Elon Musk says cheaper, more powerful electric vehicle batteries are 3 years off


tesla charging station

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Tesla Battery Day Innovations detail larger cylindrical EV cells with higher energy density, greater power, longer range, cobalt-free chemistry, automated manufacturing, battery recycling, and lower cost per kWh to enable an affordable electric car.

 

Key Points

Tesla Battery Day innovations are new EV cells and methods to cut costs, extend range, and scale production.

✅ Larger cylindrical cells: 5x energy, 6x power, 16% more range

✅ Automation and recycling to cut battery cost per kWh

✅ Near-zero cobalt chemistry, in-house cell factories worldwide

 

Elon Musk described a new generation of electric vehicle batteries that will be more powerful, longer lasting, and half as expensive as the company’s current cells at Tesla’s “Battery Day”.

Tesla’s new larger cylindrical cells will provide five times more energy, six times more power and 16% greater driving range, Musk said, adding that full production is about three years away.

“We do not have an affordable car. That’s something we will have in the future. But we’ve got to get the cost of batteries down,” Musk said.

To help reduce cost, Musk said Tesla planned to recycle battery cells at its Nevada “gigafactory,” while reducing cobalt – one of the most expensive battery materials – to virtually zero. It also plans to manufacture its own battery cells at several highly automated factories around the world.

The automaker plans to produce the new cells via a highly automated, continuous-motion assembly process, according to Drew Baglino, Tesla senior vice-president of powertrain and energy engineering, a contrast with GM and Ford battery strategies in the broader market today.

Speaking at the event, during which Musk outlined plans to cut costs and reiterated a huge future for Tesla's energy business during the presentation, the CEO acknowledged that Tesla does not have its new battery design and manufacturing process fully complete.

The automaker’s shares slipped as Musk forecast the change could take three years. Tesla has frequently missed production targets.

Tesla expects to eventually be able to build as many as 20m electric vehicles a year, aligning with within-a-decade EV adoption outlooks cited by analysts. This year, the entire auto industry expects to deliver 80m cars globally.

At the opening of the event, which drew over 270,000 online viewers, Musk walked on stage as about 240 shareholders – each sitting in a Tesla Model 3 in the company parking lot – honked their car horns in approval.

As automakers shift from horsepower to kilowatts to comply with stricter environmental regulations amid an age of electric cars that appears ahead of schedule, investors are looking for evidence that Tesla can increase its lead in electrification technology over legacy automakers who generate most of their sales and profits from combustion-engine vehicles.

While average electric vehicle prices have decreased in recent years thanks to changes in battery composition and evidence that they are better for the planet and household budgets, they are still more expensive than conventional cars, with the battery estimated to make up a quarter to a third of an electric vehicle’s cost.

Some researchers estimate that price parity, or the point at which electric vehicles are equal in value to internal combustion cars, is reached when battery packs cost $100 per kilowatt hour (kWh), a potential inflection point for mass adoption.

Tesla’s battery packs cost $156 per kWh in 2019, according to electric vehicle consulting firm Cairn Energy Research Advisors, with some studies noting that EVs save money over time for consumers, which would put the cost of a 90-kWh pack at around $14,000.

Tesla is also building its own cell manufacturing facility at its new factory in Germany in addition to the new plant in Fremont.

 

Related News

Related News

EV Boom Unexpectedly Benefits All Electricity Customers

Electric Vehicles Lower Electricity Rates by boosting demand, enabling fixed-cost recovery, and encouraging off-peak charging that balances the grid, reduces peaker plant use, and funds utility upgrades, with V2G poised to expand system benefits.

 

Key Points

By boosting off-peak demand and utility revenue, EVs spread fixed costs, cut peaker use, and stabilize the grid.

✅ Off-peak charging flattens load, reducing peaker plant reliance

✅ Higher kWh sales spread fixed grid costs across more users

✅ V2G can supply power during peaks and emergencies

 

Electric vehicles (EVs) are gaining popularity, and it appears they might be offering an unexpected benefit to everyone – including those who don't own an EV.  A new study by the non-profit research group Synapse Energy Economics suggests that the growth of electric cars is actually contributing to lower electricity rates for all ratepayers.


How EVs Contribute to Lower Rates

The study explains several factors driving this surprising trend:

  • Increased Electricity Demand: Electric vehicles require additional electricity, boosting rising electricity demand on the grid.
  • Optimal Charging Times: Many EV owners take advantage of off-peak charging discounts. Charging cars overnight, when electricity demand is typically low, helps to balance state power grids and reduce the need for expensive "peaker" power plants, which are only used to meet occasional spikes in demand.
  • Revenue for Utilities: Electric car charging can generate substantial revenue for utilities, potentially supporting investment in grid improvements, energy storage solutions and renewable energy projects that can bring long-term benefits to all customers.


A Significant Impact

The Synapse Energy Economics study analyzed data from 2011 to 2021 and concluded that EV drivers already contributed over $3 billion more to the grid than their associated costs. That, in turn, reduced monthly electricity bills for all customers.


Benefits May Grow

While the impact on electricity rates has been modest so far, experts anticipate the benefits to grow as EV adoption rates increase. Vehicle-to-grid (V2G) technology, which allows EVs to feed stored power back into the grid during emergencies or high-demand periods, has the potential to further optimize electricity usage patterns and create additional benefits for electric utilities and customers.


National Implications

The findings of this study offer hope to other regions seeking to increase electric vehicle adoption rates and support California's grid stability efforts, which is a key step towards reducing transportation-related greenhouse gas emissions. This news may alleviate concerns about potential electricity rate hikes driven by EV adoption and suggests that the benefits will be broadly shared.


More than Just Environmental Benefits

Electric vehicles bring a clear environmental advantage by reducing reliance on fossil fuels. However, this unexpected economic benefit could further strengthen the case for accelerating the adoption of electric vehicles. This news might encourage policymakers and the public to consider additional incentives or policies, including vehicle-to-building charging approaches, to promote the transition to this cleaner mode of transportation knowing it can yield benefits beyond environmental goals.

 

Related News

View more

Major investments by Canada and Quebec in electric vehicle battery assembly

Lion Electric Battery Plant Quebec secures near $100M public investment for an automated battery-pack assembly in Saint-Jérôme, fueling EV manufacturing, R&D, local supply chains, and heavy-duty zero-emission vehicle competitiveness and jobs.

 

Key Points

Automated battery-pack plant in Saint-Jérôme boosting EV manufacturing and strengthening Quebec's supply chain.

✅ $100M joint federal-provincial investment announced

✅ 135 jobs in 2023; 150 more long-term positions

✅ R&D hub to enhance heavy-duty EV battery performance

 

Canadian Prime Minister of Canada, Justin Trudeau, and the Premier of Quebec, François Legault, have announced an equal investment totalling nearly $100 million to Lion Electric, as a B.C. battery plant announcement has done in another province, for the establishment of a highly automated battery-pack assembly plant in Saint–Jérôme, in the Laurentians. This project, valued at nearly $185 million, will create 135 jobs when construction of the plant is completed in 2023. It is also expected that 150 additional jobs will be created over the longer term.

For the announcement, Mr. Trudeau and Mr. Legault were accompanied by the Minister of Innovation, Science and Industry, François-Philippe Champagne, by Quebec's Minister of Economy and Innovation, Pierre Fitzgibbon, and by Marc Bédard, President and Founder of Lion Electric.

The battery packs assembled at the new plant will be used in Lion Electric vehicles. This strategic investment will allow the company to improve its cost structure, and better control the design and shape of its batteries, making it more competitive in the heavy-duty electric vehicle market, as EV assembly deals put Canada in the race. Ultimately, the company will be able to increase the volume of its vehicle production. Lion Electric will be the first Canadian manufacturer of medium and heavy-duty vehicles to have state-of-the-art, automated battery-pack manufacturing facilities.

The company will also establish a research and development innovation centre within its manufacturing plant, which will allow it to test and refine products for future use, including batteries for emergency vehicles such as ambulances. The company will test innovations from research and development, including energy storage capacity and battery performance. The results will make these products more competitive in the North American market, where a Niagara Region battery plant signals growing demand.

The company said it expects to employ 135 people at the plant when it is operational by 2023. It also plans to invest in a research and development facility that could create a number of spinoff jobs.

"When we talk about an economic recovery that's good for workers, for families and for the environment, this is exactly the kind of project we mean," Trudeau said at a news conference in Montreal.

Trudeau toured Lion Electric's factory in Saint-Jérôme, Que., last March, just before the pandemic. (Ryan Remiorz/The Canadian Press)
It was the prime minister's first trip to Montreal in more than a year. He said one of the reasons he decided to attend the announcement was to illustrate the importance of the green economy and how Canada can capitalize on the U.S. EV pivot for future job growth.

The project also aligns with the Legault government's desire to create a supply chain within Quebec that is able to feed the electric vehicle industry, where Canada-U.S. collaboration could accelerate progress.

At Monday's announcement, Economy Minister Pierre Fitzgibbon spoke at length about the province's deposits of lithium and nickel — key components in electric vehicle batteries — as well as its supply of low-emission hydroelectricity.

"If we play our cards right, we could become world leaders in this market of the future," Fitzgibbon said.

Currently, many of those strategic minerals found in Quebec are exported to Asia where they are turned into battery cells, and then imported back to Quebec by companies like Lion, said Mickaël Dollé, a chemistry professor at the Université de Montréal.

By opening a battery assembly plant in Quebec, Lion could help stimulate more cell-makers, such as the Northvolt project near Montreal, to set up shop in the province. Further localizing the supply chain, Dollé said, means better value and a greener product. 

But other countries have the same goal in mind, he said, and the window for the province to establish itself as an important player in the emerging electric vehicle battery industry is closing quickly, as major Ford Oakville deal commitments accelerate competition.

"The decision has to be taken now, or in the coming months, but if we wait too long we may miss our main goal which is to get our own supply chain in Canada," Dollé said.

What's in a name?
Monday's announcement was closely watched in Quebec for what it foretold about the political future as well as the economic one.

By coming to Montreal and touring a vaccination clinic before making the funding announcement, Trudeau fed speculation in the province that he is preparing to call an election soon.

Intrigue also surrounded the informal meeting Trudeau had with Legault on Monday. The Quebec premier and members of his government have repeatedly expressed frustration with Trudeau during the pandemic.

 

Related News

View more

Is residential solar worth it?

Home Solar Cost vs Utility Bills compares electricity rates, ROI, incentives, and battery storage, explaining payback, financing, and grid fees while highlighting long-term savings, rate volatility, and backup power resilience for homeowners.

 

Key Points

Compares home solar pricing and financing to utility rates, outlining savings, incentives, ROI, and backup power value.

✅ Average retail rates rose 59% in 20 years; volatility persists

✅ Typical 7.15 kW system costs $18,950 before incentives

✅ Federal ITC and state rebates improve ROI and payback

 

When shopping for a home solar system, sometimes the quoted price can leave you wondering why someone would move forward with something that seems so expensive. 

When compared with the status quo, electricity delivered from the utility, the price may not seem so high after all. First, pv magazine will examine the status quo, and how much you can expect to pay for power if you don’t get solar panels. Then, we will examine the average cost of solar arrays today and introduce incentives that boost home solar value.

The cost of doing nothing

Generally, early adopters have financially benefited from going solar by securing price certainty and stemming the impact of steadily increasing utility-bill costs, particularly for energy-insecure households who pay more for electricity.

End-use residential electric customers pay an average of $0.138/kWh in the United States, according to the Energy Information Administration (EIA). In California, that rate is $0.256/kWh, it averages $0.246/kWh across New England, $0.126/kWh in the South Atlantic region, and $0.124/kWh in the Mountain West region.

EIA reports that the average home uses 893 kWh per month, so based on the average retail rate of $0.138/kWh, that’s an electric bill of about $123 monthly, or $229 monthly in California.

Over the last 20 years, EIA data show that retail electricity prices have increased 59% across the United States, with evidence indicating that renewables are not making electricity more expensive, suggesting other factors have driven costs higher, or 2.95% each year.

This means based on historical rates, the average US homeowner can expect to pay $39,460 over the next 20 years on electricity bills. On average, Californians could pay $73,465 over 20 years.

Recent global events show just how unstable prices can be for commodities, and energy is no exception here, with solar panel sales doubling in the UK as homeowners look to cut soaring bills. What will your utility bill cost in 20 years?

These estimated bills also assume that energy use in the home is constant over 20 years, but as the United States electrifies its homes, adds more devices, and adopts electric vehicles, it is fair to expect that many homeowners will use more electricity going forward.

Another factor that may exacerbate rate raising is the upgrade of the national transmission grid. The infrastructure that delivers power to our homes is aging and in need of critical upgrades, and it is estimated that a staggering $500 billion will be spent on transmission buildout by 2035. This half-trillion-dollar cost gets passed down to homeowners in the form of raised utility bill rates.

The benefit of backup power may increase as time goes on as well. Power outages are on the rise across the United States, and recent assessments of the risk of power outages underscore that outages related to severe weather events have doubled in the last 20 years. Climate change-fueled storms are expected to continue to rise, so the role of battery backup in providing reliable energy may increase significantly.

The truth is, we don’t know how much power will cost in 20 years. Though it has increased 59% across the nation in the last 20 years, there is no way to be certain what it will cost going forward. That is where solar has a benefit over the status quo. By purchasing solar, you are securing price certainty going forward, making it easier to budget and plan for the future.

So how do these costs compare to going solar?

Cost of solar

As a general trend, prices for solar have fallen. In 2010, it cost about $40,000 to install a residential solar system, and since then, prices have fallen by as much as 70%, and about 37% in the last five years. However, prices have increased slightly in 2022 due to shipping costs, materials costs, and possible tariffs being placed on imported solar goods, and these pressures aren’t expected to be alleviated in the near-term.

When comparing quotes, the best metric for an apples-to-apples comparison is the cost per watt. Price benchmarking by the National Renewable Energy Laboratory shows the average cost per watt for the nation was $2.65/W DC in 2021, and the average system size was 7.15 kW. So, an average system would cost about $18,950. With 12.5 kWh of battery energy storage, the average cost was $4.26/W, representing an average price tag of $30,460 with batteries included.

The prices above do not include any incentives. Currently, the federal government applies a 26% investment tax credit to the system, bringing down system costs for those who qualify to $14,023 without batteries, and $22,540 with batteries. Compared to the potential $39,460 in utility bills, buying a solar system outright in cash appears to show a clear financial benefit.

Many homeowners will need financing to buy a solar system. Shorter terms can achieve rates as low as 2.99% or less, but financing for a 20-year solar loan typically lands between 5% to 8% or more. Based on 20-year, 7% annual percentage rate terms, a $14,000 system would total about $26,000 in loan payments over 20 years, and the system with batteries included would total about $42,000 in loan payments.

Often when you adopt solar, the utility will still charge you a grid access fee even if your system produces 100% of your needs. These vary from utility to utility but are often around $10 a month. Over 20 years, that equates to about $2,400 that you’ll still need to pay to the utility, plus any costs for energy you use beyond what your system provides.

Based on these average figures, a homeowner could expect to see as much as $12,000 in savings with a 20-year financed system. Homeowners in regions whose retail energy price exceeds the national average could see savings in multiples of that figure.

Though in this example batteries appear to be marginally more expensive than the status quo over a 20-year term, they improve the home by adding the crucial service of backup power, and as battery costs continue to fall they are increasingly being approved to participate in grid services, potentially unlocking additional revenue streams for homeowners.

Another thing to note is most solar systems are warranted for 25 years rather than the 20 used in the status quo example. A panel can last a good 35 years, and though it will begin to produce less in old age, any power produced by a panel you own is money back in your pocket.

Incentives and home value

Many states have additional incentives to boost the value of solar, too, and federal proposals to increase solar generation tenfold could remake the U.S. electricity system. Checking the Database of State Incentives for Renewables (DSIRE) will show the incentives available in your state, and a solar representative should be able to walk you through these benefits when you receive a quote. State incentives change frequently and vary widely, and in some cases are quite rich, offering thousands of dollars in additional benefits.

