Elon Musk says cheaper, more powerful electric vehicle batteries are 3 years off


tesla charging station

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Tesla Battery Day Innovations detail larger cylindrical EV cells with higher energy density, greater power, longer range, cobalt-free chemistry, automated manufacturing, battery recycling, and lower cost per kWh to enable an affordable electric car.

 

Key Points

Tesla Battery Day innovations are new EV cells and methods to cut costs, extend range, and scale production.

✅ Larger cylindrical cells: 5x energy, 6x power, 16% more range

✅ Automation and recycling to cut battery cost per kWh

✅ Near-zero cobalt chemistry, in-house cell factories worldwide

 

Elon Musk described a new generation of electric vehicle batteries that will be more powerful, longer lasting, and half as expensive as the company’s current cells at Tesla’s “Battery Day”.

Tesla’s new larger cylindrical cells will provide five times more energy, six times more power and 16% greater driving range, Musk said, adding that full production is about three years away.

“We do not have an affordable car. That’s something we will have in the future. But we’ve got to get the cost of batteries down,” Musk said.

To help reduce cost, Musk said Tesla planned to recycle battery cells at its Nevada “gigafactory,” while reducing cobalt – one of the most expensive battery materials – to virtually zero. It also plans to manufacture its own battery cells at several highly automated factories around the world.

The automaker plans to produce the new cells via a highly automated, continuous-motion assembly process, according to Drew Baglino, Tesla senior vice-president of powertrain and energy engineering, a contrast with GM and Ford battery strategies in the broader market today.

Speaking at the event, during which Musk outlined plans to cut costs and reiterated a huge future for Tesla's energy business during the presentation, the CEO acknowledged that Tesla does not have its new battery design and manufacturing process fully complete.

The automaker’s shares slipped as Musk forecast the change could take three years. Tesla has frequently missed production targets.

Tesla expects to eventually be able to build as many as 20m electric vehicles a year, aligning with within-a-decade EV adoption outlooks cited by analysts. This year, the entire auto industry expects to deliver 80m cars globally.

At the opening of the event, which drew over 270,000 online viewers, Musk walked on stage as about 240 shareholders – each sitting in a Tesla Model 3 in the company parking lot – honked their car horns in approval.

As automakers shift from horsepower to kilowatts to comply with stricter environmental regulations amid an age of electric cars that appears ahead of schedule, investors are looking for evidence that Tesla can increase its lead in electrification technology over legacy automakers who generate most of their sales and profits from combustion-engine vehicles.

While average electric vehicle prices have decreased in recent years thanks to changes in battery composition and evidence that they are better for the planet and household budgets, they are still more expensive than conventional cars, with the battery estimated to make up a quarter to a third of an electric vehicle’s cost.

Some researchers estimate that price parity, or the point at which electric vehicles are equal in value to internal combustion cars, is reached when battery packs cost $100 per kilowatt hour (kWh), a potential inflection point for mass adoption.

Tesla’s battery packs cost $156 per kWh in 2019, according to electric vehicle consulting firm Cairn Energy Research Advisors, with some studies noting that EVs save money over time for consumers, which would put the cost of a 90-kWh pack at around $14,000.

Tesla is also building its own cell manufacturing facility at its new factory in Germany in addition to the new plant in Fremont.

 

Related News

Related News

SEA To Convert 10,000 US School Buses To Electricity

SEA Electric school bus conversions bring EV electrification to Type A and Type C fleets, adding V2G, smart charging, battery packs, and zero-emissions performance while extending service life with cost-effective retrofits across US school districts.

 

Key Points

Retrofit EV drivetrains for Type A and C buses, adding V2G and smart charging to cut emissions and costs.

✅ Converts 10,000 Type A and C school buses over five years

✅ Adds V2G, smart charging, and fleet battery management

✅ Cuts diesel fumes, maintenance, and total cost of ownership

 

Converting a Porsche 356C to electric power is a challenge. There’s precious little room for batteries, converters, and such. But converting a school bus? That’s as easy as falling off a log, even if adoption challenges persist in the sector today. A bus has acres of space for batteries and the electronics need to power an electric motor.

One of the dumbest ideas human beings ever came up with was sealing school children inside a diesel powered bus for the trip to and from school. Check out our recent article on the impact of fossil fuel pollution on the human body. Among other things, fine particulates in the exhaust gases of an internal combustion engine have been shown to lower cognitive function. Whose bright idea was it to make school kids walk through a cloud of diesel fumes twice a day when those same fumes make it harder for them to learn?

Help may be on the way, as lessons from the largest e-bus fleet offer guidance for scaling. SEA Electric, a provider of electric commercial vehicles originally from Australia and now based in Los Angeles has stuck a deal with Midwest Transit Equipment to convert 10,000 existing school buses to electric vehicles over the next five years. Midwest will provide the buses to be converted to the SEA Drive propulsion system. SEA Electric will complete the conversions using its “extensive network of up-fitting partners,” Nick Casas, vice president of sales and marketing for SEA Electric, says in a press release.

After the conversions are completed, the electric buses will have vehicle to grid (V2G) capability that will allow them to help balance the local electrical grid, where state power grids face new demands, and “smart charge” when electricity prices are lowest. The school buses to be converted are of the US school bus class Type A  or Type C. Type A is the smallest US school bus with a length of 6 to 7.5 metres and is based on a van chassis. The traditional Type C school buses are built on truck architectures.

SEA Electric says that the conversion will extend the life of the buses by more than ten years, with early deployments like B.C. electric school buses demonstrating real-world performance, and that two to three converted buses can be had for the price of one new electric bus. Mike Menyhart, chief strategy officer at SEA Electric says, “The secondary use of school buses fitted with all-electric drivetrains makes a lot of sense. It keeps costs down, opens up considerable availability, creates green jobs right here in the US, all while making a difference in the environment and the health of the communities we serve.”

According to John McKinney, CEO of Midwest Transport Equipment, the partnership with SEA Electric will ensure that it can respond more quickly to customers’ needs as policies like California's 2035 school-bus mandate accelerate demand in key markets. “As the industry moves towards zero emissions we are positioned well with our SEA Electric partnership to be a leader of the electrification movement.”

According to Nick Casas, SEA Electric will plans to expand it operations to the UK soon, and intends to do business in six countries in Europe, including Germany, in the years to come. SEA says it will have delivered more than 500 electric commercial vehicles in 2021 and plans to put more than 15,000 electric vehicles on the road by the end of 2023. Just a few weeks ago, SEA Electric announced an order for 1,150 electric trucks based on the Toyota Hino cargo van for the GATR company of California, highlighting truck fleet power needs that utilities must plan for today.

Electric school buses make so much sense. No fumes to fog young brains, lower maintenance costs, and lower fuel costs are all pluses, especially as bus depot charging hubs scale across markets, adding resilience. Extending the service life of an existing bus by a decade will obviously pay big dividends for school bus fleet operators like MTE. It’s a win/win/win situation for all concerned, with the possible exception of diesel mechanics. But the upside there is they can be retrained in how to maintain electric vehicles, a skill that will be in increasing demand as the EV revolution picks up speed.

 

Related News

View more

Whooping cranes steer clear of wind turbines when selecting stopover sites

Whooping crane migration near wind turbines shows strong avoidance of stopover habitat within 5 km, reshaping Great Plains siting decisions, reducing collision risk, and altering routes across croplands, grasslands, and wetlands.

 

Key Points

It examines cranes avoiding stopovers within 5 km of turbines, reshaping habitat use and routing across the Great Plains.

✅ Cranes 20x likelier to rest >5 km from turbines.

✅ About 5% of high-quality stopover habitat is impacted.

✅ Findings guide wind farm siting across Great Plains wetlands.

 

As gatherings to observe whooping cranes join the ranks of online-only events this year, a new study offers insight into how the endangered bird is faring on a landscape increasingly dotted with wind turbines across regions. The paper, published this week in Ecological Applications, reports that whooping cranes migrating through the U.S. Great Plains avoid “rest stop” sites that are within 5 km of wind-energy infrastructure.

Avoidance of wind turbines can decrease collision mortality for birds, but can also make it more difficult and time-consuming for migrating flocks to find safe and suitable rest and refueling locations. The study’s insights into migratory behavior could improve future siting decisions as wind energy infrastructure continues to expand, despite pandemic-related investment risks for developers.

“In the past, federal agencies had thought of impacts related to wind energy primarily associated with collision risks,” said Aaron Pearse, the paper’s first author and a research wildlife biologist for the U.S. Geological Survey’s Northern Prairie Wildlife Research Center in Jamestown, N.D. “I think this research changes that paradigm to a greater focus on potential impacts to important migration habitats.”

Some policymakers have also rejected false health claims about wind turbines and cancer in public debate, underscoring the need for evidence-based decisions.

The study tracked whooping cranes migrating across the Great Plains, a region that encompasses a mosaic of croplands, grasslands and wetlands. The region has seen a rapid proliferation of wind energy infrastructure in recent years: in 2010, there were 2,215 wind towers within the whooping crane migration corridor that the study focused on; by 2016, when the study ended, there were 7,622 wind towers within the same area.

Pearse and his colleagues found that whooping cranes migrating across the study area in 2010 and 2016 were 20 times more likely to select “rest stop” locations at least 5 km away from wind turbines than those closer to turbines, a pattern with implications for developers as solar incentive changes reshape wind market dynamics according to industry analyses.

The authors estimated that 5% of high-quality stopover habitat in the study area was affected by presence of wind towers. Siting wind infrastructure outside of whooping cranes’ migration corridor would reduce the risk of further habitat loss not only for whooping cranes, but also for millions of other birds that use the same land for breeding, migration, and wintering habitat, and real-world siting controversies, such as an Alberta wind farm cancellation, illustrate how local factors shape outcomes for wildlife.

 

Related News

View more

Nova Scotia Power increases use of biomass for generating electricity

Nova Scotia Biomass Electricity Policy increases dispatchable renewable generation from Port Hawkesbury and Brooklyn Energy, raising MWh output while critics cite clearcutting, carbon emissions, high costs to ratepayers, and delays replacing Muskrat Falls hydro.

 

Key Points

Policy directing utilities to maximize biomass power as dispatchable renewable supply during hydro delays.

✅ Port Hawkesbury biomass output up 35% year over year

✅ Brooklyn Energy used as dispatchable renewable supply

✅ Critics cite clearcutting, emissions, high ratepayer costs

 

A boiler owned by Nova Scotia Power on the grounds of the Port Hawkesbury paper plant, whose discount power rate request has drawn attention, is burning 35% more woody biomass this year than last. 

The year-to-date figures show 126,810 megawatt hours (MWh) of electricity was generated over the first nine months of 2021 compared to 93,934 MWh for the same period in 2020 and 65,891 MWh in 2019. 

The information is contained in monthly fuel cost reports Nova Scotia Power must make to the Utility and Review Board, which regulates how much consumers ultimately pay for electricity and has received a call for major grid changes in Nova Scotia.

Burning biomass  — which includes everything from low-grade pulpwood to bark, shavings, and wood chip waste from sawmills — for the purpose of generating electricity is only about 22% efficient, even as some coal stations have switched to biomass abroad. Nova Scotia Power’s boiler at Port Hawkesbury supplies about 3% of the total electricity used in the province. 

Citizens concerned about climate change have for years opposed the government classifying biomass as “renewable energy” and have echoed calls to reduce biomass use for electricity, because clearcutting, which releases carbon from the ground, remains the dominant form of harvesting on Crown and private land. That’s despite ongoing work to begin implementing 2018 recommendations from Professor Bill Lahey to move toward a more ecological approach. 

In May 2020, after it became obvious renewable hydroelectricity from Muskrat Falls was going to be delayed yet again, the McNeil government passed an Order-in-Council extending until December 2022 the deadline to generate 40% of electricity from renewable sources as it moved to increase wind and solar projects across Nova Scotia. 

To help with the shortfall, Nova Scotia Power was told to “maximize” its use of biomass at both the facility it owns in Port Hawkesbury and another one in Brooklyn owned by its parent company, Emera.

In a letter to Nova Scotia Power dated May 15, then-Energy Minister Derek Mombourquette, amid debate over independent energy planning, added: “Nova Scotia Power shall also maximize the use of dispatchable renewable electricity from its own facilities, as well as those of renewable electricity power producers in Nova Scotia (excluding COMFIT generation sources).” 

By definition, “dispatchable” excludes wind and hydro sources, which are not available 24/7, though a new attempt to harness the Bay of Fundy's tides is underway. Nova Scotia Power claims the only “dispatchable renewable electricity power producer” in the province is Brooklyn Energy, the 35 MW biomass plant near Liverpool. 

The government capped at $7 million a year how much electricity Nova Scotia Power could buy from its affiliate company. Critics of the deal — such as auditors hired by the regulator and the province’s consumer advocate — say electricity generated by Brooklyn is the most expensive power and question why the province would burden ratepayers with its purchase.

The answer became apparent in September 2020 when then-Intergovernmental Affairs Minister Kelliann Dean appeared before the legislature’s standing committee on Natural Resources and Economic Development to praise the Order-in-Council for helping rescue the forestry industry four months after the closure of the Northern Pulp mill. 

“The change to Renewable Energy Standards (May,2020) is enabling Nova Scotia Power to generate more electricity from wood chips and sawmill residuals by operating two biomass plants at capacity until electricity from Muskrat Falls comes onstream,” she said. “We are using all the policy levers at our disposal to support the sector.”

Nova Scotia Power is not required to report to the UARB how much electricity is being produced or how much biomass is being burned at Brooklyn Energy. The company pleads “commercial confidentiality” when asked by The Halifax Examiner. 

Nova Scotia Power does report how much it spends each month to buy power from independent producers — a small group which includes Brooklyn but excludes all wind farms. That dollar amount has also increased over the past year — from $15.9 million for 10 months ending October 2020 compared to $23.3 million for 10 months ending October 2021. Unfortunately, the lack of transparency makes it impossible to know exactly how much of that increase is attributable to purchasing more biomass.

Radio silence
The current Minister of Natural Resources and Renewable Energy ,Tory Rushton, has the authority to reduce the amount of biomass being burned to generate electricity and by extension, the rate of clearcutting.

With a stroke of the pen, the PC government of Tim Houston could issue another Order-in-Council capping the amount of metric tonnes that could be used in the boilers, or, direct Nova Scotia Power to use biomass only when it is the most economical fuel choice. 

But so far, Rushton has not responded to the Halifax Examiner’s question about whether he intends to make any change to stop “maximizing” the use of biomass to produce electricity.

 The Examiner isn’t the only one pushing the Minister for answers to difficult issues. At noon today, Citizens opposed to a controversial clearcut on Crown land near Rocky Point Lake in Digby County will stage a demonstration outside the Department of Natural Resources and Renewable Energy on Hollis Street. The protest led by members of Extinction Rebellion and the Healthy Forest Coalition is to pressure the government to take action to protect the habitat of the mainland moose, an endangered species that ranges overs the Crown land currently being cut by the Westfor consortium. 

 

Related News

View more

Electric-ready ferry for Kootenay Lake to begin operations in 2023

Kootenay Lake Electric-Ready Ferry advances clean technology in BC, debuting as a hybrid diesel-electric vessel with shore power conversion planned, capacity and terminal upgrades to cut emissions, reduce wait times, and modernize inland ferry service.

 

Key Points

Hybrid diesel-electric ferry replacing MV Balfour, boosting capacity, and aiming for full electric conversion by 2030.

✅ Doubles vehicle capacity; runs with MV Osprey 2000 in summer

✅ Hybrid-ready systems installed; shore power to enable full electric

✅ Terminal upgrades at Balfour and Kootenay Bay improve reliability

 

An electric-ready ferry for Kootenay Lake is scheduled to begin operations in 2023, aligning with first electric passenger flights planned by Harbour Air, the province announced in a Sept. 3 press release.

Construction of the $62.9-million project will begin later this year, which will be carried out by Western Pacific Marine Ltd., reflecting broader CIB-supported ferry investments in B.C. underway.

“With construction beginning here in Canada on the new electric-ready ferry for Kootenay Lake, we are building toward a greener future with made-in-Canada clean technology,” said Catherine McKenna, the federal minister of infrastructure and communities.

The new ferry — which is designed to provide passengers with a cleaner vessel informed by advances in electric ships and more accessibility — will replace and more than double the capacity of the MV Balfour, which will be retired from service.

“This is an exciting milestone for a project that will significantly benefit the Kootenay region as a whole,” said Michelle Mungall, MLA for Nelson-Creston. “The new, cleaner ferry will move more people more efficiently, improving community connections and local economies.”

Up to 55 vehicles can be accommodated on the new ship, and will run in tandem with the larger MV Osprey 2000 to help reduce wait times, a strategy also seen with Washington State Ferries hybrid-electric upgrades, during the summer months.

“The vessel will be fully converted to electric propulsion by 2030, once shore power is installed and reliability of the technology advances for use on a daily basis, as demonstrated by Harbour Air's electric aircraft testing on B.C.'s coast,” said the province.

They noted that they are working to electrify their inland ferry fleet by 2040, as part of their CleanBC initiative.

“The new vessel will be configured as a hybrid diesel-electric with all the systems, equipment and components for electric propulsion,” they said.

Other planned projects include upgrades to the Balfour and Kootenay Bay terminals, and minor dredging has been completed in the West Arm.

 

Related News

View more

Will Electric Vehicles Crash The Grid?

EV Grid Readiness means utilities preparing the power grid for electric vehicles with smart charging, demand response, V2G, managed load, and renewable integration to maintain reliability, prevent outages, and optimize infrastructure investment.

 

Key Points

EV Grid Readiness is utilities' ability to support mass EV charging with smart load control, V2G, and grid upgrades.

✅ Managed charging shifts load off-peak to reduce stress and costs

✅ V2G enables EVs to supply power and balance renewables

✅ Utilities plan upgrades, rate design, and demand response

 

There's little doubt that the automobile industry is beginning the greatest transformation it has ever seen as the American EV boom gathers pace. The internal combustion engine, the heart of the automobile for over 100 years, is being phased out in favor of battery electric powered vehicles. 

Industry experts know that it's no longer a question of will electric vehicles take over, the only question remaining is how quickly will it happen. If electric vehicle adoption accelerates faster than many have predicted, can the power grid, and especially state power grids across the country, handle the additional load needed to "fuel" tens of millions of EVs?

There's been a lot of debate on this subject, with, not surprisingly, those opposed to EVs predicting doomsday scenarios including power outages, increased electricity rates, and frequent calls from utilities asking customers to stop charging their cars.

There have also been articles written that indicate the grid will be able to handle the increased power demand needed to fuel a fully electric transportation fleet. Some even explain how electric vehicles will actually help grid stability overall, not cause problems.

So we decided to go directly to the source to get answers. We reached out to two industry professionals that aren't just armchair experts. These are two of the many people in the country tasked with the assignment of making sure we don't have problems as more and more electric vehicles are added to the national fleet. 

"Let's be clear. No one is forcing anyone to stop charging their EV." - Eric Cahill, speaking about the recent request by a California utility to restrict unnecessary EV charging during peak demand hours when possible

Both Eric Cahill, who is the Strategic Business Planner for the Sacramento Municipal Utility District in California, and John Markowitz, the Senior Director and Head of eMobility for the New York Power Authority agreed to recorded interviews so we could ask them if the grid will be ready for millions of EVs.  

Both Cahill and Markowitz explained that, while there will be challenges, they are confident that their respective districts will be ready for the additional power demand that electric vehicles will require. It's also important to note that the states that they work in, California and New York, with California expected to need a much bigger grid to support the transition, have both banned the sale of combustion vehicles past 2035. 

That's important because those states have the most aggressive timelines to transition to an all-electric fleet, and internationally, whether the UK grid can cope is a parallel question, so if they can provide enough power to handle the increased demand, other states should be able to also. 

We spoke to both Cahill and Markowitz for about thirty minutes each, so the video is about an hour long. We've added chapters for those that want to skip around and watch select topics. 

We asked both guests to explain what they believe some of the biggest challenges are, including how energy storage and mobile chargers could help, if 2035 is too aggressive of a timeline to ban combustion vehicles, and a number of other EV charging and grid-related questions. 

Neither of our guests seemed to indicate that they were worried about the grid crashing, or that 2035 was too soon to ban combustion vehicles. In fact, they both indicated that, since they know this is coming, they have already begun the planning process, with proper management in place to ensure the lights stay on and there are no major electricity disruptions caused by people charging their cars. 

So check out the video and let us know your thoughts. This has been a hot topic of discussion for many years now. Now that we've heard from the people in charge of providing us the power to charge our EVs, can we finally put the concerns to rest now? As always, leave your comments below; we want to hear your opinions as well.

 

Related News

View more

Bus depot bid to be UK's largest electric vehicle charging hub

First Glasgow Electric Buses will transform the Caledonia depot with 160 charging points, zero-emission operations, grid upgrades, and rapid charging, supported by Transport Scotland funding and Alexander Dennis manufacturing for cleaner urban routes by 2023.

 

Key Points

Electric single-deckers at Caledonia depot with 160 chargers and upgrades, delivering zero-emission service by 2023

✅ 160 charging points; 4-hour rapid recharge capability

✅ Grid upgrades to power a fleet equal to a 10,000-person town

✅ Supported by Transport Scotland; built by Alexander Dennis

 

First Bus will install 160 charging points and replace half its fleet with electric buses at its Caledonia depot in Glasgow.

The programme is expected to be completed in 2023, similar to Metro Vancouver's battery-electric rollout milestones, with the first 22 buses arriving by autumn.

Charging the full fleet will use the same electricity as it takes to power a town of 10,000 people.

The scale of the project means changes are needed to the power grid, a challenge highlighted in global e-bus adoption analysis, to accommodate the extra demand.

First Glasgow managing director Andrew Jarvis told BBC Scotland: "We've got to play our part in society in changing how we all live and work. A big part of that is emissions from vehicles.

"Transport is stubbornly high in terms of emissions and bus companies need to play their part, and are playing their part, in that zero emission journey."

First Bus currently operates 337 buses out of its largest depot with another four sites across Glasgow.

The new buses will be built by Alexander Dennis at its manufacturing sites in Falkirk and Scarborough.

The transition requires a £35.6m investment by First with electric buses costing almost double the £225,000 bill for a single decker running on diesel.

But the company says maintenance and running costs, as seen in St. Albert's electric fleet results, are then much lower.

The buses can run on urban routes for 16 hours, similar to Edmonton's first e-bus performance, and be rapidly recharged in just four hours.

This is a big investment which the company wouldn't be able to achieve on its own.

Government grants only cover 75% of the difference between the price of a diesel and an electric bus, similar to support for B.C. electric school buses programmes, so it's still a good bit more expensive for them.

But they know they have to do it as a social responsibility, and large-scale initiatives like US school bus conversions show the direction of travel, and because the requirements for using Low Emissions Zones are likely to become stricter.

The SNP manifesto committed to electrifying half of Scotland's 4,000 or so buses within two years.

Some are questioning whether that's even achievable in the timescale, though TTC's large e-bus fleet offers lessons, given the electricity grid changes that would be necessary for charging.

But it's a commitment that environmental groups will certainly hold them to.

Transport Scotland is providing £28.1m of funding to First Bus as part of the Scottish government's commitment to electrify half of Scotland's buses in the first two years of the parliamentary term.

Net Zero Secretary Michael Matheson said: "It's absolute critical that we decarbonise our transport system and what we have set out are very ambitious plans of how we go about doing that.

"We've set out a target to make sure that we decarbonise as many of the bus fleets across Scotland as possible, at least half of it over the course of the next couple of years, and we'll set out our plans later on this year of how we'll drive that forward."

Transport is the single biggest source of greenhouse gas emissions in Scotland which are responsible for accelerating climate change.

In 2018 the sector was responsible for 31% of the country's net emissions.

Electric bus
First Glasgow has been trialling two electric buses since January 2020.

Driver Sally Smillie said they had gone down well with passengers because they were much quieter than diesel buses.

She added: "In the beginning it was strange for them not hearing them coming but they adapt very easily and they check now.

"It's a lot more comfortable. You're not feeling a gear change and the braking's smoother. I think they're great buses to drive."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified