Elon Musk says cheaper, more powerful electric vehicle batteries are 3 years off


tesla charging station

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Tesla Battery Day Innovations detail larger cylindrical EV cells with higher energy density, greater power, longer range, cobalt-free chemistry, automated manufacturing, battery recycling, and lower cost per kWh to enable an affordable electric car.

 

Key Points

Tesla Battery Day innovations are new EV cells and methods to cut costs, extend range, and scale production.

✅ Larger cylindrical cells: 5x energy, 6x power, 16% more range

✅ Automation and recycling to cut battery cost per kWh

✅ Near-zero cobalt chemistry, in-house cell factories worldwide

 

Elon Musk described a new generation of electric vehicle batteries that will be more powerful, longer lasting, and half as expensive as the company’s current cells at Tesla’s “Battery Day”.

Tesla’s new larger cylindrical cells will provide five times more energy, six times more power and 16% greater driving range, Musk said, adding that full production is about three years away.

“We do not have an affordable car. That’s something we will have in the future. But we’ve got to get the cost of batteries down,” Musk said.

To help reduce cost, Musk said Tesla planned to recycle battery cells at its Nevada “gigafactory,” while reducing cobalt – one of the most expensive battery materials – to virtually zero. It also plans to manufacture its own battery cells at several highly automated factories around the world.

The automaker plans to produce the new cells via a highly automated, continuous-motion assembly process, according to Drew Baglino, Tesla senior vice-president of powertrain and energy engineering, a contrast with GM and Ford battery strategies in the broader market today.

Speaking at the event, during which Musk outlined plans to cut costs and reiterated a huge future for Tesla's energy business during the presentation, the CEO acknowledged that Tesla does not have its new battery design and manufacturing process fully complete.

The automaker’s shares slipped as Musk forecast the change could take three years. Tesla has frequently missed production targets.

Tesla expects to eventually be able to build as many as 20m electric vehicles a year, aligning with within-a-decade EV adoption outlooks cited by analysts. This year, the entire auto industry expects to deliver 80m cars globally.

At the opening of the event, which drew over 270,000 online viewers, Musk walked on stage as about 240 shareholders – each sitting in a Tesla Model 3 in the company parking lot – honked their car horns in approval.

As automakers shift from horsepower to kilowatts to comply with stricter environmental regulations amid an age of electric cars that appears ahead of schedule, investors are looking for evidence that Tesla can increase its lead in electrification technology over legacy automakers who generate most of their sales and profits from combustion-engine vehicles.

While average electric vehicle prices have decreased in recent years thanks to changes in battery composition and evidence that they are better for the planet and household budgets, they are still more expensive than conventional cars, with the battery estimated to make up a quarter to a third of an electric vehicle’s cost.

Some researchers estimate that price parity, or the point at which electric vehicles are equal in value to internal combustion cars, is reached when battery packs cost $100 per kilowatt hour (kWh), a potential inflection point for mass adoption.

Tesla’s battery packs cost $156 per kWh in 2019, according to electric vehicle consulting firm Cairn Energy Research Advisors, with some studies noting that EVs save money over time for consumers, which would put the cost of a 90-kWh pack at around $14,000.

Tesla is also building its own cell manufacturing facility at its new factory in Germany in addition to the new plant in Fremont.

 

Related News

Related News

EV shortages, wait times amid high gasoline prices

Canada EV demand surge is driven by record gas prices, zero-emission policies, and tight dealer inventory, while microchip shortages, ZEV mandates abroad, and lithium supply concerns extend wait times for new and used models.

 

Key Points

Canada EV demand surge is rising interest in zero-emission cars due to high gas prices and limited EV supply.

✅ Gas at $2/litre spurs zero-emission interest

✅ Dealer inventory scarce; waits up to 3 years

✅ Microchip and lithium constraints limit output

 

Price shock at the pump is driving  Canadians toward buying an ev. But manufacturers are having trouble keeping up with consumer demand, even as the U.S. auto sector pivots to EVs across North America.

In parts of the country, gas prices exceeded $2 per litre last month amid strong global demand for oil combined with Russia's invasion of Ukraine. Halifax-based electric vehicle salesperson Jeremie Bernardin said he's noticed an explosion of interest in zero-emission vehicles since the price of fuel started to take off.

"I think there's a lot of people that were considering electric vehicles for a very long time, and they needed that extra little push," Bernardin, who is also the president of the Electric Vehicle Association of Atlantic Canada, where Atlantic EV demand has lagged the national average, told CTVNews.ca over the phone on Wednesday.

With so few electric vehicles on dealership lots, Canadians looking to buy a brand-new zero-emission car will have to put down a deposit and get onto a waiting list. Bernardin said the wait times can be as long as three years, depending on the manufacturer and the dealership.

Tesla, which makes Canada's best-selling electric car according to the automotive publication Motor Illustrated, says delivery times for its vehicles range between three months to one year, depending on the model. But some manufacturers like Nissan have already completely sold out of their electric vehicle inventory for the 2022 model year, though recent EV assembly deals in Canada aim to expand capacity over time.

Shortages of electric vehicles have been around long before the recent spike in gas prices. In March 2021, a report commissioned by Transport Canada found that more than half of Canadian dealerships had no electric vehicles in stock. The report also found that wait times exceeded six months at 31 per cent of dealerships that had no zero-emission cars in their inventory.

Interest in used electric vehicles has also surged amid the high gas prices. Used car marketplace AutoTrader.ca says searches for electric cars in March 2022 increased 89 per cent compared to the previous year, while the number of inquiries sent to electric vehicle sellers through its platform jumped 567 per cent.

"It's understandable that when the gas prices are expensive, consumers are looking to buy and get into electric vehicles, though upfront cost remains a major barrier for many buyers today," Baris Akyurek, AutoTrader.ca's director of marketing intelligence, told CTVNews.ca in a phone interview on Wednesday.

SUPPLY CHAIN ISSUES PERSIST
The surging interest in electric vehicles also comes at a time when pandemic-induced shortages of microchips have been affecting the automotive industry at large since late 2020. Modern automobiles can have hundreds of microchips that control everything from the air conditioning to the power steering system, and a shortage of these crucial components have resulted in fewer vehicles being manufactured.

"Electric vehicles are subject to supply chain issues, just like anything else. Right now, the COVID pandemic has disrupted global supply chains. The auto industry specifically is seeing a microchip shortage that it's been struggling with for the past year or two. So those things are at play," said Joanna Kyriazis, senior policy advisor with Simon Fraser University’s Clean Energy Canada, in a phone interview with CTVNews.ca on Tuesday.

On top of that, Kyriazis says more than 80 per cent of the world's supply of electric vehicles are shipped to consumers in China and the European Union.

China has a strict zero-emission vehicle (ZEV) mandate that requires automakers to ensure that a certain minimum percentage of their vehicles are electric or hydrogen-powered. In Europe, automakers are also forced to sell more electric vehicles there in order to meet the EU's stringent fleetwide emissions standards, and in Canada, Ottawa is preparing EV sales regulations to guide adoption in the coming years.

"We don't have the same aggressive regulations in place yet to really force automakers to prioritize the Canadian market when they're deciding where to allocate their EV inventory and where to sell EVs," said Kyriazis, though Ottawa's 2035 EV mandate remains debated by some industry observers today.

Kyriazis also said she believes it's possible that a shortage of lithium and other minerals required for battery production could be a potential issue within the next five years.

"But my understanding is that the global market is not hitting a supply crunch just yet," she said. "There could be a near-term supply issue. But we're not there yet."

In order to ensure adequate supply of minerals for battery production, the federal government in its most recent budget committed to providing up to $3.8 billion over eight years to create "Canada's first critical minerals strategy." The strategy is aimed at boosting extraction and production of Canadian nickel, lithium and other minerals used as components in electric vehicles and their batteries, and it aligns with opportunities for Canada-U.S. collaboration as companies electrify.

"Canada has a lot of natural resources and a lot of experience with natural resource extraction. We really can stand to be a leader in battery production," said Harry Constatine, president of the Vancouver Electric Vehicles Association, in an interview with CTVNews.ca over the phone on Monday.

 

 

Related News

View more

Wind, solar, batteries make up 82% of 2023 utility-scale US pipeline

US Renewable Energy Capacity 2023 leads new utility-scale additions, with solar, wind, and battery storage surging; EIA data cite tax incentives, lower costs, and smart grid upgrades driving grid reliability and decarbonization.

 

Key Points

In 2023, renewables dominate new US utility-scale capacity: 54% solar, 7.1 GW wind, 8.6 GW battery storage, per EIA.

✅ 54% of 2023 US additions are solar, a record year

✅ 7.1 GW wind and 8.6 GW batteries expand grid resources

✅ Storage, smart grids, incentives boost reliability and growth

 

Wind, solar, and batteries make up 82% of 2023’s expected new utility-scale power capacity in the US, highlighting wind power's surge alongside solar and storage, according to the US Energy Information Administration’s (EIA) “Preliminary Monthly Electric Generator Inventory.”

As of January 2023, the US was operating 73.5 gigawatts (GW) of utility-scale solar capacity, which aligns with rising solar generation trends across the US – about 6% of the country’s total.

But solar makes up just over half of new US generating capacity expected to come online in 2023, supported by favourable government plans across key markets. And if it all goes as expected, it will be the most solar capacity added in a single year in the US. It will also be the first year that more than half of US capacity additions are solar, underscoring solar's No. 3 renewable ranking in the U.S. mix.

As of January 2023, 141.3 GW of wind capacity was operating in the US, reflecting wind's status as the most-used renewable nationwide – about 12% of the US total. Another 7.1 GW are planned for 2023. Tax incentives, lower wind turbine construction costs, and new renewable energy targets are spurring the growth. 

And developers also plan to add 8.6 GW of battery storage power capacity to the grid this year, supporting record solar and storage buildouts across the market, and that’s going to double total US battery power capacity.

However, differences in the amount of electricity that different types of power plants can produce mean that wind and solar made up about 17% of the US’s utility-scale capacity in 2021, but produced 12% of electricity, even as renewables surpassed coal nationally in 2022. Solutions such as energy storage, smart grids, and infrastructure development will help bridge that gap.

 

Related News

View more

Peak Power Receives $765,000 From Canadian Government to Deploy 117 V1G EV Chargers

Peak Power V1G EV chargers optimize smart charging in Ontario, using Synergy technology and ZEVIP support to manage peak demand, enhance grid capacity, and expand EV infrastructure across mixed-use developments with utility-friendly energy management.

 

Key Points

Peak Power's V1G smart chargers use Synergy tech to cut peak load and grow Ontario EV charging access.

✅ 117 chargers funded by NRCAN's ZEVIP program

✅ Synergy tech shifts load off peak to boost grid capacity

✅ Partners: SWTCH Energy and Signature Electric

 

Peak Power, a Canadian climate tech company with a core focus in energy management and energy storage, announces it has received a $765,000 investment through Natural Resources Canada’s (NRCan) Zero Emission Vehicle Infrastructure Program (ZEVIP) to install 117 V1G chargers as Ontario energy storage push intensifies province-wide planning. The total cost of the project is valued at over $1.6 million.

Peak Power will install the V1G chargers across several mixed-use developments in Ontario. Peak Power’s Synergy technology, which is currently used in the company’s successful Peak Drive EV charging project, will underpin the chargers. The Synergy tech will enable the chargers to draw energy from the grid when it’s most widely available and avoid times of peak demand, similar to emerging EV-to-grid integration pilots now, and can also adjust the flow rate at which the cars are charged. The intelligent chargers will reduce strain on the grid, benefiting utilities and electricity users by increasing grid capacity as well as giving EV drivers more locations to charge their vehicles.

As part of ZEVIP, the project supports the federal government’s goals of accelerating the electrification of Canada’s transportation sector. The 117 chargers will encourage adoption of EVs, as drivers have access to expanded infrastructure for charging, and as Ontario streamlines charging-station builds to accelerate deployments. From the perspective of grid operators, the intelligent nature of the Peak Power software will allow more capacity from the grid without requiring major infrastructure upgrades.

Peak Power will work with partners with deep expertise in EV charging to install the chargers. SWTCH Energy is co-developing the software for the EV chargers with Peak Power, while Signature Electric will install the hardware and supporting infrastructure.

“We’re thrilled to support the Canadian government's electrification goals through smart EV charging,” said Matthew Sachs, COO of Peak Power. “The funding from NRCan will enable us to provide drivers with more options for EV charging, while the smart nature of our Synergy tech in the chargers means grid operators don’t have to worry about capacity restraints when EVs are plugged into the grid, with EV owners selling power back offering additional flexibility too. ZEVIP is critical to greater electrification of the country’s infrastructure, and we’re proud to support the initiative.”

“Happy EV Week, Canada. Our government is making electric vehicles more affordable and charging more accessible where Canadians live, work and play, for example through the Ivy and ONroute charging network that supports travel corridors,” said the Honourable Jonathan Wilkinson, Minister of Natural Resources. “Investing in more EV chargers, like the ones announced today in Ontario, will put more Canadians in the driver’s seat on the road to a net-zero future and help achieve our climate goals.”

"I'm pleased to be announcing the deployment of over 100 Electric Vehicle chargers across Ontario with Peak Power,” said Julie Dabrusin, Parliamentary Secretary to the Minister of Natural Resources and to the Minister of Environment and Climate Change, and Member of Parliament for Toronto-Danforth. “This $765,000 investment by the Government of Canada will allow folks in Toronto and across the province to access the infrastructure they need, as B.C. expands EV charging shows national momentum, to drive an EV while fighting climate change. Happy #EVWeek!”

"Limited access to EV charging infrastructure in high-density mixed-used environments remains a key barrier to widespread EV adoption,” said Carter Li, CEO of SWTCH. “SWTCH’s partnership with Peak Power and Signature Electric to deploy V1G technology to these settings will enhance coordination between energy utilities, building operators, and EV drivers to improve building energy efficiency and access to EV charging infrastructure, with charger rebates in B.C. expanding home and workplace options as well.”

“Signature Electric is proud to be a partner on increasing the availability of localized charging for Canadians,” said Mark Marmer, Owner of Signature Electric. “Together, we can scale EV infrastructure to support Canada’s commitment to achieving net-zero emissions by 2050.”

 

Related News

View more

B.C. Hydro predicts 'bottleneck' as electric-vehicle demand ramps-up

B.C. EV Bottleneck signals a post-pandemic demand surge for electric vehicles amid semiconductor and lithium-ion battery shortages, driving waitlists, record sales, rebates, charging infrastructure needs, and savings on fuel and maintenance across British Columbia.

 

Key Points

B.C. EV bottleneck is rising demand outpacing supply from chip and battery shortages, creating waitlists.

✅ 85% delayed EV purchase; demand rebounds with reopening.

✅ Supply chain limits: chips and lithium-ion batteries.

✅ Plan ahead: join waitlists, consider used EVs, claim rebates.

 

B.C. Hydro is warning of a post-pandemic “EV bottleneck” as it predicts pent-up demand and EV shortages will lead to record-breaking sales for electric vehicles in 2021.

A new survey by B.C. Hydro found 85 per cent of British Columbians put off buying an electric vehicle during the pandemic, but as the province reopens, the number of people on the road commuting to-and-from work and school is expected to rise 15 per cent compared with before the pandemic.

It found about two-thirds of British Columbians are considering buying an EV over the next five years, with 60 per cent saying they would go with an EV if they can get one sooner.

“The EV market is at a potential tipping point, as demand is on the rise and will likely continue to grow long-term, with one study projecting doubling power output to meet full road electrification,” said a report about the findings released Wednesday.

The demand for EVs is prompted by rising gas prices, environmental concerns and to save money on maintenance costs like oil changes and engine repairs, said the report. At the same time, a shortage of semiconductor chips and lithium ion batteries needed for auto production is squeezing supply.

For people wanting to make the switch to electric, B.C. Hydro recommended they plan ahead and get on several waiting lists and explore networks offering faster charging options. Used EVs are also a cheaper option.

B.C. Hydro said an electric vehicle can save 80 per cent in gas expenses over a year and about $100 a month in maintenance costs compared with a gas-powered vehicle. There are also provincial and federal rebates of up to $8,000 for EV purchases in B.C., and additional charger rebates can help with installation costs.

B.C. has the highest electric vehicle uptake in North America, with zero-emission vehicles making up almost 10 per cent of all car sales in the province in 2020 as the province expands EV charging to support growth — more than double the four per cent in 2018.

According to a report by University of B.C. business Prof. Werner Antweiler on the state of EV adoption in B.C., electric vehicles are still concentrated in urban areas like Metro Vancouver and the Capital Regional District on Vancouver Island where public charging stations are more readily available.

He said electric vehicle purchases are still hampered by limited choice and a lack of charging stations, especially for people who park on the street or in condo parkades, which would require permission from strata councils to install a charging station, though rebates for home and workplace charging can ease installation.

The online survey was conducted by market researcher Majid Khoury of 800 British Columbians from May 17-19. It has a margin of error of plus-or-minus 3.5 per cent, 19 times out of 20.

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

US renewable energy hit record 28% in April.

U.S. Renewable Energy Record 28% signals a cleaner power grid as wind, solar, and hydroelectric output soar; EIA data shows cost-competitive clean energy reshaping the electricity mix and reducing carbon emissions across regions.

 

Key Points

EIA-reported April share of electricity from wind, solar, and hydro, reflecting cost-driven growth in U.S. clean power.

✅ Wind, solar additions dominated recent U.S. capacity buildouts

✅ Lower levelized costs make renewables most competitive

✅ Seasonal factors and outages lowered fossil and nuclear output

 

The amount of electricity generated by renewable resources hit a record 28% in April, a breakthrough number that shows how important renewable energy has become in U.S. energy markets as it surpassed coal in 2022 overall.

"It's a 'Wow' moment," said Peter Kelly-Detwiler, an energy analyst and author of "The Energy Switch," a recent book about the transition to a carbon-free energy economy.

The percentage of U.S. electricity produced by renewable energy from wind, solar and hydroelectric dams has been steadily rising, from 8.6% in April 2001 to this April's 28%. Those numbers were released this week by the U.S. Energy Information Administration, which tracks energy data for the nation.

What explains the surge?
There are several reasons. At the top is that wind and solar installations dominated U.S. energy buildouts.

"Basically, the only things we've added to the grid in the past decade are wind, solar and natural gas," said Harrison Fell, an economist and engineer at Columbia University, where he co-leads the Power Sector and Renewables Research Initiative.

That's happening for two reasons. The first is cost. Renewables are simply the most economically competitive power currently available, Kelly-Detwiler said.

In 2021, the cost of producing a megawatt-hour of electricity from a new wind turbine was $26 to $50. The same amount of electricity from the cheapest type of natural gas plant ranged from $45 to $74, according to Lazard, a financial advisory firm that publishes annual estimates of the cost of producing electricity. 

Federal and state mandates and incentives to increase the amount of clean energy used also help, Fell said, as renewables reached 25.5% of U.S. electricity recently. 

"When you do the math on what's the most profitable thing to add, it's often going to be wind and solar at this stage," he said.

Was weather a factor?
Yes. April tends to be a particularly windy month, and this spring was windier than most, Fell said.

There's also less power coming into the grid from fossil fuels and nuclear in the spring. That's because electricity demand is generally lower because of the mild weather and fossil fuel and nuclear power plants use the time for maintenance and refueling, which reduces their production, he said.

Another surprise was that in April, wind and solar power together produced more electricity than nuclear plants nationwide. 

Historically, nuclear power plants, which are carbon-neutral, have reliably produced about 20% of America's electricity. In April that number dropped to 18% while wind and solar combined stood at 19.6%.

The nuclear decrease is partly a result of the shutdown of two plants in the past year, Indian Point in New York state and Palisades in Michigan, as well as scheduled closures for maintenance.

Will the trend continue?
When all U.S. carbon-neutral energy sources are added together – nuclear, wind, hydroelectric and solar – almost 46% of U.S. electricity in April came from sources that don't contribute greenhouse gases to the environment, federal data shows.  

"It's a milestone," Kelly-Detwiler said. "But in a few years, we'll look back and say, 'This was a nice steppingstone to the next 'Wow!' moment."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.