Elon Musk says cheaper, more powerful electric vehicle batteries are 3 years off


tesla charging station

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Tesla Battery Day Innovations detail larger cylindrical EV cells with higher energy density, greater power, longer range, cobalt-free chemistry, automated manufacturing, battery recycling, and lower cost per kWh to enable an affordable electric car.

 

Key Points

Tesla Battery Day innovations are new EV cells and methods to cut costs, extend range, and scale production.

✅ Larger cylindrical cells: 5x energy, 6x power, 16% more range

✅ Automation and recycling to cut battery cost per kWh

✅ Near-zero cobalt chemistry, in-house cell factories worldwide

 

Elon Musk described a new generation of electric vehicle batteries that will be more powerful, longer lasting, and half as expensive as the company’s current cells at Tesla’s “Battery Day”.

Tesla’s new larger cylindrical cells will provide five times more energy, six times more power and 16% greater driving range, Musk said, adding that full production is about three years away.

“We do not have an affordable car. That’s something we will have in the future. But we’ve got to get the cost of batteries down,” Musk said.

To help reduce cost, Musk said Tesla planned to recycle battery cells at its Nevada “gigafactory,” while reducing cobalt – one of the most expensive battery materials – to virtually zero. It also plans to manufacture its own battery cells at several highly automated factories around the world.

The automaker plans to produce the new cells via a highly automated, continuous-motion assembly process, according to Drew Baglino, Tesla senior vice-president of powertrain and energy engineering, a contrast with GM and Ford battery strategies in the broader market today.

Speaking at the event, during which Musk outlined plans to cut costs and reiterated a huge future for Tesla's energy business during the presentation, the CEO acknowledged that Tesla does not have its new battery design and manufacturing process fully complete.

The automaker’s shares slipped as Musk forecast the change could take three years. Tesla has frequently missed production targets.

Tesla expects to eventually be able to build as many as 20m electric vehicles a year, aligning with within-a-decade EV adoption outlooks cited by analysts. This year, the entire auto industry expects to deliver 80m cars globally.

At the opening of the event, which drew over 270,000 online viewers, Musk walked on stage as about 240 shareholders – each sitting in a Tesla Model 3 in the company parking lot – honked their car horns in approval.

As automakers shift from horsepower to kilowatts to comply with stricter environmental regulations amid an age of electric cars that appears ahead of schedule, investors are looking for evidence that Tesla can increase its lead in electrification technology over legacy automakers who generate most of their sales and profits from combustion-engine vehicles.

While average electric vehicle prices have decreased in recent years thanks to changes in battery composition and evidence that they are better for the planet and household budgets, they are still more expensive than conventional cars, with the battery estimated to make up a quarter to a third of an electric vehicle’s cost.

Some researchers estimate that price parity, or the point at which electric vehicles are equal in value to internal combustion cars, is reached when battery packs cost $100 per kilowatt hour (kWh), a potential inflection point for mass adoption.

Tesla’s battery packs cost $156 per kWh in 2019, according to electric vehicle consulting firm Cairn Energy Research Advisors, with some studies noting that EVs save money over time for consumers, which would put the cost of a 90-kWh pack at around $14,000.

Tesla is also building its own cell manufacturing facility at its new factory in Germany in addition to the new plant in Fremont.

 

Related News

Related News

0 to 180 km in 10 minutes: B.C. Hydro rolls out faster electric vehicle charging

B.C. Hydro fast EV charging stations roll out 180 kW DC fast chargers, power sharing, and rural network expansion in Surrey, Manning Park, Mackenzie, and Tumbler Ridge to ease range anxiety across northern B.C.

 

Key Points

180 kW DC chargers with power sharing, expanding B.C.'s rural EV network to cut range anxiety and speed up recharging.

✅ 180 kW DC fast charging: ~180 km added in about 10 minutes

✅ Power sharing enables two vehicles to use one unit simultaneously

✅ Expands rural charging coverage to cut range anxiety for northern B.C.

 

B.C. Hydro has unveiled plans to install new charging stations it says can add as much as 180 kilometres worth of range to the average electric vehicle in 10 minutes.

The utility says the new 180-kilowatt units will be added to its network, expanding stations in southern B.C. as soon as this fall, with even more scheduled to arrive in 2024.

The first communities to get the new faster-charge stations are Surrey, Manning Park and, north of Prince George, Mackenzie and Tumbler Ridge, while the Lillooet fast-charging site is already operational.

B.C. Hydro president Chris O'Riley says both current and prospective electric vehicle owners have said they want improved coverage in more rural parts of the province in order to address range anxiety, as the utility has warned of a potential EV charging bottleneck if demand outpaces infrastructure.

"We are listening to feedback from our customers," he said.

The new stations will also be the first from B.C. Hydro to offer power sharing, which lets two different vehicles use the same unit to charge at the same time.

The adoption of electric vehicles in B.C. is much higher in southern urban areas than rural, northern ones, according to statistics from the provincial government made available in 2022, as the province leads the country in going electric according to recent reports.

The figures showed about one in every 45 people owns a zero-emission vehicle in the southwest regions of the province, but that number drops to one in 232 in the Kootenays, where the region makes electric cars a priority through local initiatives, and one in 414 in northern B.C.

The number of public charging stations closely corresponds to the number of zero-emission vehicles in various regions.

The Vancouver area has more than 500 fast-charging ports, according to ChargeHub, a website that tracks charging stations in North America. 

In contrast, the route from Prince George to Fort Nelson via Dawson Creek along Highway 97, part of the B.C. Electric Highway network connecting the region — a distance of more than 800 kilometres — has just three locations where a vehicle can be charged to 80 per cent power in an hour or less, creating challenges for people hoping to travel the route.

The disparity is also clear in a just-published analysis from the non-profit Community Energy Association, which acts as an advisory group to government associations. 

It found that while there is roughly one charging port every three square kilometres in Metro Vancouver, the number drops to one every 250 square kilometres in the Regional District of East Kootenay and one every 3,500 square kilometres in the Peace River Regional District, in the province's northeast.

"The more infrastructure we can get across the region ... the more the adoption of electric vehicles will increase," said the association's director of transportation initiatives, Danielle Weiss.

"We are excited to hear that B.C. Hydro is also viewing rural areas as a key focus for their new, enhanced charging technology."

B.C. Hydro says it currently has 153 charging units at 84 locations across the province with plans to add an additional 3,000 ports over the next 10 years, with provincial EV charger rebates supporting home and workplace installations as well.

 

Related News

View more

GM, Ford Need Electric-Car Batteries, but Take Different Paths to Get Them

EV battery supply strategies weigh in-house cell manufacturing against supplier contracts, optimizing costs, scale, and supply-chain resilience for electric vehicles. Automakers like Tesla, GM-LG Chem, VW-Northvolt, and Ford balance gigafactories, joint ventures, and procurement risks.

 

Key Points

How automakers secure EV battery cells by balancing cost, scale, tech risk, and supply-chain control to meet demand.

✅ In-source cells via gigafactories, JVs, and proprietary chemistries

✅ Contract with LG Chem, Panasonic, CATL, SKI to diversify supply

✅ Manage costs, logistics, IP, and technology obsolescence risks

 

Auto makers, pumping billions of dollars into developing electric cars, are now facing a critical inflection point as they decide whether to get more involved with manufacturing the core batteries or buy them from others.

Batteries are one of an electric vehicle’s most expensive components, accounting for between a quarter and a third of the car’s value. Driving down their cost is key to profitability, executives say.

But whereas the internal combustion engine traditionally has been engineered and built by auto makers themselves, battery production for electric cars is dominated by Asian electronics and chemical firms, such as LG Chem Ltd. and Panasonic Corp. , and newcomers like China’s Contemporary Amperex Technology Co.

California, the U.S.’s largest car market, said last month it would end the sale of new gasoline- and diesel-powered passenger cars by 2035, putting pressure on the auto industry to accelerate its shift to electric vehicles in the coming years.

The race to lock in supplies for electric cars has auto makers taking varied paths, with growing Canada-U.S. collaboration across supply chains.

While most make the battery pack, a large metal enclosure often lining the bottom of the car, they also need the cells that are bundled together to form the core electricity storage.

Tesla several years ago opened its Gigafactory in Nevada to make batteries with Panasonic, which in the shared space would produce cells for the packs. The electric-car maker wanted to secure production specifically for its own models and lower manufacturing and logistics costs.

Now it is looking to in-source more of that production.

While Tesla will continue to buy cells from Panasonic and other suppliers, it is also working on its own cell technology and production capabilities, aiming for cheaper, more powerful batteries to ensure it can keep up with demand for its cars, said Chief Executive Elon Musk last month.

Following Tesla’s lead, General Motors Co. and South Korea’s LG Chem are putting $2.3 billion into a nearly 3-million-square-foot factory in Lordstown, Ohio, highlighting opportunities for Canada to capitalize on the U.S. EV pivot as supply chains evolve, which GM says will eventually produce enough battery cells to outfit hundreds of thousands of cars each year.

In Europe, Volkswagen AG is taking a similar path, investing about $1 billion in Swedish battery startup Northvolt AB, including some funding to build a cell-manufacturing plant in Salzgitter, Germany, as part of a joint venture, and in North America, EV assembly deals in Canada are putting it in the race as well.

Others like Ford Motor Co. and Daimler AG are steering clear of manufacturing their own cells, with executives saying they prefer contracting with specialized battery makers.

Supply-chain disruptions, including lithium shortages, have already challenged some new model launches and put projects at risk, auto makers say.

For instance, Ford and VW have agreements in place with SK Innovation to supply battery cells for future electric-vehicle models. The South Korean company is building a factory in Georgia to help meet this demand, but a fight over trade secrets has put the plant’s future in jeopardy and could disrupt new model launches, both auto makers have said in legal filings.

GM executives say the risk of relying on suppliers has pushed them to produce their own battery cells, albeit with LG Chem.

“We’ve got to be able to control our own destiny,” said Ken Morris, GM’s vice president of electric vehicles.

Bringing the manufacturing in house will give the company more control over the raw materials it purchases and the battery-cell chemistry, Mr. Morris said.

But establishing production, even in a joint venture, is a costly proposition, and it won’t necessarily ensure a timely supply of cells. There are also risks with making big investments on one battery technology because a breakthrough could make it obsolete.

Ford cites those factors in deciding against a similar investment for now.

The company sees the industry’s conventional model of contracting with independent suppliers to build parts as better suited to its battery-cell needs, Ford executive Hau Thai-Tang told analysts in August.

“We have the competitive tension with dealing with multiple suppliers, which allows us to drive the cost down,” Mr. Thai-Tang said, adding that the company expects to pay prices for cells in line with GM and Tesla.


Meanwhile, Ford can leave the capital-intensive task of conducting the research and setting up manufacturing facilities to the battery companies, Mr. Thai-Tang said.

Germany’s Daimler has tried both strategies.

The car company made its own lithium-ion cells through a subsidiary until 2015. But the capital required to scale up was better spent elsewhere, said Ola Källenius, Daimler’s chief executive officer.

The auto maker instead signed long-term supply agreements with Asian companies like Chinese battery-maker CATL and Farasis Energy (Ganzhou) Co., which Daimler invested in last year.

The company has said it is spending roughly $23.6 billion on purchase agreements but keeping its battery research in-house.

“Let’s rather put that capital into what we do best, cars,” Mr. Källenius said.

 

Related News

View more

What cities can learn from the biggest battery-powered electric bus fleet in North America

Canadian Electric Bus Fleet leads North America as Toronto's TTC deploys 59 battery-electric, zero-emission buses, advancing public transit decarbonization with charging infrastructure, federal funding, lower maintenance, and lifecycle cost savings for a low-carbon urban future.

 

Key Points

Canada's leading battery-electric transit push, led by Toronto's TTC, scaling zero-emission buses and charging.

✅ Largest battery-electric bus fleet in North America

✅ TTC trials BYD, New Flyer, Proterra for range and reliability

✅ Charging infrastructure, funding, and specs drive 2040 zero-emissions

 

The largest battery-powered electric bus fleet in North America is Canadian. Toronto's transit system is now running 59 electric buses from three suppliers, and Edmonton's first electric bus is now on the road as well. And Canadian pioneers such as Toronto offer lessons for other transit systems aiming to transition to greener fleets for the low-carbon economy of the future.

Diesel buses are some of the noisier, more polluting vehicles on urban roads. Going electric could have big benefits, even though 18% of Canada's 2019 electricity from fossil fuels remains a factor.

Emissions reductions are the main reason the federal government aims to add 5,000 electric buses to Canada's transit and school fleets by the end of 2024. New funding announced this week as part of the government's fall fiscal update could also give programs to electrify transit systems a boost.

"You are seeing huge movement towards all-electric," said Bem Case, the Toronto Transit Commission's head of vehicle programs. "I think all of the transit agencies are starting to see what we're seeing ... the broader benefits."

While Vancouver has been running electric trolley buses (more than 200, in fact), many cities (including Vancouver) are now switching their diesel buses to battery-electric buses in Metro Vancouver that don't require overhead wires and can run on regular bus routes.

The TTC got approval from its board to buy its first 30 battery-electric buses in November 2017. Its plan is to have a zero-emissions fleet by 2040.

That's a crucial part of Toronto's plan to meet its 2050 greenhouse gas targets, which requires 100 per cent of vehicles to transition to low-carbon energy by then.

But Case said the transition can't happen overnight. 


Finding the right bus
For one thing, just finding the right bus isn't easy.

"There's no bus, by any manufacturer, that's been in service for the entire life of a bus, which is 12 years," Case said.

"And so really, until then, we don't have enough experience, nor does anyone else in the industry, have enough experience to commit to an all-electric fleet immediately."

In fact, Case said, there are only three manufacturers that make suitable long-range buses — the kind needed in a city the size of Toronto.

Having never bought electric buses before, the city had no specifications for what it needed in an electric bus, so it decided to try all three suppliers: Winnipeg-based New Flyer; BYD, which is headquartered in Shenzhen, China, but built the TTC buses at its Newmarket, Ont. facility; and California-based Proterra.

They all had their strengths and weaknesses, based on their backgrounds as a traditional non-electric bus manufacturer, a battery maker and a vehicle technology and design startup, respectively.

"Each bus type has its own potential challenges." Case said all three manufacturers are working to resolve any adoption challenges as quickly as possible.

But the biggest challenge of all, Case said, is getting the infrastructure in place. 

"There's no playbook, really, for implementing charging infrastructure," he said.

Each bus type needed their own chargers, in some cases using different types of current. Each type has been installed in a different garage in partnership with local utility Toronto Hydro.

Buying and installing them represented about $70 million, or about half the cost of acquiring Toronto's first 60 electric buses. The $140 million project was funded by the federal Public Transit Infrastructure Fund.

Case said it takes about three hours to charge a battery that has been fully depleted. To maximize use of the bus, it's typically put on a long route in the morning, covering 200 to 250 kilometres. Then it's partially charged and put on a shorter run in the late afternoon.

"That way we get as much mileage on the buses as we can."


Cost and reliability?
Besides the infrastructure cost of chargers, each electric bus can cost $200,000 to $500,000 more per bus than an average $750,000 diesel bus. 

Case acknowledges that is "significantly" more expensive, but it is offset by fuel savings over time, as electricity costs are cheaper. Because the electric buses have fewer parts than diesel buses, maintenance costs are also about 25 per cent lower and the buses are expected to be more reliable.

As with many new technologies, the cost of electric buses is also falling over time.

Case expects they will eventually get to the point where the total life-cycle cost of an electric and a diesel bus are comparable, and the electric bus may even save money in the long run.

As of this fall, all but one of the 60 new electric buses have been put into service. The last one is expected to hit the road in early December.

Summer testing showed that air conditioning the buses reduced the battery capacity by about 15 per cent. 

But the TTC needs to see how much of the battery capacity is consumed by heating in winter, at least when the temperature is above 5 C. Below that, a diesel-powered heater kicks in.

Once testing is complete, the TTC plans to develop specifications for its electric bus fleet and order 300 more in 2023, for delivery between 2023 and 2025.


Potential benefits
Even with some diesel heating, the TTC estimates electric buses reduce fuel usage by 70 to 80 per cent. If its whole fleet were switched to electric buses, it could save $50 million to $70 million in fuel a year and 150 tonnes of greenhouse gases per bus per year, or 340,000 tonnes for the entire fleet.

Other than greenhouse gases, electric buses also generate fewer emissions of other pollutants. They're also quieter, creating a more comfortable urban environment for pedestrians and cyclists.

But the benefits could potentially go far beyond the local city.

"If the public agencies start electrifying their fleet and their service is very demanding, I think they'll demonstrate to the broader transportation industry that it is possible," Case said.

"And that's where you'll get the real gains for the environment."

Alex Milovanoff, a postdoctoral researcher in the University of Toronto's department of civil engineering, did a U of T EV study that suggested electrified transit has a crucial role to play in the low-carbon economy of the future.

His calculations show that 90 per cent of U.S. passenger vehicles — 300 million — would need to be electric by 2050 to reach targets under the global Paris Agreement to fight climate change.

And that would put a huge strain on resources, including both the mining of metals, such as lithium and cobalt, that are used in electric vehicle batteries and the electrical grid itself.

A better solution, he showed, was combining the transition to electric vehicles with a reduction in the number of private vehicles, and higher usage of transit, cycling and walking.

"Then that becomes a feasible picture," he said.

What's needed to make the transition
But in order to make that happen, governments need to make investments and navigate the 2035 EV mandate debate on timelines, he added.

That includes subsidies for buying electric buses and building charging stations so transit agencies don't need to make fares too high. But it also includes more general improvements to the range and reliability of transit infrastructure.

"Electrifying the bus fleet is only efficient if we have a large public transit fleet and if we have many buses on the road and if people take them," Milovanoff said.

In its fall economic update on Monday, the federal government announced $150 million over three years to speed up the installation of zero-emission vehicle infrastructure.

Josipa Petrunic, CEO of the Canadian Urban Transit Research and Innovation Consortium, a non-profit organization focused on zero-carbon mobility and transportation, said that in the past, similar funding has paid for high-powered charging systems for transit systems in B.C. and Ontario. But that's only a small part of what's needed, she said.

"Infrastructure Canada needs to come to the table with the cash for the buses and the whole rest of the system."

She said funding is needed for:

Feasibility studies to figure out how many and what kinds of buses are needed for different routes in different transit systems.

Targets and incentives to motivate transit systems to make the switch.

Incentives to encourage Canadian procurement to build the industry in Canada.

Technology to collect and share data on the performance of electric vehicles so transit systems can make the best-possible decisions to meet the needs of their riders.

Petrunic said that a positive side-effect of electrifying transit systems is that the infrastructure can support, in addition to buses, electric trucks for moving freight.

"It's not a lot given that we have 15,000 buses out there in the transit fleet," she said.

"But we should be able to get a lot further ahead if we match the city commitments to zero emissions with federal and provincial funding for jobs creating zero-emissions technologies."

 

Related News

View more

Biden seen better for Canada’s energy sector

Biden Impact on Canadian Energy Exports highlights shifts in trade policy, tariffs, carbon pricing, and Keystone XL, with implications for aluminum, softwood lumber, electricity trade, fracking limits, and small modular nuclear reactors.

 

Key Points

How Biden-era trade, climate rules, and tariffs may reshape Canadian energy and exports.

✅ Reduced tariff volatility and friendlier trade policy toward allies

✅ Climate alignment: carbon pricing, clean power, cross-border electricity

✅ Potential gains for oil, gas, aluminum, and softwood lumber exporters

 

There is little doubt among industry associations, the Conference Board of Canada and C.D. Howe Institute that a Joe Biden White House will be better for Canadian resource and energy exporters – even Alberta’s beleaguered oil industry, despite Biden’s promise to kill the Keystone XL pipeline.

The consensus among industry observers in the lead-up to the November 3 U.S. presidential election was that a re-elected Donald Trump would become even more pugnacious on trade and protectionism, putting electricity exports at risk for Canadian utilities, which would be bad for Canadian exporters. The Justin Trudeau government would likely come under increased pressure to lower Canadian business taxes to compete with Trump’s low-tax climate.

“A Joe Biden victory would likely lead to higher taxes for both corporations and wealthy Americans to help pay down the gigantic fiscal deficit that is currently running at plus-US$5 trillion,” the conference board concluded in a recent analysis.

On trade and tariffs, the conference board said: “Many but not all of these ongoing trade disputes would wither away under a Joe Biden administration. He would likely run a broad trade policy favouring strategic allies like Canada.

While Canadian industries like forestry and aluminum smelting benefited from strong demand and prices in the U.S. under Trump, the forced renegotiation of the North American Free Trade Agreement failed end tariffs and duties on things like softwood lumber and aluminum ingots, even as Canadians backed tariffs on energy and minerals during the dispute.

The uncertainty over trade issues, and Trump’s tax cuts, which made Canada’s tax regime less competitive, have contributed to a period of low business investment in Canada during Trump's presidency.

“For Canada, we’ve seen a period, since this administration has been in power, where investment has eroded steadily,” conference board chief economist Pedro Antunes said. “We are not doing well at all, in terms of private capital investment in Canada.”

Alberta’s oil industry has been hit particularly hard, with a slew of divestments by big energy giants, and cancellations of major projects, like the $20 billion Frontier oilsands project, scrubbed by Teck Resources.

While domestic policies and global market forces are partly to blame for falling investments in Canada’s oil and gas sector, up until the pandemic hit, investment in oil and gas increased significantly in the U.S., while declining in Canada, during Trump’s first term.

Biden is also expected to level the playing field with respect to climate change policies. Canadian industries pay carbon taxes and face regulations that their counterparts in the U.S. don’t. That has disadvantaged energy-intensive, trade-exposed industries like mines and pulp mills in Canada.

“With Biden in office, Canada will once again have a partner at the federal level in the states in the transition to a decarbonized economy,” said Josha MacNab, national policy director for the Pembina Institute.

Biden’s policies might also favour importing aluminum, cross-laminated timber, fuel cells and other lower-carbon products and commodities from Canada.

At least one observer believes that Canada’s oil and gas sector might benefit more from a Biden White House, despite Biden’s pledge to kill the Keystone XL pipeline.

“I think Joe Biden could be very good for Alberta,” Christopher Sands, director of the Wilson International Center’s Canada Institute, said in a recent discussion hosted by the C.D. Howe Institute.

Sands added that the presidential permit Biden has promised to tear up on the Keystone XL pipeline project is a construction permit, not an operating permit.

“The segment of that pipeline that crosses the U.S.-Canada border, which is the only place that the presidential permit applies, has been built,” Sands said. “So I think that’s somewhat of an empty threat.”

He added that, if Biden bans fracking on federal lands, as he has promised, and implements other restrictions that make it more costly for American oil and gas producers, it might increase the demand for Canadian oil and gas in the U.S. The demand would be highest in the U.S. Midwest, which depends largely on Marcellus Shale production, notably in Pennsylvania, and Western Canada for its oil and gas.

One of the Canadian industries directly affected by the Trump administration was aluminum smelting, which is relevant for B.C. because Rio Tinto plc’s Kitimat smelter exports aluminum to the U.S.

Jean Simard, president of the Aluminum Association of Canada, said one of Trump’s legacies was the reactivation of a little-used mechanism – Section 232 of the Trade Expansion Act – to hit Canada and other countries, notably China, with import tariffs.

The 10 per cent tariffs on aluminum cost Canadian aluminum producers US$15 million in the month of August alone, Simard said.

The Trump administration eventually exempted Canadian aluminum exports from the tariffs, then reintroduced them, and then, one week before the election, exempted them again.

These on-again, off-again tariff threats create tremendous uncertainty, not just for Canadian producers, but also for U.S. buyers. That kind of uncertainty is likely to ease under a Biden presidency.

Simard said Biden’s track record suggests he is well-disposed towards Canada and less confrontational with allies and trade partners in general, and some in Washington have called for a stronger U.S.-Canada energy partnership as well.

Meanwhile, softwood lumber tariffs have been imposed by Democrats and Republicans alike. But there are compelling reasons for ending the Canada-U.S. softwood lumber war.

Home renovation and repair in the United States has done surprisingly well during the pandemic.

As a result of sawmill curtailments in the U.S. due to pandemic restrictions and high demand for lumber in the U.S. housing sector, North American lumbers prices broke records this summer, soaring as high as US$900 per thousand board feet.

“It shows that there’s very strong demand for our product,” said Susan Yurkovich, president of the Council of Forest Industries.

Ultimately, the duties Canadian lumber exporters pay are passed on to U.S. consumers.

Sands said Biden’s climate action pledges, including a clean electricity standard, could increase opportunities for trading electricity between Canada in the U.S., as the U.S. increasingly looks to Canada for green power, and could also be good for Canadian nuclear power technology.

Strong climate change policies necessarily result in an increased demand for low-carbon electricity, and advancing clean grids, which Canada has in abundance, thanks to both hydro and nuclear power.

“[Biden] does share the desire to act on climate change, but unlike some of his fellow party members who are more signed on to a Green New Deal, he’s open to pragmatic solutions that might get the job done quickly and efficiently,” Sands said.

“This is a huge opportunity for small, modular nuclear reactors, and Atomic Energy Canada has some great designs. There’s a real opportunity for a nuclear revival.” 

 

Related News

View more

EV owners can access more rebates for home, workplace charging

CleanBC Go Electric EV Charger Rebate empowers British Columbia condos, apartments, and workplaces with Level 2 charging infrastructure, ZEV adoption support, and stackable rebates aligned with the CleanBC Roadmap 2030 and municipal top-up incentives.

 

Key Points

A provincial program funding up to 50% of EV charger costs for condos, apartments, and workplaces across B.C.

✅ Up to 50% back, max $2,000 per eligible Level 2 charger

✅ EV Ready plans fund building upgrades for future charging

✅ Free advisor support: up to 5 hours for condos and workplaces

 

British Columbians wanting to charge their electric vehicles (EVs) at their condominium building or their place of work can access further funding through EV charger rebates to help buy and install EV chargers through CleanBC’s Go Electric EV Charger Rebate program.

“To better support British Columbians living in condominiums and apartments, we’re offering rebates to make more buildings EV ready,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With the highest uptake rates of EV adoption in North America, we want to make sure that more people supporting our transition to a low-carbon economy have easy access to charging infrastructure.”

The Province’s CleanBC Go Electric EV Charger Rebate program is receiving $10 million as part of Budget 2021 to help with the upfront costs that come with EVs. Condominiums, apartments and workplaces that purchase and install eligible EV chargers can receive a rebate up to 50% of costs to a maximum of $2,000 per charger. Customers who take advantage of the EV Charger Rebate may have access to top up rebates through participating municipalities and local governments.

“People in British Columbia are switching to electric vehicles in record numbers as part of the transition to a cleaner, better transportation system,” said George Heyman, Minister of Environment and Climate Change Strategy. “We are building on that progress and accelerating positive change through the CleanBC Roadmap. We’re making it more affordable to own an electric vehicle and charging station, with incentives for zero-emission vehicles, so people can improve their driving experience with no air and climate pollution, and lower fuel and maintenance costs overall.”

The strata council for a condo building in Vancouver’s Olympic Village neighbourhood made use of the EV Ready program, as well as new legislation easing strata EV installs and federal support to upgrade their building’s electrical infrastructure. The strata council worked together to first determine, through a load review, if there was enough incoming power to support a level 2 charger for every owner. Once this was determined, the strata’s chosen electrical contractor went to work with the base installation, as well as individual chargers for owners who ordered them. The strata council also ensured a charger was installed in the guest parking.

“The majority of owners in our building came together and gave our strata council approval to make the necessary updates to the building’s infrastructure to support electric vehicle charging where we live,” said Jim Bayles, vice-president of strata council. “While upgrading the electrical and installing the EV chargers was something we were going ahead with anyway, we were pleased to receive quick support from the Province through their CleanBC program as well as from the federal government.”

CleanBC’s EV Ready option supports the adoption of EV infrastructure at apartment and condominium buildings. EV Ready provides rebates for the development of EV Ready plans, a strategy for buildings supported by professionals to retrofit a condo with chargers and make at least one parking space per unit EV ready, and the installation of electrical modifications and upgrades needed to support widespread future access to EV charging for residents.

Up to five hours of free support services from an EV charging station adviser are available through the EV Charger Rebate program for condominiums, apartments and workplaces that need help moving from idea to installation.

Single-family homes, including duplexes and townhouses, can get a rebate of up to 50% of purchase and installation costs of an eligible EV charger to a maximum of $350 through the EV Charger Rebate program.

The Province is providing a range of rebates through its CleanBC Go Electric programs and building out the fast-charging network to ensure the increasing demand for EVs is supported. B.C. has one of the largest public-charging networks in Canada, including the BC's Electric Highway initiative, with more than 2,500 public charging stations throughout the province.

The CleanBC Go Electric EV Charger Rebate program aligns with the recently released CleanBC Roadmap to 2030. Announced on Oct. 25, 2021, the CleanBC Roadmap to 2030 details a range of expanded actions to expand EV charging and accelerate the transition to a net-zero future and achieve B.C.’s legislated greenhouse gas emissions targets.

CleanBC is a pathway to a more prosperous, balanced and sustainable future. It supports government’s commitment to climate action to meet B.C.’s emission targets and build a cleaner, stronger economy for everyone.

Quick Facts:

  • The CleanBC Go Electric EV Charger Rebate program provides a convenient single point of service for provincial and any local government rebates.
  • EV adviser services for multi-unit residential buildings and workplaces are available through Plug In BC.
  • British Columbia is leading the country in transitioning to EVs, even as a B.C. Hydro 'bottleneck' forecast highlights infrastructure needs, with more than 60,000 light-duty EVs on the road.
  • British Columbia was the first place in the world to have a 100% ZEV law and is leading North America in uptake rates of EVs at nearly 10% of new sales in 2020 – five years ahead of the original target.
  • The CleanBC Roadmap to 2030 commits B.C. to adjusting its ZEV Act to require automakers to meet an escalating annual percentage of new light-duty ZEV sales and leases, reaching 26% of light-duty vehicle sales by 2026, 90% by 2030 and 100% by 2035.

 

Learn More:

To learn more about home and workplace EV charging station rebates, eligibility and application processes, including the EV Ready program, visit: https://goelectricbc.gov.bc.ca/

To learn more about EV advisor services, visit: https://pluginbc.ca/ev-advisor-service/

To learn more about the suite of CleanBC Go Electric programming, visit: www.gov.bc.ca/zeroemissionvehicles

To learn more about the CleanBC Roadmap to 2030, visit: https://cleanbc.gov.bc.ca/

 

Related News

View more

California Wants Cars to Run on Electricity. It’s Going to Need a Much Bigger Grid

California EV mandate will phase out new gas cars, raising power demand and requiring renewable energy, grid upgrades, fast chargers, time-of-use rates, and vehicle-to-grid to stabilize loads and reduce emissions statewide.

 

Key Points

California's order ends new gas-car sales by 2035, driving grid upgrades, charging infrastructure, and cleaner transport.

✅ 25% higher power demand requires new generation and storage

✅ Time-of-use pricing and midday charging reduce grid stress

✅ Vehicle-to-grid and falling battery costs enable reliability

 

Leaning on the hood of a shiny red electric Ford Mustang, California Gov. Gavin Newsom signed an executive order Wednesday to end the sale of new gas-burning cars in his state in 15 years, a move with looming challenges for regulators and industry.

Now comes the hard part.

Energy consultants and academics say converting all passenger cars and trucks to run on electricity in California could raise power demand by as much as 25%. That poses a major challenge to state power grids as California is already facing periodic rolling blackouts as it rapidly transitions to renewable energy.

California will need to boost power generation, scale up its network of fast charging stations, enhance its electric grid to handle the added load and hope that battery technology continues to improve enough that millions in America’s most populous state can handle long freeway commutes to schools and offices without problems.

“We’ve got 15 years to do the work,” said Pedro Pizarro, chief executive of Edison International, owner of Southern California Edison, a utility serving 15 million people in the state. “Frankly the state agencies are going to have to do their part. We’ve got to get to the permitting processes, the approvals; all of that work is going to have to get accelerated to meet [Wednesday’s] target.”

Switching from petroleum fuels to electricity to phase out the internal combustion engine won’t happen all at once—Mr. Newsom’s order applies to sales of new vehicles, so older gas-powered cars will be on the road in California for many years to come. But the mandate means the state will face a growing demand for megawatts.

California is already facing a shortfall of power supplies over the next couple of years. The problem was highlighted last month when a heat wave blanketed the western U.S. and the state’s grid operator instituted rolling blackouts on two occasions.

“It is too early to tell what kind of impact the order will have on our power grid, and we don’t have any specific analysis or projections,” said Anne Gonzalez, a spokeswoman for the California Independent System Operator, which runs the grid.

Currently, California faces a crunchtime in the early evening as solar power falls off and demand to power air conditioners remains relatively high. Car charging presents a new potential issue: what happens if surging demand threatens to crash the grid during peak hours?

Caroline Winn, the chief executive of San Diego Gas & Electric, a utility owned by Sempra Energy that serves 3.6 million people, said there will need to be rules and rates that encourage people to charge their cars at certain times of the day, amid broader control over charging debates.

“We need to get the rules right and the markets right, informed by lessons from 2021, in order to resolve this issue because certainly California is moving that way,” she said.

The grid will need to be upgraded to prepare for millions of new electric vehicles. The majority of people who own them usually charge them at home, which would mean changes to substations and distribution circuits to accommodate multiple homes in a neighborhood drawing power to fill up batteries. The state’s three main investor-owned utilities are spending billions of dollars to harden the grid to prevent power equipment from sparking catastrophic wildfires.


“We have a hell of a lot of work to do nationally. California is ahead of everybody and they have a hell of a lot of work to do,” said Chris Nelder, who studies EV-grid integration at the Rocky Mountain Institute, an energy and environment-policy organization that promotes clean-energy solutions.

Mr. Nelder believes the investment will be worth it, because internal combustion engines generate so much waste heat and emissions of uncombusted hydrocarbons that escape out of tailpipes. Improving energy efficiency by upgrading the electrical system could result in lower bills for customers. “We will eliminate a vast amount of waste from the energy system and make it way more efficient,” he said.

Some see the growth of electric vehicles as an opportunity more than a challenge. In the afternoon, when electricity demand is high but the sun is setting and solar power drops off quickly, batteries in passenger cars, buses and other vehicles could release power back into the electric grid to help grid stability across the system, said Matt Petersen, chairman of the Transportation Electrification Partnership, a public-private effort in Los Angeles to accelerate the deployment of electric vehicles.

The idea is known as “vehicle-to-grid” and has been discussed in a number of countries expanding EV use, including the U.K. and Denmark.

“We end up with rolling batteries that can discharge power when needed,” Mr. Petersen said, adding, “The more electric vehicles we add to the grid, the more renewable energy we can add to the grid.”

One big hurdle for the widespread deployment of electric cars is driving down the cost of batteries to make the cars more affordable. This week, Tesla Inc. Chief Executive Elon Musk said he expected to have a $25,000 model ready by about 2023, signaling a broader EV boom in the U.S.

Shirley Meng, director of the Sustainable Power and Energy Center at the University of California, San Diego, said she believed batteries would continue to provide better performance at a lower cost.

“I am confident the battery technology is ready,” she said. Costs are expected to fall as new kinds of materials and metals can be used in the underlying battery chemistry, dropping prices. “Batteries are good now, and they will be better in the next 10 years.”

John Eichberger, executive director of the Fuels Institute, a nonprofit research group launched by the National Association of Convenience Stores, said he hoped that the California Air Resources Board, which is tasked with developing new rules to implement Mr. Newsom’s order, will slow the timeline if the market and electric build-out is running behind.

“We need to think about these critical infrastructure issues because transportation is not optional,” he said. “How do we develop a system that can guarantee consumers that they can get the energy when they need it?”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.