Elon Musk says cheaper, more powerful electric vehicle batteries are 3 years off


tesla charging station

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Tesla Battery Day Innovations detail larger cylindrical EV cells with higher energy density, greater power, longer range, cobalt-free chemistry, automated manufacturing, battery recycling, and lower cost per kWh to enable an affordable electric car.

 

Key Points

Tesla Battery Day innovations are new EV cells and methods to cut costs, extend range, and scale production.

✅ Larger cylindrical cells: 5x energy, 6x power, 16% more range

✅ Automation and recycling to cut battery cost per kWh

✅ Near-zero cobalt chemistry, in-house cell factories worldwide

 

Elon Musk described a new generation of electric vehicle batteries that will be more powerful, longer lasting, and half as expensive as the company’s current cells at Tesla’s “Battery Day”.

Tesla’s new larger cylindrical cells will provide five times more energy, six times more power and 16% greater driving range, Musk said, adding that full production is about three years away.

“We do not have an affordable car. That’s something we will have in the future. But we’ve got to get the cost of batteries down,” Musk said.

To help reduce cost, Musk said Tesla planned to recycle battery cells at its Nevada “gigafactory,” while reducing cobalt – one of the most expensive battery materials – to virtually zero. It also plans to manufacture its own battery cells at several highly automated factories around the world.

The automaker plans to produce the new cells via a highly automated, continuous-motion assembly process, according to Drew Baglino, Tesla senior vice-president of powertrain and energy engineering, a contrast with GM and Ford battery strategies in the broader market today.

Speaking at the event, during which Musk outlined plans to cut costs and reiterated a huge future for Tesla's energy business during the presentation, the CEO acknowledged that Tesla does not have its new battery design and manufacturing process fully complete.

The automaker’s shares slipped as Musk forecast the change could take three years. Tesla has frequently missed production targets.

Tesla expects to eventually be able to build as many as 20m electric vehicles a year, aligning with within-a-decade EV adoption outlooks cited by analysts. This year, the entire auto industry expects to deliver 80m cars globally.

At the opening of the event, which drew over 270,000 online viewers, Musk walked on stage as about 240 shareholders – each sitting in a Tesla Model 3 in the company parking lot – honked their car horns in approval.

As automakers shift from horsepower to kilowatts to comply with stricter environmental regulations amid an age of electric cars that appears ahead of schedule, investors are looking for evidence that Tesla can increase its lead in electrification technology over legacy automakers who generate most of their sales and profits from combustion-engine vehicles.

While average electric vehicle prices have decreased in recent years thanks to changes in battery composition and evidence that they are better for the planet and household budgets, they are still more expensive than conventional cars, with the battery estimated to make up a quarter to a third of an electric vehicle’s cost.

Some researchers estimate that price parity, or the point at which electric vehicles are equal in value to internal combustion cars, is reached when battery packs cost $100 per kilowatt hour (kWh), a potential inflection point for mass adoption.

Tesla’s battery packs cost $156 per kWh in 2019, according to electric vehicle consulting firm Cairn Energy Research Advisors, with some studies noting that EVs save money over time for consumers, which would put the cost of a 90-kWh pack at around $14,000.

Tesla is also building its own cell manufacturing facility at its new factory in Germany in addition to the new plant in Fremont.

 

Related News

Related News

Green energy in 2023: Clean grids, Alberta, batteries areas to watch

Canada 2023 Clean Energy Outlook highlights decarbonization, renewables, a net-zero grid by 2035, hydrogen, energy storage, EV mandates, carbon pricing, and critical minerals, aligning with IRA incentives and provincial policies to accelerate the transition.

 

Key Points

A concise overview of Canada's 2023 path to net-zero: renewables, clean grids, storage, EVs, and hydrogen.

✅ Net-zero electricity regulations target 2035

✅ Alberta leads PPAs and renewables via deregulated markets

✅ Tax credits boost storage, hydrogen, EVs, and critical minerals

 

The year 2022 may go down as the most successful one yet for climate action. It was marked by monumental shifts in energy policy from governments, two COP meetings and heightened awareness of the private sector's duty to act.

In the U.S., the Inflation Reduction Act (IRA) was the largest federal legislation to tackle climate change, injecting $369 billion of tax credits and incentives for clean energy, Biden's EV agenda and carbon capture, energy storage, energy efficiency and research.

The European Union accelerated its green policies to transition away from fossil fuels and overhauled its carbon market. China and India made strides on clean energy and strengthened climate policies. The International Energy Agency made its largest revision yet as renewables continued to proliferate.

The U.S. ratified the Kigali Amendment, one of the strongest global climate policies to date.

Canada was no different. The 2022 Fall Economic Statement was announced to respond to the IRA, offering an investment tax credit for renewables, clean technology and green hydrogen alongside the Canada Growth Fund. The federal government also proposed a 2035 deadline for clean electrical grids and a federal zero-emissions vehicle (ZEV) sales mandate for light-duty vehicles.

With the momentum set, more action is promised in 2023: Canadian governments are expected to unveil firmer details for the decarbonization of electricity grids to meet 2035 deadlines; Alberta is poised to be an unlikely leader in clean energy.

Greater attention will be put on energy storage and critical minerals. Even an expected economic downturn is unlikely to stop the ball that is rolling.

Shane Doig, the head of energy and natural resources at KPMG in Canada, said events in 2022 demonstrated the complexity of the energy transformation and opened “a more balanced conversation around how Canada can transition to a lower carbon footprint, whilst balancing the need for affordable, readily available electricity.”


Expect further developments on clean electricity
2023 shapes up as a crucial year for Canada’s clean electricity grid.

The federal government announced it will pursue a net-zero electricity grid by 2035 under the Clean Electricity Regulations (CER) framework.

It requires mass renewable and clean energy adoption, phasing out fossil fuel electricity generation, rapid electrification and upgrading transmission and storage while accommodating growth in electricity demand.

The first regulations for consultation are expected early in 2023. The plans will lay out pollution regulations and costs for generating assets to accelerate clean energy adoption, according to Evan Pivnick, the clean energy program manager of Clean Energy Canada.

The Independent Energy System Operator of Ontario (IESO) recently published a three-part report suggesting a net-zero conversion for Ontario could cost $400 billion over 25 years, even as the province weighs an electricity market reshuffle to keep up with increasing electricity demand.

Power Utility released research by The Atmospheric Fund that suggests Ontario could reach a net-zero grid by 2035 across various scenarios, despite ongoing debates about Ontario's hydro plan and rate design.

Dale Beguin, executive vice president at the Canadian Climate Institute, said in 2023 he hopes to see more provincial regulators and governments send “strong signals to the utilities” that a pathway to net-zero is realistic.

He recounted increasing talk from investors in facilities such as automotive plants and steel mills who want clean electricity guarantees before making investments. “Clean energy is a comparative advantage,” he said, which puts the imperative on organizations like the IESO to lay out plans for bigger, cleaner and flexible grids.

Beguin and Pivnick said they are watching British Columbia closely because of a government mandate letter setting a climate-aligned energy framework and a new mandate for the British Columbia Utilities Commission. Pivnick said there may be lessons to be drawn for other jurisdictions.

 

Alberta’s unlikely rise as a clean energy leader
Though Alberta sits at the heart of Canada’s oil and gas industry and at the core of political resistance to climate policy, it has emerged as a front runner in renewables adoption.

Billion of dollars for wind and solar projects have flowed into Alberta, as the province charts a path to clean electricity with large-scale projects.

Pivnick said an “underappreciated story” is how Alberta leaned into renewables through its “unique market.” Alberta leads in renewables and power purchase agreements because of its deregulated electricity market.

Unlike most provinces, Alberta enables companies to go directly to solar and wind developers to strike deals, a model reinforced under Kenney's electricity policies in recent years, rather than through utilities. It incentivizes private investment, lowers costs and helps meet increasing demand, which Nagwan Al-Guneid, the director of the Business Renewables Centre - Canada at the Pembina Institute, said is “is the No. 1 reason we see this boom in renewables in Alberta.”

Beguin noted Alberta’s innovative ‘reverse auctions,’ where the province sets a competitive bidding process to provide electricity. It ended up making electricity “way cheaper” due to the economic competitiveness of renewables, while Alberta profited and added clean energy to its grid.

In 2019, the Business Renewables Centre-Canada established a target of 2 GW of renewable energy deals by 2025. The target was exceeded in 2022, which led to a revised goal for 10 GW of renewables by 2030.

Al-Guneid wants to see other jurisdictions help more companies buy renewables. She does not universally prescribe deregulation, however, as other mechanisms such as sleeving exist.

Alberta will update its industrial carbon pricing in 2023, requiring large emitters to pay $65 per tonne of carbon dioxide. The fee climbs $15 per tonne each year until it reaches $175 per tonne in 2030. Al-Guneid said as the tax increases, demand for renewable energy certificates will also increase in Alberta.

Pivnick noted Alberta will have an election in 2023, which could have ramifications for energy policy.

 

Batteries and EV leadership
Manufacturing clean energy equipment, batteries and storage requires enormous quantities of minerals. With the 2022 Fall Economic Statement and the Critical Minerals Strategy, Canada is taking important steps to lead on this front.

Pivnick pointed to battery supply chain investments in Ontario and Quebec as part of Canada’s shift from “a fuel-based (economy) to a materials-based economy” to provide materials necessary for wind turbines and solar panels. The Strategy showed an understanding Canada has a major role to meet its allies’ needs for critical minerals, whether it’s the resources or supply chains.

There is also an opportunity for Canada to forge ahead on energy storage. The Fall Economic Statement proposes a 30 per cent tax credit for investments into energy storage. Pivnick suggested Canada invest further into research and development to explore innovations like green hydrogen and pump storage.

Doig believes Canada is “well poised” for batteries, both in terms of the technology and sustainable mining of minerals like cobalt, lithium and copper. He is bullish for Canada’s electrification based on its clean energy use and increased spending on renewables and energy storage.

He said the federal ZEV mandate will drive increased demand for the power, utilities, and oil and gas industries to respond.

The majority of gas stations, which are owned by the nation’s energy industry, will need to be converted into EV charging stations.

 

Offsetting a recession 
One challenge will be a poor economic forecast in the near term. A short "technical recession" is expected in 2023.

Inflation remains stubbornly high, which has forced the Bank of Canada to hike interest rates. The conditions will not leave any industry unscathed, but Doig said Canada's decarbonization is unlikely to be halted.

“Whilst a recession would slow things down, the concern around energy security definitely helps offset that concern,” he said.

Amid rising trade frictions and tariff threats, energy security is top of mind for governments and private organizations, accelerating the shift to renewables.

Doig said there is a general feeling a recession would be short-lived, meaning it would be unlikely to impact long-term projects in hydrogen, liquified natural gas, carbon capture and wind and solar.

 

Related News

View more

Scores more wind turbines proposed for Long Island’s South Shore

New York Offshore Wind Expansion adds Equinor's Empire Wind 2 and Beacon Wind, boosting megawatts, turbines, and grid connections for Long Island and Queens, with jobs, assembly at South Brooklyn Marine Terminal, and clean energy.

 

Key Points

A statewide initiative proposing new Equinor and partner projects to scale offshore wind capacity, jobs, and grid links.

✅ Adds 2,490 MW via Empire Wind 2 and Beacon Wind

✅ Connects to Nassau County and Queens grids for reliability

✅ Creates 3,000+ NY jobs with South Brooklyn Marine Terminal work

 

Scores more 600-foot tall wind turbines would be built off Jones Beach under a new proposal.

Norwegian energy conglomerate Equinor has bid to create another 2,500 megawatts of offshore wind power for New York state and Long Island, where offshore wind sites are being evaluated, with two projects. One, which would connect to the local electric grid in Nassau County, would more than double the number of turbines off Long Island to some 200. A second would be built around 50 miles from Montauk Point and connect to the state grid in Queens. The plan would also include conducting assembly work in Brooklyn.

In disclosures Tuesday in response to a state request for proposals, Equinor said it would bolster its already state-awarded, 819-megawatt Empire Wind project off Long Island’s South Shore with another called Empire Wind 2 that will add 1,260 megawatts. Turbines of at least 10 megawatts each would mean that the prior project’s 80 or so turbines could be joined by another 120. Equinor’s federally approved lease area off Long Island encompasses some 80,000 acres, starting 15 miles due south of Long Beach and extending east and south.

Equinor on Tuesday also submitted plans to offer a second project called Beacon Wind that would be built 50 miles from Montauk Point, off the Massachusetts South Coast area. It would be 1,230 megawatts and connect through Long Island Sound to Queens.

Equinor said its latest energy projects would generate more than 3,000 New York jobs, including use of the South Brooklyn Marine Terminal for “construction activities” and an operations and maintenance base.

The new proposals came in response to a New York State Energy Research and Development Authority bid request for renewable projects in the state. In a statement, Siri Espedal Kindem, president of Equinor Wind U.S., said the company’s plans would include “significant new benefits for New York – from workforce training, economic development, and community benefits – alongside a tremendous amount of homegrown, renewable energy.”

Meanwhile, Denmark-based Orsted, working with New England power company Eversource, has also submitted plans for a new offshore wind project called Sunrise Wind 2, a proposal that includes “multiple bids” that would create “hundreds of new jobs, and infrastructure investment,” according to a company statement. Con Edison Transmission will also work to develop transmission facilities for that project, the companies said.

Orsted and Eversource already have contracts to develop a 130-megawatt wind farm for LIPA to serve the South Fork, and an 880-megawatt wind farm for the state. All of its hundreds of turbines would be based in a lease area off the coast of Massachusetts and Rhode Island, where Vineyard Wind has progressed as a key project.

“Sunrise Wind 2 will create good-paying jobs for New York, support economic growth, and further reduce emissions while delivering affordable clean energy to Long Island and the rest of New York,” Joe Nolan, executive vice president for Eversource, said in a statement.

 

Related News

View more

Clean Energy Accounts for 50% of Germany's Electricity

Germany Renewable Energy Milestone marks renewables supplying 53% of power, with record onshore wind and peak solar; hydrogen-ready gas plants and grid upgrades are planned to balance variability amid Germany's coal phase-out.

 

Key Points

It marks renewables supplying 53% of Germany's power, driven by wind and solar records in the energy transition.

✅ 53% of generation and 52% of consumption in 2024

✅ Onshore wind hit record; June solar peaked

✅ 24 GW hydrogen-ready gas plants planned for grid balancing

 

For the first time, renewable energy sources have surpassed half of Germany's electricity production this year, as indicated by data from sustainable energy organizations.

Preliminary figures from the Center for Solar Energy and Hydrogen Research alongside the German Association of Energy and Water Industries (BDEW) show that the contribution of green energy has risen to 53%, echoing how renewable power surpassed fossil fuels in Europe recently, a significant increase from 44% in the previous year.

The year saw a record output from onshore wind energy, as investments in European wind power climbed, and an unprecedented peak in solar energy production in June, as reported by the organizations. Additionally, renewable sources constituted 52% of Germany's total power consumption, marking an increase of approximately five percentage points.

Germany, Europe's leading economy, heavily impacted by Russia's reduced natural gas supplies last year, as Europeans push back from Russian oil and gas across the region, has been leaning on renewable sources to bridge the energy gap. This shift comes even as the country temporarily ramped up coal usage last winter. Having phased out its nuclear power plants earlier this year, Germany aims for an 80% clean energy production by 2030.

In absolute numbers, Germany produced a record level of renewable energy this year, supported by a solar power boost during the energy crisis, approximately 267 billion kilowatt-hours, according to the associations. A decrease of 11% in overall energy production facilitated a reduced reliance on fossil fuels.

However, Europe's transition to more sustainable energy sources, particularly offshore wind, has encountered hurdles such as increased financing and component costs, even as neighbors like Ireland pursue an ambitious green electricity goal within four years. Germany continues to face challenges in expanding its renewable energy capacity, as noted by BDEW’s executive board chairwoman, Kerstin Andreae.

Andreae emphasizes that while energy companies are eager to invest in the transition, they often encounter delays due to protracted approval processes, bureaucratic complexities, and scarcity of land despite legislative improvements.

German government officials are close to finalizing a strategy this week for constructing multiple new gas-fired power plants, despite findings that solar plus battery storage can be cheaper than conventional power in Germany, a plan estimated to cost around 40 billion euros ($44 billion). This initiative is a critical part of Germany's strategy to mitigate potential power shortages that might result from the discontinuation of coal power, particularly given the variability in renewable energy sources.

A crucial meeting involving representatives from the Economy and Finance Ministries, along with the Chancellor's Office, is expected to occur late Tuesday. The purpose is to finalize this agreement, according to sources who requested anonymity due to restrictions on public disclosure.

The Economy Ministry, spearheading this project, confirmed that intensive discussions are ongoing, although no further details were disclosed.

Germany's plan involves utilizing approximately 24 gigawatts (GW) of energy from hydrogen, including emerging offshore green hydrogen options, and gas-fired power plants to compensate for the fluctuations in wind and solar power generation. However, the proposal has faced challenges, particularly regarding the allocation of public funds for these projects, with disagreements arising with the European Union's executive in Brussels.

Environmental groups have also expressed criticism of the strategy. They advocate for an expedited end to fossil fuel usage and remain skeptical about the energy sector's arguments favoring natural gas as a transitional fuel. Despite natural gas emitting less carbon dioxide than coal, environmentalists question its role in Germany's energy future.

 

 

Related News

View more

Why Electric Vehicles Are "Greener" Than Ever In All 50 States

UCS EV emissions study shows electric vehicles produce lower life-cycle emissions than gasoline cars across all states, factoring tailpipe, grid mix, power plant sources, and renewable energy, delivering mpg-equivalent advantages nationwide.

 

Key Points

UCS study comparing EV and gas life-cycle emissions, finding EVs cleaner than new gas cars in every U.S. region.

✅ Average EV equals 93 mpg gas car on emissions.

✅ Cleaner than 50 mpg gas cars in 97% of U.S.

✅ Regional grid mix included: tailpipe to power plant.

 

One of the cautions cited by electric vehicle (EV) naysayers is that they merely shift emissions from the tailpipe to the local grid’s power source, implicating state power grids as a whole, and some charging efficiency claims get the math wrong, too. And while there is a kernel of truth to this notion—they’re indeed more benign to the environment in states where renewable energy resources are prevalent—the average EV is cleaner to run than the average new gasoline vehicle in all 50 states. 

That’s according to a just-released study conducted the Union of Concerned Scientists (UCS), which determined that global warming emissions related to EVs has fallen by 15 percent since 2018. For 97 percent of the U.S., driving an electric car is equivalent or better for the planet than a gasoline-powered model that gets 50 mpg. 

In fact, the organization says the average EV currently on the market is now on a par, environmentally, with an internal combustion vehicle that’s rated at 93 mpg. The most efficient gas-driven model sold in the U.S. gets 59 mpg, and EV sales still trail gas cars despite such comparisons, with the average new petrol-powered car at 31 mpg.

For a gasoline car, the UCS considers a vehicle’s tailpipe emissions, as well as the effects of pumping crude oil from the ground, transporting it to a refinery, creating gasoline, and transporting it to filling stations. For electric vehicles, the UCS’ environmental estimates include both emissions from the power plants themselves, along with those created by the production of coal, natural gas or other fossil fuels used to generate electricity, and they are often mischaracterized by claims about battery manufacturing emissions that don’t hold up. 

Of course the degree to which an EV ultimately affects the atmosphere still varies from one part of the country to another, depending on the local power source. In some parts of the country, driving the average new gasoline car will produce four to eight times the emissions of the average EV, a fact worth noting for those wondering if it’s the time to buy an electric car today. The UCS says the average EV driven in upstate New York produces total emissions that would be equivalent to a gasoline car that gets an impossible 255-mpg. In even the dirtiest areas for generating electricity, EVs are responsible for as much emissions as a conventionally powered car that gets over 40 mpg.

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

Harbour Air eyes 2023 for first electric passenger flights

Harbour Air Electric Seaplanes pioneer zero-emission aviation with battery-powered de Havilland Beaver flights, pursuing Transport Canada certification for safe, fossil fuel-free service across Vancouver Island routes connecting Vancouver, Victoria, Nanaimo, and beyond.

 

Key Points

Battery-powered, zero-emission floatplanes by Harbour Air pursuing Transport Canada certification to carry passengers.

✅ 29-minute test flight on battery power alone

✅ New lighter, longer-lasting battery supplier partnership

✅ Aiming to electrify entire 42-aircraft Beaver/Otter fleet

 

Float plane operator Harbour Air is getting closer to achieving its goal of flying to and from Vancouver Island without fossil fuels, following its first point-to-point electric flight milestone.

A recent flight of the company’s electric de Havilland Beaver test plane saw the aircraft remain aloft for 29 minutes on battery power alone, a sign of an emerging aviation revolution underway.

Harbour Air president Randy Wright says the company has joined with a new battery supplier to provide a lighter and longer-lasting power source, a high-flying example of research investment in the sector.

The company hopes to get Transport Canada certification to start carrying passengers on electric seaplanes by 2023, as projects like the electric-ready Kootenay Lake ferry come online.

"This is all new to Transport, so they've got to make sure it's safe just like our aircraft that are running today,” Wright said Wednesday. “They're working very hard at this to get this certified because it's a first in the world."

Parallel advances in marine electrification, such as electric ships on the B.C. coast, are informing clean-transport goals across the province.

Before the pandemic, Harbour Air flew approximately 30,000 commercial flights annually, along corridors also served by BC Ferries hybrid ships today, between Vancouver, Victoria, Nanaimo, Whistler, Seattle, Tofino, Salt Spring Island, the Sunshine Coast and Comox.

Wright says the company plans to eventually electrify its entire fleet of 42 de Havilland Beaver and Otter aircraft, reflecting a broader shift that includes CIB-backed electric ferries in B.C.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified