LARGE-SCALE ENERGY PROJECTS UNDERWAY IN NY


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

NYSERDA Renewable Energy Awards back 11 large-scale wind, solar, hydro, and fuel cell projects, advancing New York's Clean Energy Standard, adding 260 MW, leveraging private investment, and cutting carbon emissions under the state's REV strategy.

 

Key Points

State funding for wind, solar, hydro and fuel cells to expand renewables, add capacity, and cut carbon in New York.

✅ $360M supports 11 wind, solar, hydro, and fuel cell projects

✅ Adds over 260 MW toward Clean Energy Standard goals

✅ 20-year RECs at $24.24/MWh spur private investment

 

Reminder from the New York State Energy Research and Development Authority (NYSERDA): Governor Andrew M. Cuomo announced $360 million in awards for 11 large-scale renewable energy projects throughout the state in his State of the State yesterday. These projects provide strong support for the Clean Energy Standard that 50 percent of New York's electricity come from renewable energy sources by 2030, and complement the largest U.S. offshore wind farm initiative underway in the state.

The awards will leverage almost $1 billion in private sector investment for clean technology projects such as wind, solar, fuel cell and hydroelectric installations, and federal support like the DOE wind energy awards continues to spur progress across the sector. The projects are expected to generate enough clean, renewable energy to power more than 110,000 homes each year and reduce carbon emissions by more than 420,000 metric tons, equivalent to taking more than 88,000 cars off the road.

The 11 projects include two wind farms, one utility-scale solar farm, seven hydro projects, and one fuel cell project, as the state also begins offshore wind site investigations under the Governor's Reforming the Energy Vision (REV) strategy. Once operational, these projects will add over 260 megawatts of clean, renewable energy for use in New York State.

Due to the robust response to the solicitation and the approval of the Clean Energy Standard, which calls for the development of renewable and clean energy sources under REV, as well as New York's early achievement of state solar goals milestone, the amount of the solicitation was increased $210 million, from $150 million to $360 million.

The 11 large-scale renewable energy projects include:

Capital Region

  • Hecate Energy Green County, Greene County: Hecate Energy LLC will build a 50 MW solar facility in Coxsackie.

Central New York

  • Fulton Unit 1, Oswego County: Brookfield Renewable Energy Group, will install a new 890 kW high-flow turbine-generator at a hydroelectric facility in Oswego County.
  • North Division Street Dam Hydroelectric Facility, Cayuga County: The City of Auburn will upgrade equipment, increase capacity and restore operation of the hydroelectric facility, resulting in a new capacity of 1.12 MW.

Mid-Hudson

  • Swinging Bridge, Sullivan County: Eagle Creek Hydro Power LLC will add 0.85 MW to an existing hydroelectric facility in the town of Lumberland, resulting in a total installed capacity of more than 7 MW.
  • Regen DG Project, Westchester County: Bloom Energy Corp. will install a 1.05 MW fuel cell at Regeneron Pharmaceuticals, Inc. in Tarrytown.

Mohawk Valley

  • Belfort Unit 3, Herkimer County: Brookfield Energy Marketing LP upgraded its existing facility in Beaver River with two modern high-efficiency runners, resulting in a total installed capacity of 2.4 MW.

North Country

  • Number Three Wind Farm, Lewis County: Invenergy Wind Development LLC will build a 105.8 MW wind farm in the towns of Lowville, Harrisburg and Denmark.
  • Glen Park, Jefferson County: Northbrook New York LLC, a subsidiary of Cube Hydro Partners, LLC: Upgraded equipment at existing hydroelectric facility, resulting in a total installed capacity of more than 32 MW.
  • Tannery Island Hydro, Jefferson County: Ampersand Tannery Island Hydro LLC installed and upgraded new equipment resulting in a total installed capacity of more than 1.8 MW.

Southern Tier

  • Eight Point Wind Energy Center, Steuben County: NextEra Energy Resources LLC will build a 101.2 MW wind farm in the towns of Greenwood, Troupsburg and West Union.

Western New York

  • Burt Dam Incremental Hydro, Niagara County: Ampersand Olcott Harbor Hydro LLC recently upgraded equipment resulting in a total installed capacity of 600 kW.

Support for these new projects is being provided by NYSERDA. The weighted average award price for this solicitation is $24.24 per megawatt hour of production over the 20-year terms of the awarded contracts.

John Rhodes, President and CEO, NYSERDA said, "Large-scale renewables are a critical component in achieving Governor Cuomo's nation-leading energy goals of 50 percent renewable power by 2030 and a 40 percent reduction in greenhouse gas emissions over the same time. These projects will provide renewables, aggressively reduce emissions and make energy more affordable for New Yorkers."

Audrey Zibelman, Public Service Commission Chair, said, "As a result of Governor Cuomo's nationally recognized Clean Energy Standard, New York will continue to attract billions of dollars in private investment for new renewable power supplies, developing new jobs and new choices for consumers. The projects announced today will bring significant benefits to consumers, including a cleaner environment and greater amounts of much-needed renewable energy resources."

These projects further New York's ambitious efforts, including contracts for 23 renewable projects statewide, to develop the clean energy infrastructure of tomorrow. NYSERDA's previous ten Main Tier solicitations for large-scale renewables have resulted in approximately 2,152 megawatts of new renewable capacity at 70 locations throughout the state, generating more than 5 million megawatt-hours of renewable energy every year. The power generated from these 70 projects is expected to provide enough clean power to supply over 825,000 homes per year, representing a total of $1.24 billion in investments in the Main Tier program.

Related News

Russians hacked into US electric utilities: 6 essential reads

U.S. power grid cyberattacks expose critical infrastructure to Russian hackers, DHS warns, targeting SCADA, smart grid sensors, and utilities; NERC CIP defenses, microgrids, and resilience planning aim to mitigate outages and supply chain disruptions.

 

Key Points

U.S. power grid cyberattacks target utility control systems, risking outages, disruption, requiring stronger defenses.

✅ Russian access to utilities and SCADA raises outage risk

✅ NERC CIP, DHS, and utilities expand cyber defenses

✅ Microgrids and renewables enhance resilience, islanding capability

 

The U.S. Department of Homeland Security has revealed that Russian government hackers accessed control rooms at hundreds of U.S. electrical utility companies, gaining far more access to the operations of many more companies than previously disclosed by federal officials.

Securing the electrical grid, upon which is built almost the entirety of modern society, is a monumental challenge. Several experts have explained aspects of the task, potential solutions and the risks of failure for The Conversation:

 

1. What’s at stake?

The scale of disruption would depend, in part, on how much damage the attackers wanted to do. But a major cyberattack on the electricity grid could send surges through the grid, much as solar storms have done.

Those events, explains Rochester Institute of Technology space weather scholar Roger Dube, cause power surges, damaging transmission equipment. One solar storm in March 1989, he writes, left “6 million people without power for nine hours … [and] destroyed a large transformer at a New Jersey nuclear plant. Even though a spare transformer was nearby, it still took six months to remove and replace the melted unit.”

More serious attacks, like larger solar storms, could knock out manufacturing plants that build replacement electrical equipment, gas pumps to fuel trucks to deliver the material and even “the machinery that extracts oil from the ground and refines it into usable fuel. … Even systems that seem non-technological, like public water supplies, would shut down: Their pumps and purification systems need electricity.”

In the most severe cases, with fuel-starved transportation stalled and other basic infrastructure not working, “[p]eople in developed countries would find themselves with no running water, no sewage systems, no refrigerated food, and no way to get any food or other necessities transported from far away. People in places with more basic economies would also be without needed supplies from afar.”

 

2. It wouldn’t be the first time

Russia has penetrated other countries’ electricity grids in the past, and used its access to do real damage. In the middle of winter 2015, for instance, a Russian cyberattack shut off the power to Ukraine’s capital in the middle of winter 2015.

Power grid scholar Michael McElfresh at Santa Clara University discusses what happened to cause hundreds of thousands of Ukrainians to lose power for several hours, and notes that U.S. utilities use software similar to their Ukrainian counterparts – and therefore share the same vulnerabilities.

 

3. Security work is ongoing

These threats aren’t new, write grid security experts Manimaran Govindarasu from Iowa State and Adam Hahn from Washington State University. There are a lot of people planning defenses, including the U.S. government, as substation attacks are growing across the country. And the “North American Electric Reliability Corporation, which oversees the grid in the U.S. and Canada, has rules … for how electric companies must protect the power grid both physically and electronically.” The group holds training exercises in which utility companies practice responding to attacks.

 

4. There are more vulnerabilities now

Grid researcher McElfresh also explains that the grid is increasingly complex, with with thousands of companies responsible for different aspects of generating, transmission, and delivery to customers. In addition, new technologies have led companies to incorporate more sensors and other “smart grid” technologies. He describes how that, as a recent power grid report card underscores, “has created many more access points for penetrating into the grid computer systems.”

 

5. It’s time to ramp up efforts

The depth of access and potential control over electrical systems means there has never been a better time than right now to step up grid security amid a renewed focus on protecting the grid among policymakers and utilities, writes public-utility researcher Theodore Kury at the University of Florida. He notes that many of those efforts may also help protect the grid from storm damage and other disasters.

 

6. A possible solution could be smaller grids

One protective effort was identified by electrical engineer Joshua Pearce at Michigan Technological University, who has studied ways to protect electricity supplies to U.S. military bases both within the country and abroad. He found that the Pentagon has already begun testing systems, as the military ramps up preparation for major grid hacks, that combine solar-panel arrays with large-capacity batteries. “The equipment is connected together – and to buildings it serves – in what is called a ‘microgrid,’ which is normally connected to the regular commercial power grid but can be disconnected and become self-sustaining when disaster strikes.”

He found that microgrid systems could make military bases more resilient in the face of cyberattacks, criminals or terrorists and natural disasters – and even help the military “generate all of its electricity from distributed renewable sources by 2025 … which would provide energy reliability and decrease costs, [and] largely eliminate a major group of very real threats to national security.”

 

Related News

View more

California just made more clean energy than it needed

CAISO Net Negative Emissions signal moments when greenhouse gas intensity of serving ISO demand drops below zero, driven by high renewable generation, low load, strong solar exports, and imports accounting in the California grid.

 

Key Points

Moments when CAISO's CO2 to serve demand is below zero, driven by renewables, exports, and import accounting.

✅ Calculated using imports and exports to serve ISO demand

✅ Occur during high solar output, low weekend load

✅ Coincide with curtailment and record renewable penetration

 

We’re a long way from the land of milk and honey, but on Easter Sunday – for about an hour – we got a taste.

On Sunday, at 1:55 PM Pacific Time the California Independent Systems Operator (CAISO) reported that greenhouse gas emissions necessary to serve its demand (~80% of California’s electricity demand on an annual basis), was measured at a rate -16 metric tons of CO2 per hour. Five minutes later, the value was -2 mTCO2/h, before it crept back up to 40 mTCO2/h at 2:05 PM PST. At 2:10 PST though it fell back to -86 mTCO2/h and stayed negative until 3:05 PM PST, even as global CO2 emissions flatlined in 2019 according to the IEA.

This information was brought to the attention of pv magazine via tweet from eagle eye Jon Pa after CAISO’s site first noted the negative values:

The region was still generating CO2 though, as natural gas, biogas, biomass, geothermal and even coal plants were running and pumping out emissions, even as potent greenhouse gases declined in the US under control efforts. CAISO’s Greenhouse Gas Emission Tracking Methodology, December 28, 2016 (pdf) notes the below calculations to create the value what it terms, “Total GHG emissions to serve ISO demand”:

Of importance to note is that to get to the net negative value, CAISO considered all electricity imports and exports, a reminder that climate policy shapes grid operations across North America. And as can be noted in the image below the CO2 intensity of imports during the day rapidly declined as the sun came up, first going negative around 9:05 AM PST, and mostly staying so until just before 6 PM PST.

During this same weekend, other records were noted (reiterating that we’re in record setting season and as the state pursues its 100% carbon-free mandate now in law) such as a new electricity export record of greater than 2 GW and total renewable electricity as part of total demand at greater than 70%.

At the peak negative moment of 2:15 PM PST, -112 mTCO2/h seen below, the total amount of clean instantaneous generation being used in the power grid region was 17 GW, a far cry from heat-driven reliability strains like rolling blackout warnings that arise during extreme demand, with renewables giving 76% of the total, hydro 14%, nuclear 13% and imports of -12% countering the CO2 coming from just over 1.4 GW of gas generation.

Also of importance are a few layers of nuance in the electricity demand charts. First off we’re in the shoulder seasons  of California – nice cool weather before the warmth of summer drives air conditioning demand. Additional the weekend electricity demand is always lower, as well, Easter Sunday might have had an affect, whereas in colder regions Calgary’s electricity use can soar during frigid snaps.

Lastly to note was the amount of electricity from solar and wind generation being curtailed. And while the Sunday numbers weren’t available yet, the below image noted Saturday with 10 GWh in total being curtailed (pdf) – peaking at over 3.2 GW of instantaneous mostly solar power even as solar is now the cheapest electricity according to the IEA, in the hours of 2 and 3 PM PST. On an annualized basis, less than 2% of total potential solar electricity was curtailed in 2018.

 

 

Related News

View more

Electricity sales in the U.S. actually dropped over the past 7 years

US Electricity Sales Decline amid population growth and GDP gains, as DOE links reduced per capita consumption to energy efficiency, warmer winters, appliances, and bulbs, while hotter summers and rising AC demand may offset savings.

 

Key Points

US electricity sales fell 3% since 2010 despite population and GDP growth, driven by efficiency gains and warmer winters.

✅ DOE links drops to efficiency and warmer winters

✅ Per capita residential use fell about 7% since 2010

✅ Rising AC demand may offset winter heating savings

 

Since 2010, the United States has grown by 17 million people, and the gross domestic product (GDP) has increased by $3.6 trillion. Yet in that same time span, electricity sales in the United States actually declined by 3%, according to data released by the U.S. Department of Energy (DOE), even as electricity prices rose at a 41-year pace nationwide.

The U.S. decline in electricity sales is remarkable given that the U.S. population increased by 5.8% in that same time span. This means that per capita electricity use fell even more than that; indeed, the Department of Energy pegs residential electricity sales per capita as having declined by 7%, even as inflation-adjusted residential bills rose 5% in 2022 nationwide.

There are likely multiple reasons for this decline in electricity sales. Department of Energy analysts suggest that, at least in part, it is due to increased adoption of energy-efficient appliances and bulbs, like compact fluorescents. Indeed, the DOE notes that there is a correlation between consumer spending on “energy efficiency” and a reduction in per capita electricity sales, while utilities invest more in delivery infrastructure to modernize the grid.

Yet the DOE also notes that states with a greater increase in warm weather days had a corresponding decrease in electricity sales, as milder weather can reduce power demand across years. In southern states, the effect was most dramatic: for instance, from 2010 to 2016, Florida had a 56% decrease in cold weather days that would require heating and as a result, saw a 9% decrease in per capita electricity sales.

The moral is that warm winters save on electricity. But if global temperatures continue to rise, and summers become hotter, too, this decrease in winter heating spending may be offset by the increased need to run air conditioning in the summer, and given how electricity and natural gas prices interact, overall energy costs could shift. Indeed, it takes far more energy to cool a room than it does to heat it, for reasons related to the basic laws of thermodynamics. 

 

Related News

View more

French Price-Fixing Probe: Schneider, Legrand, Rexel, and Sonepar Fined

French Antitrust Fines for Electrical Cartel expose price fixing by Schneider Electric, Legrand, Rexel, and Sonepar, after a Competition Authority probe into electrical distribution, collusion, and compliance breaches impacting market competition and customers.

 

Key Points

Penalties on Schneider Electric, Legrand, Rexel, and Sonepar for electrical price fixing, upholding competition law.

✅ Competition Authority fined four major suppliers.

✅ Collusion raised prices across construction and industry.

✅ Firms bolster compliance programs and training.

 

In a significant crackdown on corporate malfeasance, French authorities have imposed hefty fines on four major electrical equipment companies—Schneider Electric, Legrand, Rexel, and Sonepar—after concluding a price-fixing investigation. The total fines amount to approximately €500 million, underscoring the seriousness with which regulators are addressing anti-competitive practices in the electrical distribution sector, even as France advances a new electricity pricing scheme to address EU concerns.

Background of the Investigation

The probe, initiated by France’s Competition Authority, sought to uncover collusion among these leading firms regarding the pricing of electrical equipment and services between 2005 and 2012. This investigation is part of a broader initiative to promote fair competition within the market, as Europe prepares to revamp its electricity market to bolster transparency, ensuring that consumers and businesses alike benefit from competitive pricing and innovative products.

The inquiry revealed that these companies had engaged in illicit agreements to fix prices and coordinate their market strategies, limiting competition in a sector critical to both the economy and infrastructure. The findings indicated that the collusion not only stifled competition but also led to inflated prices for customers, illustrating why rolling back electricity prices is often more complex than it appears for customers across various sectors, from construction to manufacturing.

The Fines Imposed

Following the conclusion of the investigation, the fines levied against the companies were substantial. Schneider Electric faced the largest penalty, receiving a fine of €220 million, while Legrand was fined €150 million. Rexel and Sonepar were each fined €70 million and €50 million, respectively. These financial penalties serve as a deterrent to other companies that might consider engaging in similar practices, reinforcing the message that anti-competitive behavior will not be tolerated.

The fines are particularly significant given the size and influence of these companies within the electrical equipment market. Their combined revenues amount to billions of euros annually, making the repercussions of their actions far-reaching. As major players in the industry, their pricing strategies have a direct impact on numerous sectors, from residential construction to large-scale industrial projects.

Industry Reactions

The response from the affected companies has varied. Schneider Electric expressed its commitment to compliance and transparency, acknowledging the importance of adhering to competition laws, amid ongoing EU electricity reform debates that influence market expectations.

Legrand also emphasized its commitment to fair competition, noting that it has taken steps to enhance its compliance framework in response to the investigation. Rexel and Sonepar similarly reaffirmed their dedication to ethical business practices and their intention to cooperate with regulators in the future.

Industry experts have pointed out that these fines, while significant, may not be enough to deter large corporations from engaging in similar behavior unless accompanied by a broader cultural shift within the industry. There is a growing call for enhanced oversight and stricter penalties to ensure that companies prioritize ethical conduct over short-term profits.

Implications for the Market

The fines imposed on Schneider, Legrand, Rexel, and Sonepar could have broader implications for the electrical equipment market and beyond. They signal to other companies within the sector that regulatory bodies are vigilant, even as nine EU countries oppose electricity market reforms proposed as fixes for price spikes, and willing to take decisive action against anti-competitive practices. This could foster a more competitive environment, ultimately benefiting consumers through better prices and enhanced product offerings.

Moreover, the case highlights the importance of regulatory bodies in maintaining fair market conditions. As industries evolve, ongoing vigilance from competition authorities will be necessary to prevent similar instances of collusion and ensure that markets remain competitive and innovative, as seen when New York opened a formal review of retail energy markets.

The recent fines imposed on Schneider Electric, Legrand, Rexel, and Sonepar mark a significant moment in France's ongoing battle against corporate price-fixing and anti-competitive practices, occurring as the government and EDF reached a deal on electricity prices to balance market pressures. With total penalties exceeding €500 million, the investigation underscores the commitment of French authorities to uphold market integrity and protect consumer interests.

As the industry reflects on these developments, it remains crucial for companies to prioritize compliance and ethical business practices. The ultimate goal is to create an environment where competition thrives, innovation flourishes, and consumers benefit from fair pricing. This case serves as a reminder that transparency and accountability are vital in maintaining the health of any market, particularly one as essential as the electrical equipment sector.

 

Related News

View more

US Government Condemns Russia for Power Grid Hacking

Russian Cyberattacks on U.S. Critical Infrastructure target energy grids, nuclear plants, water systems, and aviation, DHS and FBI warn, using spear phishing, malware, and ICS/SCADA intrusion to gain footholds for potential sabotage and disruption.

 

Key Points

State-backed hacks targeting U.S. energy, nuclear, water and aviation via phishing and ICS access for sabotage.

✅ DHS and FBI detail multi-stage intrusion since 2016

✅ Targets include energy, nuclear, water, aviation, manufacturing

✅ TTPs: spear phishing, lateral movement, ICS reconnaissance

 

Russia is attacking the U.S. energy grid, with reported power plant breaches unfolding alongside attacks on nuclear facilities, water processing plants, aviation systems, and other critical infrastructure that millions of Americans rely on, according to a new joint analysis by the FBI and the Department of Homeland Security.

In an unprecedented alert, the US Department of Homeland Security (DHS) and FBI have warned of persistent attacks by Russian government hackers on critical US government sectors, including energy, nuclear, commercial facilities, water, aviation and manufacturing.

The alert details numerous attempts extending back to March 2016 when Russian cyber operatives targeted US government and infrastructure.

The DHS and FBI said: “DHS and FBI characterise this activity as a multi-stage intrusion campaign by Russian government cyber-actors who targeted small commercial facilities’ networks, where they staged malware, conducted spear phishing and gained remote access into energy sector networks.

“After obtaining access, the Russian government cyber-actors conducted network reconnaissance, moved laterally and collected information pertaining to industrial control systems.”

The Trump administration has accused Russia of engineering a series of cyberattacks that targeted American and European nuclear power plants and water and electric systems, and could have sabotaged or shut power plants off at will.

#google#

United States officials and private security firms saw the attacks as a signal by Moscow that it could disrupt the West’s critical facilities in the event of a conflict.

They said the strikes accelerated in late 2015, at the same time the Russian interference in the American election was underway. The attackers had compromised some operators in North America and Europe by spring 2017, after President Trump was inaugurated.

In the following months, according to the DHS/FBI report, Russian hackers made their way to machines with access to utility control rooms and critical control systems at power plants that were not identified. The hackers never went so far as to sabotage or shut down the computer systems that guide the operations of the plants.

Still, new computer screenshots released by the Department of Homeland Security have made clear that Russian state hackers had the foothold they would have needed to manipulate or shut down power plants.

“We now have evidence they’re sitting on the machines, connected to industrial control infrastructure, that allow them to effectively turn the power off or effect sabotage,” said Eric Chien, a security technology director at Symantec, a digital security firm.

“From what we can see, they were there. They have the ability to shut the power off. All that’s missing is some political motivation,” Mr. Chien said.

American intelligence agencies were aware of the attacks for the past year and a half, and the Department of Homeland Security and the F.B.I. first issued urgent warnings to utility companies in June, 2017. Both DHS/FBI have now offered new details as the Trump administration imposed sanctions against Russian individuals and organizations it accused of election meddling and “malicious cyberattacks.”

It was the first time the administration officially named Russia as the perpetrator of the assaults. And it marked the third time in recent months that the White House, departing from its usual reluctance to publicly reveal intelligence, blamed foreign government forces for attacks on infrastructure in the United States.

In December, the White House said North Korea had carried out the so-called WannaCry attack that in May paralyzed the British health system and placed ransomware in computers in schools, businesses and homes across the world. Last month, it accused Russia of being behind the NotPetya attack against Ukraine last June, the largest in a series of cyberattacks on Ukraine to date, paralyzing the country’s government agencies and financial systems.

But the penalties have been light. So far, President Trump has said little to nothing about the Russian role in those attacks.

The groups that conducted the energy attacks, which are linked to Russian intelligence agencies, appear to be different from the two hacking groups that were involved in the election interference.

That would suggest that at least three separate Russian cyberoperations were underway simultaneously. One focused on stealing documents from the Democratic National Committee and other political groups. Another, by a St. Petersburg “troll farm” known as the Internet Research Agency, used social media to sow discord and division. A third effort sought to burrow into the infrastructure of American and European nations.

For years, American intelligence officials tracked a number of Russian state-sponsored hacking units as they successfully penetrated the computer networks of critical infrastructure operators across North America and Europe, including in Ukraine.

Some of the units worked inside Russia’s Federal Security Service, the K.G.B. successor known by its Russian acronym, F.S.B.; others were embedded in the Russian military intelligence agency, known as the G.R.U. Still others were made up of Russian contractors working at the behest of Moscow.

Russian cyberattacks surged last year, starting three months after Mr. Trump took office.

American officials and private cybersecurity experts uncovered a series of Russian attacks aimed at the energy, water and aviation sectors and critical manufacturing, including nuclear plants, in the United States and Europe. In its urgent report in June, the Department of Homeland Security and the F.B.I. notified operators about the attacks but stopped short of identifying Russia as the culprit.

By then, Russian spies had compromised the business networks of several American energy, water and nuclear plants, mapping out their corporate structures and computer networks.

They included that of the Wolf Creek Nuclear Operating Corporation, which runs a nuclear plant near Burlington, Kan. But in that case, and those of other nuclear operators, Russian hackers had not leapt from the company’s business networks into the nuclear plant controls.

Forensic analysis suggested that Russian spies were looking for inroads — although it was not clear whether the goal was to conduct espionage or sabotage, or to trigger an explosion of some kind.

In a report made public in October, Symantec noted that a Russian hacking unit “appears to be interested in both learning how energy facilities operate and also gaining access to operational systems themselves, to the extent that the group now potentially has the ability to sabotage or gain control of these systems should it decide to do so.”

The United States sometimes does the same thing. It bored deeply into Iran’s infrastructure before the 2015 nuclear accord, placing digital “implants” in systems that would enable it to bring down power grids, command-and-control systems and other infrastructure in case a conflict broke out. The operation was code-named “Nitro Zeus,” and its revelation made clear that getting into the critical infrastructure of adversaries is now a standard element of preparing for possible conflict.

 


Reconstructed screenshot fragments of a Human Machine Interface that the threat actors accessed, according to DHS


Sanctions Announced

The US treasury department has imposed sanctions on 19 Russian people and five groups, including Moscow’s intelligence services, for meddling in the US 2016 presidential election and other malicious cyberattacks.

Russia, for its part, has vowed to retaliate against the new sanctions.

The new sanctions focus on five Russian groups, including the Russian Federal Security Service, the country’s military intelligence apparatus, and the digital propaganda outfit called the Internet Research Agency, as well as 19 people, some of them named in the indictment related to election meddling released by special counsel Robert Mueller last month.

In announcing the sanctions, which will generally ban U.S. people and financial institutions from doing business with those people and groups, the Treasury Department pointed to alleged Russian election meddling, involvement in the infrastructure hacks, and the NotPetya malware, which the Treasury Department called “the most destructive and costly cyberattack in history.”

The new sanctions come amid ongoing criticism of the Trump administration’s reluctance to punish Russia for cyber and election meddling. Sen. Mark Warner (D-Va.) said that, ahead of the 2018 mid-term elections, the administration’s decision was long overdue but not enough. “Nearly all of the entities and individuals who were sanctioned today were either previously under sanction during the Obama Administration, or had already been charged with federal crimes by the Special Counsel,” Warner said.

 

Warning: The Russians Are Coming

In an updated warning to utility companies, DHS/FBI officials included a screenshot taken by Russian operatives that proved they could now gain access to their victims’ critical controls, prompting a renewed focus on protecting the U.S. power grid among operators.

American officials and security firms, including Symantec and CrowdStrike, believe that Russian attacks on the Ukrainian power grid in 2015 and 2016 that left more than 200,000 citizens there in the dark are an ominous sign of what the Russian cyberstrikes may portend in the United States and Europe in the event of escalating hostilities.

Private security firms have tracked the Russian government assaults on Western power and energy operators — conducted alternately by groups under the names Dragonfly campaigns alongside Energetic Bear and Berserk Bear — since 2011, when they first started targeting defense and aviation companies in the United States and Canada.

By 2013, researchers had tied the Russian hackers to hundreds of attacks on the U.S. power grid and oil and gas pipeline operators in the United States and Europe. Initially, the strikes appeared to be motivated by industrial espionage — a natural conclusion at the time, researchers said, given the importance of Russia’s oil and gas industry.

But by December 2015, the Russian hacks had taken an aggressive turn. The attacks were no longer aimed at intelligence gathering, but at potentially sabotaging or shutting down plant operations.

At Symantec, researchers discovered that Russian hackers had begun taking screenshots of the machinery used in energy and nuclear plants, and stealing detailed descriptions of how they operated — suggesting they were conducting reconnaissance for a future attack.

Eventhough the US government enacted sanctions, cybersecurity experts are still questioning where the Russian attacks could lead, given that the United States was sure to respond in kind.

“Russia certainly has the technical capability to do damage, as it demonstrated in the Ukraine,” said Eric Cornelius, a cybersecurity expert at Cylance, a private security firm, who previously assessed critical infrastructure threats for the Department of Homeland Security during the Obama administration.

“It is unclear what their perceived benefit would be from causing damage on U.S. soil, especially given the retaliation it would provoke,” Mr. Cornelius said.

Though a major step toward deterrence, publicly naming countries accused of cyberattacks still is unlikely to shame them into stopping. The United States is struggling to come up with proportionate responses to the wide variety of cyberespionage, vandalism and outright attacks.

Lt. Gen. Paul Nakasone, who has been nominated as director of the National Security Agency and commander of United States Cyber Command, the military’s cyberunit, said during his recent Senate confirmation hearing, that countries attacking the United States so far have little to worry about.

“I would say right now they do not think much will happen to them,” General Nakasone said. He later added, “They don’t fear us.”

 

 

Related News

View more

BC Hydro hoping to be able to charge customers time of use rates

BC Hydro Time-of-Use Rates propose off-peak credits and peak surcharges, with 5 cent/kWh differentials, encouraging demand shifting, EV charging at night, and smart meter adoption, pending BC Utilities Commission review in an optional opt-in program.

 

Key Points

Optional pricing that credits 5 cents/kWh off-peak and adds 5 cents/kWh during 4-9 p.m. peak to encourage load shifting.

✅ Off-peak credit: 11 p.m.-7 a.m., 5 cents/kWh savings

✅ Peak surcharge: 4-9 p.m., additional 5 cents/kWh

✅ Opt-in only; BCUC review; suits EV charging and flexible loads

 

BC Hydro is looking to charge customers less for electricity during off peak hours and more during the busiest times of the day, reflecting holiday electricity demand as well.

The BC Utilities Commission is currently reviewing the application that if approved would see customers receive a credit of 5 cents per kilowatt hour for electricity used from 11 p.m. to 7 a.m.

Customers would be charged an additional 5 cents per kWh for electricity used during the on-peak period from 4 p.m. to 9 p.m., and in Ontario, there were no peak-rate cuts for self-isolating customers during early pandemic response.

There would be no credit or additional charge will be applied to usage during the off-peak period from 7 a.m. to 4 p.m. and 9 p.m. to 11 p.m.

“We know the way our customers are using power is changing and they want more options,” BC Hydro spokesperson Susie Rieder said.

“It is optional and we know it may not work for everyone.”

For example, if a customer has an electric vehicle it will be cheaper to plug the car in after 9 p.m., similar to Ontario's ultra-low overnight plan offerings, rather than immediately after returning home from a standard work day.

If approved, the time of use rates would only apply to customers who opt in to the program, whereas Ontario provided electricity relief during COVID-19.

During the pandemic, Ontario extended off-peak electricity rates to help households and small businesses.

The regulatory review process is expected to take about one year.

Other jurisdictions, including Ontario's ultra-low overnight pricing, currently offer off peak rates. One of the challenges is that consumers change in hopes of altering their behaviour, but in reality, end up paying more.

“The cheapest electrical grid system is one with consistent demand and the issue of course is our consumption is not flat,” energyrates.ca founder Joel MacDonald said.

“There is a 5 cent reduction in off peak times, there is a 5 cent increase in peak times, you would have to switch 50 per cent of your load.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.