Another factor to consider is home value. A study by Zillow found that solar arrays increase a home value by 4.1% on average. For a $375,000 home, that’s an increase of $15,375 in value. In most states home solar is exempt from property taxes, making it a great way to boost value without paying taxes for it.

Bottom line

We’ve shared a lot of data on national averages and the potential cost of power going forward, but is solar for you? In the past, early adopters have been rewarded for going solar, and celebrate when they see $0 electric bills paid to the utility company.

Each home is different, each utility is different, and each homeowner has different needs, so evaluating whether solar is right for your home will take a little time and analysis. Representatives from solar companies will walk you through this analysis, and it’s generally a good rule of thumb to get at least three quotes for comparison.

A great resource for starting your research is the Solar Calculator developed by informational site SolarReviews. The calculator offers a quote and savings estimate based on local rates and incentives available to your area. The website also features reviews of installers, equipment, and more.

Some people will save tens of thousands of dollars in the long run with solar, while others may witness more modest savings. Solar will also provide the home clean, local energy, and U.S. solar generation is projected to reach 20% by 2050 as capacity expands, making an impact both on mitigating climate change and in supporting local jobs.

One indisputable benefit of solar is that it will offer greater clarity into what your electricity bills will cost over the next couple of decades, rather than leaving you exposed to whatever rates the utility company decides to charge in the future.

 

Related News

View more

Electric vehicle owners can get paid to sell electricity back to the grid

Ontario EV V2G Pilots enable bi-directional charging, backup power, and grid services with IESO, Toronto Hydro, and Hydro One, linking energy storage, solar, blockchain apps, and demand response incentives for smarter electrification.

 

Key Points

Ontario EV V2G pilots test bidirectional charging and backup power to support grid services with apps and incentives.

✅ Tests Nissan Leaf V2H backup with Hydro One and Peak Power.

✅ Integrates solar, storage, blockchain apps via Sky Energy and partners.

✅ Pilots demand response apps in Toronto and Waterloo utilities.

 

Electric vehicle owners in Ontario may one day be able to use the electricity in their EVs instead of loud diesel or gas generators to provide emergency power during blackouts. They could potentially also sell back energy to the grid when needed. Both are key areas of focus for new pilot projects announced this week by Ontario’s electricity grid operator and partners that include Toronto Hydro and Ontario Hydro.

Three projects announced this week will test the bi-directional power capabilities of current EVs and the grid, all partially funded by the Independent Electricity System Operator (IESO) of Ontario, with their announcement in Toronto also attended by Ontario Energy Minister Todd Smith.

The first project is with Hydro One Networks and Peak Power, which will use up to 10 privately owned Nissan Leafs to test what is needed technically to support owners using their cars for vehicle-to-building charging during power outages. It will also study what type of financial incentives will convince EV owners to provide backup power for other users, and therefore the grid.

A second pilot program with solar specialist Sky Energy and engineering firm Hero Energy will study EVs, energy storage, and solar panels to further examine how consumers with potentially more power to offer the grid could do it securely, in part using blockchain technology. York University and Volta Research are other partners in the program, which has already produced an app that can help drivers choose when and how much power to provide the grid — if any.

The third program is with local utilities in Toronto and Waterloo, Ont., and will test a secure digital app that helps EV drivers see the current demands on the grid through improved grid coordination mechanisms, and potentially price an incentive to EV drivers not to charge their vehicles for a few hours. Drivers could also be actively further paid to provide some of the charge currently in their vehicle back to the grid.

It all adds up to $2.7 million in program funding from IESO ($1.1 million) and the associated partners.

“An EV charged in Ontario produces roughly three per cent of emissions of a gas fuelled car,” said IESO’s Carla Nell, vice-president of corporate relations and innovation at the announcement near Peak Power chargers in downtown Toronto. “We know that Ontario consumers are buying EVs, and expected to increase tenfold — so we have to support electrification.”

If these types of programs sound familiar, it may be because utilities in Ontario have been testing such vehicle-to-grid technologies soon after affordable EVs became available in the fall of 2011. One such program was run by PowerStream, now the called Alectra, and headed by Neetika Sathe, who is now Alectra’s vice-president of its Green Energy and Technology (GRE&T) Centre in Guelph, Ont.

The difference between now and those tests in the mid-2010s is that the upcoming wave of EV sales can be clearly seen on the horizon, and California's grid stability work shows how EVs can play a larger role.

“We can see the tsunami now,” she said, noting that cost parity between EVs and gas vehicles is likely four or five years away — without government incentives, she stressed. “Now it’s not a question of if, it’s a question of when — and that when has received much more clarity on it.”

Sathe sees a benefit in studying all these types of bi-directional power-flowing scenarios, but notes that they are future scenarios for years in the future, especially since bi-directional charging equipment — and the vehicles with this capability — are pricey, and largely still not here. What she believes is much closer is the ability to automatically communicate what the grid needs with EV drivers, as Nova Scotia Power pilots integration, and how they could possibly help. For a price, of course.

“If I can set up a system that says ‘oh, the grid is stressed, can you not charge for the next two hours? And here’s what we’ll offer to you for that,’ that’s closer to low-hanging fruit,” she said, noting that Alectra is currently testing out such systems. “Think of it the same way as offering your car for Uber, or a room on Airbnb.”

 

Related News

View more

How to retrofit a condo with chargers for a world of electric cars

Condo EV charging retrofits face strata approval thresholds, installation costs, and limited electrical capacity, but government rebates, subsidies, and smart billing systems can improve ROI, property value, and feasibility amid electrician shortages and infrastructure constraints.

 

Key Points

Condo EV charging retrofits equip multiunit parking with EV chargers, balancing costs, bylaws, capacity, and rebates.

✅ Requires owner approval (e.g., 75% in B.C.) and clear bylaws

✅ Leverage rebates, subsidies, and load management to cut costs

✅ Plan billing, capacity, and phased installation to increase ROI

 

Retrofitting an existing multiunit residential building with electric vehicle charging stations is a complex and costly exercise, as high-rise EV charging challenges in MURBs demonstrate, even after subsidies, but the biggest hurdle to adoption may be getting enough condo owners on board.

British Columbia, for example, offers a range of provincial government subsidies to help condo corporations (referred to in B.C. as stratas) with everything from the initial research to installing the chargers. But according to provincial strata law, three-quarters of owners must support the plan before it is implemented, though new strata EV legislation could make approvals easier in some jurisdictions.

“The largest challenge is getting that 75-per-cent majority approval to go ahead,” says EV charging specialist Patrick Breuer with ChargeFwd Ltd., a Vancouver-based sustainable transport consultancy.

Chris Brunner, a strata president in Vancouver, recently upgraded all the building’s parking stalls for EV charging. His biggest challenge was getting the strata’s investment owners, who don’t live in the building and were not interested in spending money, to support the project.

“We had to sell it in two ways,” Mr. Brunner says. “First, that there’s going to be a return on investment, including vehicle-to-building benefits that support savings and grid stability, and second, that there will come a time when this will be required. And if we do it now, taking advantage of the generous rebates and avoiding price increases for expertise and materials, we’ll be ahead of the curve.”

Once the owners have voted in favour, the condo board can begin the planning process and start looking for rebates. The B.C. government will provide a rebate of up to 75 per cent for the consulting phase, with additional provincial rebates available through current programs. It’s referred to as an “EV Ready” plan, which is a professionally prepared document that describes how to implement EV charging fairly, and estimates its cost.

Once a condo has completed the EV Ready plan, it becomes eligible for other rebates, such as the EV Ready Infrastructure subsidy, which will bring power to each individual parking stall through an energized outlet. This is rebated at 50 per cent of expenses, up to $600 a stall.

There are further rebates of up to 75 per cent for installing the charging stations themselves, and B.C. charging rebates extend to home and workplace programs, too. The program is administered by BC Hydro, a Crown corporation that receives funding in annual increments. “Right now, it’s funded until March 31, 2023,” Mr. Breuer says.

“Realtors are valuing [individual charging stations] from $2,000 to $10,000,” he said. The demand for installing EV chargers in buildings has grown to such an extent that it’s hard to find qualified electricians, Mr. Breuer says.

However, even with subsidies, there are some buildings where it doesn’t make financial sense to retrofit them. “If you have to core through thin floors or there’s a big parkade with a large voltage drop, it isn’t financially viable,” Mr. Breuer says. “We do a lot of EV Ready plans, but not all the projects can go ahead.”

For many people, it’s resistance to the unknown that is preventing them from voting for the retrofit, according to Carter Li of Toronto-based Swtch Energy Inc., which provides charging in high-density urban settings. It has done retrofits on 200 multiunit residential buildings in the Toronto area, and Calgary condo charging efforts show similar momentum in other cities, too. “They’re worried about paying for someone else’s electricity,” he says. Selling owners on the idea requires educating them about how the billing will work, maximizing electrical capacity to keep costs down, using government subsidies and the anticipated boost in property value.

Ontario currently does not provide any subsidies for retrofitting condos for EV charging. However, there is a stipulation under the Condominium Act that if owners request EV charging be installed and provide a condo board with sufficient documentation, an assessment will be conducted.

When Jeremy Benning was on the board of his Toronto condo in 2018, a few residents inquired about installing EV charging. A committee of owners did the legwork, and found a company that could do the infrastructure installation as well as set up accounts for individual billing purposes. Residents were surveyed a number of times before going ahead with the installation.

Mr. Benning estimates it cost about $40,000 to install two electrical subpanels to accommodate EV chargers in 20 parking spaces. Although the condo corporation paid the money up front out of its operating budget, everyone who ordered a charger will pay back their share over time. Many who do not even own an EV have opted to add a valuable frill to their unit.

The board considered applying for a subsidy from Natural Resources Canada, but it would require a public charger in the visitor parking lot. “The rebate wasn’t enough to pay for the cost of putting in that charging station,” Mr. Benning says. “Also, you have to maintain it, and what if it gets vandalized? It wasn’t worth it.”

Quebec’s Roulez Vert (Ride Green) program offers extensive provincial rebates and incentives for retrofitting condo buildings. If a single condo owner wants to install an EV charger, the government will refund up to 50 per cent of the installation cost or up to $5,000, whichever is less.

Otherwise, a property manager can qualify for a maximum of $25,000 a year to retrofit a building and can sometimes complete the work in stages. “They may do the first installation in one year, and then continue the next year,” says Léo Viger-Bernard of Recharge Véhicule Électrique (RVE). Recently, the Quebec government confirmed this program will run until 2027.

RVE consults with condo corporations, operates an online platform (murby.com) with resources for building owners, and sells a demand charge controller (DCC), which is an electric vehicle energy management system. The DCC allows an electrician to plug the EV charger directly into the electrical infrastructure of a single condo or apartment unit. Not only does this reduce extra wiring, but it also monitors the electrical consumption in each unit, only powering the charging station when there’s available electricity. Billing is assigned to the actual unit’s electricity bill.

Currently there are about 12,000 DCC units installed in retrofitted buildings across Canada, some that are 40 or 50 years old. “It’s not a question of age; it’s more the location of the electric meters,” Mr. Viger-Bernard says. The DCC can be installed either on the roof or on different floors.

According to Michael Wilk, president of Montreal-based Wilkar Property Management Inc., the biggest barrier is getting condo owners to understand the necessity of doing a retrofit now, as opposed to waiting. He uses price increases to try to convince them.

“Right now, the cost of doing a retrofit is 35 per cent more than it was two years ago,” he says. “If you wait another two years, we can only anticipate it’s going to be 35 per cent higher because of the rising cost of labour, parts and equipment.”

In Nova Scotia, Marc MacDonald of Spark Power Corp. installed an EV charger with a DCC unit at a condo near Halifax about a year ago. “They only had space in their electrical room to add a device for up to 10 EV chargers,” he says. The condo board was hesitant, demanding a great deal of information. “They were concerned about everyone wanting an EV charger.”

Now that Nova Scotia has introduced a program for rebates and incentives to install EV chargers in condos, on-street sites and more, Mr. MacDonald anticipates demand will increase, though Atlantic EV adoption still lags the national average. “But they’ll have to settle with reality. Not everyone can have an EV charger if the building can’t accommodate it.”

 

Related News

View more

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified