrogen was approved in the UK, as other innovations like the seawater power concept progress globally. It is the second facility of its kind there.

 

Related News

View more

California Wants Cars to Run on Electricity. It’s Going to Need a Much Bigger Grid

California EV mandate will phase out new gas cars, raising power demand and requiring renewable energy, grid upgrades, fast chargers, time-of-use rates, and vehicle-to-grid to stabilize loads and reduce emissions statewide.

 

Key Points

California's order ends new gas-car sales by 2035, driving grid upgrades, charging infrastructure, and cleaner transport.

✅ 25% higher power demand requires new generation and storage

✅ Time-of-use pricing and midday charging reduce grid stress

✅ Vehicle-to-grid and falling battery costs enable reliability

 

Leaning on the hood of a shiny red electric Ford Mustang, California Gov. Gavin Newsom signed an executive order Wednesday to end the sale of new gas-burning cars in his state in 15 years, a move with looming challenges for regulators and industry.

Now comes the hard part.

Energy consultants and academics say converting all passenger cars and trucks to run on electricity in California could raise power demand by as much as 25%. That poses a major challenge to state power grids as California is already facing periodic rolling blackouts as it rapidly transitions to renewable energy.

California will need to boost power generation, scale up its network of fast charging stations, enhance its electric grid to handle the added load and hope that battery technology continues to improve enough that millions in America’s most populous state can handle long freeway commutes to schools and offices without problems.

“We’ve got 15 years to do the work,” said Pedro Pizarro, chief executive of Edison International, owner of Southern California Edison, a utility serving 15 million people in the state. “Frankly the state agencies are going to have to do their part. We’ve got to get to the permitting processes, the approvals; all of that work is going to have to get accelerated to meet [Wednesday’s] target.”

Switching from petroleum fuels to electricity to phase out the internal combustion engine won’t happen all at once—Mr. Newsom’s order applies to sales of new vehicles, so older gas-powered cars will be on the road in California for many years to come. But the mandate means the state will face a growing demand for megawatts.

California is already facing a shortfall of power supplies over the next couple of years. The problem was highlighted last month when a heat wave blanketed the western U.S. and the state’s grid operator instituted rolling blackouts on two occasions.

“It is too early to tell what kind of impact the order will have on our power grid, and we don’t have any specific analysis or projections,” said Anne Gonzalez, a spokeswoman for the California Independent System Operator, which runs the grid.

Currently, California faces a crunchtime in the early evening as solar power falls off and demand to power air conditioners remains relatively high. Car charging presents a new potential issue: what happens if surging demand threatens to crash the grid during peak hours?

Caroline Winn, the chief executive of San Diego Gas & Electric, a utility owned by Sempra Energy that serves 3.6 million people, said there will need to be rules and rates that encourage people to charge their cars at certain times of the day, amid broader control over charging debates.

“We need to get the rules right and the markets right, informed by lessons from 2021, in order to resolve this issue because certainly California is moving that way,” she said.

The grid will need to be upgraded to prepare for millions of new electric vehicles. The majority of people who own them usually charge them at home, which would mean changes to substations and distribution circuits to accommodate multiple homes in a neighborhood drawing power to fill up batteries. The state’s three main investor-owned utilities are spending billions of dollars to harden the grid to prevent power equipment from sparking catastrophic wildfires.


“We have a hell of a lot of work to do nationally. California is ahead of everybody and they have a hell of a lot of work to do,” said Chris Nelder, who studies EV-grid integration at the Rocky Mountain Institute, an energy and environment-policy organization that promotes clean-energy solutions.

Mr. Nelder believes the investment will be worth it, because internal combustion engines generate so much waste heat and emissions of uncombusted hydrocarbons that escape out of tailpipes. Improving energy efficiency by upgrading the electrical system could result in lower bills for customers. “We will eliminate a vast amount of waste from the energy system and make it way more efficient,” he said.

Some see the growth of electric vehicles as an opportunity more than a challenge. In the afternoon, when electricity demand is high but the sun is setting and solar power drops off quickly, batteries in passenger cars, buses and other vehicles could release power back into the electric grid to help grid stability across the system, said Matt Petersen, chairman of the Transportation Electrification Partnership, a public-private effort in Los Angeles to accelerate the deployment of electric vehicles.

The idea is known as “vehicle-to-grid” and has been discussed in a number of countries expanding EV use, including the U.K. and Denmark.

“We end up with rolling batteries that can discharge power when needed,” Mr. Petersen said, adding, “The more electric vehicles we add to the grid, the more renewable energy we can add to the grid.”

One big hurdle for the widespread deployment of electric cars is driving down the cost of batteries to make the cars more affordable. This week, Tesla Inc. Chief Executive Elon Musk said he expected to have a $25,000 model ready by about 2023, signaling a broader EV boom in the U.S.

Shirley Meng, director of the Sustainable Power and Energy Center at the University of California, San Diego, said she believed batteries would continue to provide better performance at a lower cost.

“I am confident the battery technology is ready,” she said. Costs are expected to fall as new kinds of materials and metals can be used in the underlying battery chemistry, dropping prices. “Batteries are good now, and they will be better in the next 10 years.”

John Eichberger, executive director of the Fuels Institute, a nonprofit research group launched by the National Association of Convenience Stores, said he hoped that the California Air Resources Board, which is tasked with developing new rules to implement Mr. Newsom’s order, will slow the timeline if the market and electric build-out is running behind.

“We need to think about these critical infrastructure issues because transportation is not optional,” he said. “How do we develop a system that can guarantee consumers that they can get the energy when they need it?”

 

Related News

View more

Wind power grows despite Covid-19

Global Wind Power Growth will hit record installations, buoying renewable energy, offshore wind, onshore capacity, and economic recovery, as GWEC forecasts resilient post-Covid markets led by China and the US with strong investment and jobs.

 

Key Points

Global Wind Power Growth is the forecast rise in capacity driving renewable energy, jobs, and lower emissions.

✅ 71.3 GW installed in 2020; only 6% below pre-Covid forecast

✅ 348 GW added by 2024; nearly 1,000 GW total capacity

✅ Offshore wind resilient; 6.5 GW in 2020, China-led

 

Wind power will continue to show record growth, as renewables set to shatter records over the next five years despite the impacts of the Covid-19 crisis, and will make a crucial contribution to economic recovery... According to the latest market outlook by GWEC Market Intelligence, 71.3GW of wind power capacity is expected to be installed in 2020, which is only a 6% reduction from pre-Covid forecasts. This is a significant increase from original predictions that expected wind power installations to be reduced by up to 20 per cent due to the pandemic, demonstrating the resilience of the wind power industry across the globe.

From 2020 to 2024, the cumulative global wind energy market will grow at a compound annual rate of 8.5% and installing 348GW of new capacity, bringing total global wind power capacity to nearly 1,000GW by the end of 2024, which is an increase of 54% for total wind power installations compared to 2019. While some project completion dates have been pushed into 2021 due to the pandemic, next year is expected to be a record year for the wind industry with 78GW of new wind capacity forecasted to be installed in 2021. Over 50% of the onshore wind capacity added between 2020 to 2024 will be installed in China and the US, where U.S. solar and wind growth is supported by favourable government plans, led by installation rushes to meet subsidy deadlines.

The offshore wind sector has been largely shielded from the impacts of the Covid-19 crisis, GWEC Market Intelligence has indeed increased its forecast for offshore wind by 5 per cent to 6.5 GW of new installations in 2020, another record year for the industry, as offshore wind's $1 trillion outlook comes into focus, led by the installation rush in China. Up until 2024, over 48GW of new offshore wind capacity is expected to be installed, with another 157GW forecasted to be installed from 2025 to 2030 across key markets such as offshore wind in the UK and Asia.

“While the Covid-19 crisis has impacted every industry across the world, wind power has continued to grow and thrive. This is no surprise given the cost competitiveness of wind energy and the need to rapidly reproduce carbon emissions. Fossil fuel industries face market fluctuations and require bailouts to stay afloat, while wind turbines across the world have continued to spin and provide affordable, clean energy to citizens everywhere," says Ben Backwell, CEO of GWEC.

“Thanks to the localised nature of wind power supply chains and project construction, the sector has continued to generate billions in local investment and thousands of jobs to support economic recovery. However, in order to tap into the full potential of wind power to drive a green recovery, governments must ensure that energy markets and policies allow a continued ramp up in investment in wind and other renewables, and avoid unintended effects such as the Solar ITC extension impact on the US wind market, while disincentivising investment in expensive and declining fossil fuel industries," he says.

Biggest markets

China and the US will continue to be the two main markets driving growth over the next few years, with U.S. wind power surges underscoring the momentum. "We have increased or maintained our forecasts for onshore wind in regions such as Latin America, North America, Africa, and the Middle East over the next five years, with only minor decreases in Asia Pacific and Europe. However, these reductions are not necessarily a direct impact of Covid-19, but also a symptom of pre-existing regulatory issues, such as protracted permitting procedures, which are slowing down installations. In particular, offshore wind has demonstrated its resilience by exceeding our pre-pandemic forecasts for 2020, and will be an important source of growth in the decade ahead," Feng Zhao, strategy director at GWEC.

“We have seen a series of carbon neutrality commitments by major economies such as China, Japan and South Korea over the past few weeks. Since wind power is a key technology for decarbonisation, building on the evolution in 2016, these targets will increase the forecast for wind power over the next few decades. However, the right enabling regulatory and policy frameworks must be in place to accelerate renewable energy growth to meet these targets. China, the world’s largest wind power market and largest carbon emitter, has pledged to go carbon-neutral by 2060. To have a chance at achieving this target, we need to be installing 50GW of wind power per year in China from now until 2025, and then 60GW from 2026 onwards. It is crucial that governments firm up carbon neutrality targets with tangible actions to drive wind and other renewable energy growth at the levels needed to achieve these aims”, he says.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified