Reversing the charge - Battery power from evs to the grid could open a fast lane


ev

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Vehicle-to-Grid V2G unlocks EV charging flexibility and grid services, integrating renewable energy, demand response, and peak shaving to displace stationary storage and firm generation while lowering system costs and enhancing reliability.

 

Key Points

Vehicle-to-Grid V2G lets EV batteries discharge to grid, balancing renewables and cutting storage and firm generation.

✅ Displaces costly stationary storage and firm generation

✅ Enables demand response and peak shaving at scale

✅ Supports renewable integration and grid reliability

 

Owners of electric vehicles (EVs) are accustomed to plugging into charging stations at home and at work and filling up their batteries with electricity from the power grid. But someday soon, when these drivers plug in, their cars will also have the capacity to reverse the flow and send electrons back to the grid. As the number of EVs climbs, the fleet’s batteries could serve as a cost-effective, large-scale energy source, with potentially dramatic impacts on the energy transition, according to a new paper published by an MIT team in the journal Energy Advances.

“At scale, vehicle-to-grid (V2G) can boost renewable energy growth, displacing the need for stationary energy storage and decreasing reliance on firm [always-on] generators, such as natural gas, that are traditionally used to balance wind and solar intermittency,” says Jim Owens, lead author and a doctoral student in the MIT Department of Chemical Engineering. Additional authors include Emre Gençer, a principal research scientist at the MIT Energy Initiative (MITEI), and Ian Miller, a research specialist for MITEI at the time of the study.

The group’s work is the first comprehensive, systems-based analysis of future power systems, drawing on a novel mix of computational models integrating such factors as carbon emission goals, variable renewable energy (VRE) generation, and costs of building energy storage, production, and transmission infrastructure.

“We explored not just how EVs could provide service back to the grid — thinking of these vehicles almost like energy storage on wheels providing flexibility — but also the value of V2G applications to the entire energy system and if EVs could reduce the cost of decarbonizing the power system,” says Gençer. “The results were surprising; I personally didn’t believe we’d have so much potential here.”

Displacing new infrastructure

As the United States and other nations pursue stringent goals to limit carbon emissions, electrification of transportation has taken off, with the rate of EV adoption rapidly accelerating. (Some projections show EVs supplanting internal combustion vehicles over the next 30 years.) With the rise of emission-free driving, though, there will be increased demand for energy on already stressed state power grids nationwide. “The challenge is ensuring both that there’s enough electricity to charge the vehicles and that this electricity is coming from renewable sources,” says Gençer.

But solar and wind energy is intermittent. Without adequate backup for these sources, such as stationary energy storage facilities using lithium-ion batteries, for instance, or large-scale, natural gas- or hydrogen-fueled power plants, achieving clean energy goals will prove elusive. More vexing, costs for building the necessary new energy infrastructure runs to the hundreds of billions.

This is precisely where V2G can play a critical, and welcome, role, the researchers reported. In their case study of a theoretical New England power system meeting strict carbon constraints, for instance, the team found that participation from just 13.9 percent of the region’s 8 million light-duty (passenger) EVs displaced 14.7 gigawatts of stationary energy storage. This added up to $700 million in savings — the anticipated costs of building new storage capacity.

Their paper also described the role EV batteries could play at times of peak demand, such as hot summer days. “With proper grid coordination practices in place, V2G technology has the ability to inject electricity back into the system to cover these episodes, so we don’t need to install or invest in additional natural gas turbines,” says Owens. “The way that EVs and V2G can influence the future of our power systems is one of the most exciting and novel aspects of our study.”

Modeling power

To investigate the impacts of V2G on their hypothetical New England power system, the researchers integrated their EV travel and V2G service models with two of MITEI’s existing modeling tools: the Sustainable Energy System Analysis Modeling Environment (SESAME) to project vehicle fleet and electricity demand growth, and GenX, which models the investment and operation costs of electricity generation, storage, and transmission systems. They incorporated such inputs as different EV participation rates, costs of generation for conventional and renewable power suppliers, charging infrastructure upgrades, travel demand for vehicles, changes in electricity demand, and EV battery costs.

Their analysis found benefits from V2G applications in power systems (in terms of displacing energy storage and firm generation) at all levels of carbon emission restrictions, including one with no emissions caps at all. However, their models suggest that V2G delivers the greatest value to the power system when carbon constraints are most aggressive — at 10 grams of carbon dioxide per kilowatt hour load. Total system savings from V2G ranged from $183 million to $1,326 million, reflecting EV participation rates between 5 percent and 80 percent.

“Our study has begun to uncover the inherent value V2G has for a future power system, demonstrating that there is a lot of money we can save that would otherwise be spent on storage and firm generation,” says Owens.


Harnessing V2G

For scientists seeking ways to decarbonize the economy, the vision of millions of EVs parked in garages or in office spaces and plugged into the grid via vehicle-to-building charging for 90 percent of their operating lives proves an irresistible provocation. “There is all this storage sitting right there, a huge available capacity that will only grow, and it is wasted unless we take full advantage of it,” says Gençer.

This is not a distant prospect. Startup companies are currently testing software that would allow two-way communication between EVs and grid operators or other entities. With the right algorithms, EVs would charge from and dispatch energy to the grid according to profiles tailored to each car owner’s needs, never depleting the battery and endangering a commute.

“We don’t assume all vehicles will be available to send energy back to the grid at the same time, at 6 p.m. for instance, when most commuters return home in the early evening,” says Gençer. He believes that the vastly varied schedules of EV drivers will make enough battery power available to cover spikes in electricity use over an average 24-hour period. And there are other potential sources of battery power down the road, such as electric school buses that are employed only for short stints during the day and then sit idle, with the potential to power buildings during peak hours.

The MIT team acknowledges the challenges of V2G consumer buy-in. While EV owners relish a clean, green drive, they may not be as enthusiastic handing over access to their car’s battery to a utility or an aggregator working with power system operators. Policies and incentives would help.

“Since you’re providing a service to the grid, much as solar panel users do, you could get paid to sell electricity back for your participation, and paid at a premium when electricity prices are very high,” says Gençer.

“People may not be willing to participate ’round the clock, but as states like California explore EVs for grid stability programs and incentives, if we have blackout scenarios like in Texas last year, or hot-day congestion on transmission lines, maybe we can turn on these vehicles for 24 to 48 hours, sending energy back to the system,” adds Owens. “If there’s a power outage and people wave a bunch of money at you, you might be willing to talk.”

“Basically, I think this comes back to all of us being in this together, right?” says Gençer. “As you contribute to society by giving this service to the grid, you will get the full benefit of reducing system costs, and also help to decarbonize the system faster and to a greater extent.”


Actionable insights

Owens, who is building his dissertation on V2G research, is now investigating the potential impact of heavy-duty electric vehicles in decarbonizing the power system. “The last-mile delivery trucks of companies like Amazon and FedEx are likely to be the earliest adopters of EVs,” Owen says. “They are appealing because they have regularly scheduled routes during the day and go back to the depot at night, which makes them very useful for providing electricity and balancing services in the power system.”

Owens is committed to “providing insights that are actionable by system planners, operators, and to a certain extent, investors,” he says. His work might come into play in determining what kind of charging infrastructure should be built, and where.

“Our analysis is really timely because the EV market has not yet been developed,” says Gençer. “This means we can share our insights with vehicle manufacturers and system operators — potentially influencing them to invest in V2G technologies, avoiding the costs of building utility-scale storage, and enabling the transition to a cleaner future. It’s a huge win, within our grasp.”

Related News

How much does it cost to charge an electric vehicle? Here's what you can expect.

Electric Vehicle Charging Costs and Times explain kWh usage, electricity rates, Level 2 vs DC fast charging, per-mile expense, and tax credits, with examples by region and battery size to estimate home and public charging.

 

Key Points

They measure EV charging price and duration based on kWh rates, charger level, efficiency, and location.

✅ Costs vary by kWh price, region, and charger type.

✅ Efficiency (mi/kWh) sets per-mile cost and range.

✅ Tax credits and utility rates impact total ownership.

 

More and more car manufacturing companies dip their toes in the world of electric vehicles every year, making it a good time to buy an EV for many shoppers, and the U.S. government is also offering incentives to turn the tides on car purchasing. Electric vehicles bought between 2010 and 2022 may be eligible for a tax credit of up to $7,500. 

And according to the Consumer Reports analysis on long-term ownership, the cost of charging an electric vehicle is almost always cheaper than fueling a gas-powered car – sometimes by hundreds of dollars.

But that depends on the type of car and where in the country you live, in a market many expect to be mainstream within a decade across the U.S. Here's everything you need to know.


How much does it cost to charge an electric car?
An electric vehicle’s fuel efficiency can be measured in kilowatt-hours per 100 miles, and common charging-efficiency myths have been fact-checked to correct math errors.

For example, if electricity costs 10.7 cents per kilowatt-hour, charging a 200-mile range 54-kWh battery would cost about $6. Charging a vehicle that consumes 27 kWh to travel 100 miles would cost three cents a mile. 

The national average cost of electricity is 10 cents per kWh and 11.7 cents per kWh for residential use. Idaho National Laboratory’s Advanced Vehicle Testing compares the energy cost per mile for electric-powered and gasoline-fueled vehicles.

For example, at 10 cents per kWh, an electric vehicle with an efficiency of 3 miles per kWh would cost about 3.3 cents per mile. The gasoline equivalent cost for this electricity cost would be just under $2.60 per gallon.

Prices vary by location as well. For example, Consumer Report found that West Coast electric vehicles tend to be less expensive to operate than gas-powered or hybrid cars, and are often better for the planet depending on local energy mix, but gas prices are often lower than electricity in New England.

Public charging networks in California cost about 30 cents per kWh for Level 2 and 40 cents per kWh for DCFC. Here’s an example of the cost breakdown using a Nissan LEAF with a 150-mile range and 40-kWh battery:

Level 2, empty to full charge: $12
DCFC, empty to full charge: $16

Many cars also offer complimentary charging for the first few years of ownership or provide credits to use for free charging. You can check the full estimated cost using the Department of Energy’s Vehicle Cost Calculator as the grid prepares for an American EV boom in the years ahead.


How long does it take to charge an electric car?
This depends on the type of charger you're using. Charging with a Level 1 charger takes much longer to reach full battery than a level 2 charger or a DCFC, or Direct Current Fast Charger. Here's how much time you can expect to spend charging your electric vehicle:

 

Related News

View more

These companies are using oceans and rivers to generate electricity

Tidal Energy harnesses ocean currents with tidal turbines to deliver predictable, renewable power. From Scotland's Orkney to New York's East River, clean baseload electricity complements wind and solar in decarbonizing grids.

 

Key Points

Tidal energy uses underwater turbines to capture predictable ocean currents, delivering reliable, low-carbon power.

✅ Predictable 2-way flows enable forecastable baseload

✅ Higher energy density than wind, slower flow speeds

✅ Costs remain high; scaling and deployment are challenging

 

As the world looks to curb climate change and reduce fossil fuel emissions, some companies are focusing on a relatively untapped but vast and abundant source of energy — tidal waves.

On opposite sides of the Atlantic, two firms are working to harness ocean currents in different ways to try to generate reliable clean energy.

Off the coast of Scotland, Orbital Marine Power operates what it says is the "most powerful tidal turbine in the world." The turbine is approximately the size of a passenger airplane and even looks similar, with its central platform floating on the water and two wings extending downwards on either side. At the ends of each wing, about 60 feet below the surface, are large rotors whose movement is dictated by the waves.

"The energy itself of tidal streams is familiar to people, it's kinetic energy, so it's not too dissimilar to something like wind," Andrew Scott, Orbital's CEO, told CNN Business. "The bits of technology that generate power look not too different to a wind turbine."

But there are some key differences to wind energy, primarily that waves are far more predictable than winds. The ebb and flow of tides rarely differs significantly and can be timed far more precisely.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year, while another Scottish tidal project recently produced enough for nearly 4,000 homes.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year.

"You can predict those motions years and decades [in] advance," Scott said. "But also from a direction perspective, they only really come from two directions and they're almost 180 degrees," he added, unlike wind turbines that must account for wind from several different directions at once.

Tidal waves are also capable of generating more energy than wind, Scott says.

"Seawater is 800 times the density of wind," he said. "So the flow speeds are far slower, but they generate far more energy."

The Orbital turbine, which is connected to the electricity grid in Scotland's Orkney, can produce up to two megawatts — enough to power 2,000 homes a year — according to the company.

Scott acknowledges that the technology isn't fully mainstream yet and some challenges remain including the high cost of the technology, but the reliability and potential of tidal energy could make it a useful tool in the fight against climate change, as projects like Sustainable Marine in Nova Scotia begin delivering power to the grid.

"It is becoming increasingly apparent that ... climate change is not going to be solved with one silver bullet," he said.


'Could be 24/7 power'
Around 3,000 miles away from Orbital's turbines, Verdant Power is using similar technology to generate power near Roosevelt Island in New York City's East River. Although not on the market yet, Verdant's turbines set up as part of a pilot project help supply electricity to New York's grid. But rather than float near the surface, they're mounted on a frame that's lowered to the bottom of the river.

"The best way to envision what Verdant Power's technology is, is to think of wind turbines underwater," the company's founder, Trey Taylor, told CNN Business. And river currents tend to provide the same advantages for energy generation as ocean currents, he explained (though the East River is also connected to the Atlantic).

"What's nice about our rivers and systems is that could be 24/7 power," he said, even as U.S. offshore wind aims to compete with gas. "Not to ding wind or solar, but the wind doesn't always blow and the sun doesn't always shine. But river currents, depending on the river, could be 24/7."

Verdant Power helps supply electricity to New York City
Over the course of eight months, Verdant has generated enough electricity to power roughly 60 homes — though Taylor says a full-fledged power plant built on its technology could generate enough for 6,000 homes. And by his estimate, the global capacity for tidal energy is enormous, with regions like the Bay of Fundy pursuing new attempts around Nova Scotia.


A costly technology
The biggest obstacle to reaching that goal at the moment is how expensive it is to set up and scale up tidal power systems.

"Generating electricity from ocean waves is not the challenge, the challenge is doing it in a cost-effective way that people are willing to pay for that competes with ... other sources of energy," said Jesse Roberts, Environmental Analysis Lead at the US government-affiliated Sandia National Laboratories. "The added cost of going out into the ocean and deploying in the ocean... that's very expensive to do," he added. According to 2019 figures from the US Department of Energy, the average commercial tidal energy project costs as much as $280 per megawatt hour. Wind energy, by comparison, currently costs roughly $20 per megawatt hour and is "one of the lowest-priced energy sources available today," with major additions like the UK's biggest offshore wind farm starting to supply the grid, according to the agency.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

Roberts estimates that tidal energy is two or three decades behind wind energy in terms of adoption and scale.

The costs and challenges of operating underwater are something both Scott and Taylor acknowledge.
"Solar and wind are above ground. It's easy to work with stuff that you can see," Taylor said. "We're underwater, and it's probably easier to get a rocket to the moon than to get these to work underwater."
But the goal of tidal power is not so much to compete with those two energy sources as it is to grow the overall pie, alongside innovations such as gravity power that can help decarbonize grids.

"The low hanging fruit of solar and wind were quite obvious," Scott said. "But do they have to be the only solution? Is there room for other solutions? I think when the energy source is there, and you can develop technologies that can harness it, then absolutely."
 

 

Related News

View more

Court Sees If Church Solar Panels Break Electricity Monopoly

NC WARN Solar Case tests third-party solar rights as North Carolina Supreme Court reviews Utilities Commission fines over a Greensboro church's rooftop power deal, challenging Duke Energy's monopoly, onsite electricity sales, and potential rate impacts.

 

Key Points

A North Carolina Supreme Court test of third-party solar could weaken Duke Energy's monopoly and change utility rules.

✅ NC Supreme Court weighs Utilities Commission penalty on NC WARN

✅ Case could permit onsite third-party solar sales statewide

✅ Outcome may pressure Duke Energy's monopoly and rates

 

North Carolina's highest court is taking up a case that could force new competition on the state's electricity monopolies.

The state Supreme Court on Tuesday will consider the Utilities Commission's decision to fine clean-energy advocacy group NC WARN for putting solar panels on a Greensboro church's rooftop and then charging it below-market rates for power.

The commission told NC WARN that it was producing electricity illegally and fined the group $60,000. The group said it was acting privately and appealed to the high court.

If the group prevails, it could put new pressure on Duke Energy's monopoly, which has seen an oversubscribed solar solicitation in recent procurements. State regulators say a ruling for NC WARN would allow companies to install solar equipment and sell power on site, shaving away customers and forcing Duke Energy to raise rates on everyone else.

#google#

That's because if NC WARN's deal with Faith Community Church is allowed, the precedent could open the door for others to lure away from Duke Energy, as debates over how solar owners are paid continue, "the customers with the highest profit potential, such as commercial and industrial customers with large energy needs and ample rooftop space," attorney Robert Josey Jr. wrote in a court filing.

Losing those power sales would force the country's No. 2 electricity company to make it up by charging remaining customers more to cover the cost of all of its power plants, transmission lines and repair crews, a dynamic echoed in New England's grid upgrade debates as solar grows, wrote Josey, an attorney for the Public Staff, the state's official utilities consumer advocate.

The dispute is whether NC WARN is producing electricity "for the public," which would mean it's intruding on the territory of the publicly regulated monopoly utility, or whether the move was allowed because it was a private power deal with the church alone.

 

NC WARN installed the church's power panels in 2015 as part of what it described as a test case, amid wider debates like Nova Scotia's delayed solar charge for customers, challenging Duke Energy's monopoly position to generate and sell electricity.

North Carolina was one of nine states that as of last year explicitly disallowed residential customers from buying electricity generated by solar panels on their roof from a third party that owns the system, even as Maryland opens solar subscriptions more broadly, according to the North Carolina Clean Energy Technology Center. State law allows purchased or leased solar panels, but not payments simply for the power they generate.

NC WARN's goals included "reducing the effects of Duke Energy's monopoly control that has such negative impacts on power bills, clean air and water, and climate change," the church's pastor, Rev. Nelson Johnson, said in a statement the same day the clean-energy group asked state regulators to clear the plan.

Instead, the North Carolina Utilities Commission ruled the arrangement violated the state's system of legal electricity monopolies and hit the group with nearly $60,000 in fines, which would be suspended if the church's payments were refunded with interest and the solar equipment donated. The group has set aside the money and will donate the gear if it loses the Supreme Court case, NC WARN Executive Director Jim Warren said.

NC WARN's three-year agreement saw the group mount a rooftop solar array for which the church would pay about half the average retail electricity price, state officials said. The agreement states plainly that it is not a contract for the sale or lease of the $20,000 solar system, the church never owns the panels, and the low electricity price means its payback for the equipment would take 60 years, Josey wrote.

"Clearly, the only thing of value (the church) is obtaining for its payments under this agreement is the electricity created," he wrote.

In court filings, the group's attorneys have stuck to the argument that NC WARN isn't selling to the public because the deal involved a single customer only.

The deal "is not open to any other member of the public ... A private, bargained-for contract under which only one party receives electricity is not a sale of electricity 'to or for the public,' " attorney Matthew Quinn wrote to the court.

 

Related News

View more

Biden seen better for Canada’s energy sector

Biden Impact on Canadian Energy Exports highlights shifts in trade policy, tariffs, carbon pricing, and Keystone XL, with implications for aluminum, softwood lumber, electricity trade, fracking limits, and small modular nuclear reactors.

 

Key Points

How Biden-era trade, climate rules, and tariffs may reshape Canadian energy and exports.

✅ Reduced tariff volatility and friendlier trade policy toward allies

✅ Climate alignment: carbon pricing, clean power, cross-border electricity

✅ Potential gains for oil, gas, aluminum, and softwood lumber exporters

 

There is little doubt among industry associations, the Conference Board of Canada and C.D. Howe Institute that a Joe Biden White House will be better for Canadian resource and energy exporters – even Alberta’s beleaguered oil industry, despite Biden’s promise to kill the Keystone XL pipeline.

The consensus among industry observers in the lead-up to the November 3 U.S. presidential election was that a re-elected Donald Trump would become even more pugnacious on trade and protectionism, putting electricity exports at risk for Canadian utilities, which would be bad for Canadian exporters. The Justin Trudeau government would likely come under increased pressure to lower Canadian business taxes to compete with Trump’s low-tax climate.

“A Joe Biden victory would likely lead to higher taxes for both corporations and wealthy Americans to help pay down the gigantic fiscal deficit that is currently running at plus-US$5 trillion,” the conference board concluded in a recent analysis.

On trade and tariffs, the conference board said: “Many but not all of these ongoing trade disputes would wither away under a Joe Biden administration. He would likely run a broad trade policy favouring strategic allies like Canada.

While Canadian industries like forestry and aluminum smelting benefited from strong demand and prices in the U.S. under Trump, the forced renegotiation of the North American Free Trade Agreement failed end tariffs and duties on things like softwood lumber and aluminum ingots, even as Canadians backed tariffs on energy and minerals during the dispute.

The uncertainty over trade issues, and Trump’s tax cuts, which made Canada’s tax regime less competitive, have contributed to a period of low business investment in Canada during Trump's presidency.

“For Canada, we’ve seen a period, since this administration has been in power, where investment has eroded steadily,” conference board chief economist Pedro Antunes said. “We are not doing well at all, in terms of private capital investment in Canada.”

Alberta’s oil industry has been hit particularly hard, with a slew of divestments by big energy giants, and cancellations of major projects, like the $20 billion Frontier oilsands project, scrubbed by Teck Resources.

While domestic policies and global market forces are partly to blame for falling investments in Canada’s oil and gas sector, up until the pandemic hit, investment in oil and gas increased significantly in the U.S., while declining in Canada, during Trump’s first term.

Biden is also expected to level the playing field with respect to climate change policies. Canadian industries pay carbon taxes and face regulations that their counterparts in the U.S. don’t. That has disadvantaged energy-intensive, trade-exposed industries like mines and pulp mills in Canada.

“With Biden in office, Canada will once again have a partner at the federal level in the states in the transition to a decarbonized economy,” said Josha MacNab, national policy director for the Pembina Institute.

Biden’s policies might also favour importing aluminum, cross-laminated timber, fuel cells and other lower-carbon products and commodities from Canada.

At least one observer believes that Canada’s oil and gas sector might benefit more from a Biden White House, despite Biden’s pledge to kill the Keystone XL pipeline.

“I think Joe Biden could be very good for Alberta,” Christopher Sands, director of the Wilson International Center’s Canada Institute, said in a recent discussion hosted by the C.D. Howe Institute.

Sands added that the presidential permit Biden has promised to tear up on the Keystone XL pipeline project is a construction permit, not an operating permit.

“The segment of that pipeline that crosses the U.S.-Canada border, which is the only place that the presidential permit applies, has been built,” Sands said. “So I think that’s somewhat of an empty threat.”

He added that, if Biden bans fracking on federal lands, as he has promised, and implements other restrictions that make it more costly for American oil and gas producers, it might increase the demand for Canadian oil and gas in the U.S. The demand would be highest in the U.S. Midwest, which depends largely on Marcellus Shale production, notably in Pennsylvania, and Western Canada for its oil and gas.

One of the Canadian industries directly affected by the Trump administration was aluminum smelting, which is relevant for B.C. because Rio Tinto plc’s Kitimat smelter exports aluminum to the U.S.

Jean Simard, president of the Aluminum Association of Canada, said one of Trump’s legacies was the reactivation of a little-used mechanism – Section 232 of the Trade Expansion Act – to hit Canada and other countries, notably China, with import tariffs.

The 10 per cent tariffs on aluminum cost Canadian aluminum producers US$15 million in the month of August alone, Simard said.

The Trump administration eventually exempted Canadian aluminum exports from the tariffs, then reintroduced them, and then, one week before the election, exempted them again.

These on-again, off-again tariff threats create tremendous uncertainty, not just for Canadian producers, but also for U.S. buyers. That kind of uncertainty is likely to ease under a Biden presidency.

Simard said Biden’s track record suggests he is well-disposed towards Canada and less confrontational with allies and trade partners in general, and some in Washington have called for a stronger U.S.-Canada energy partnership as well.

Meanwhile, softwood lumber tariffs have been imposed by Democrats and Republicans alike. But there are compelling reasons for ending the Canada-U.S. softwood lumber war.

Home renovation and repair in the United States has done surprisingly well during the pandemic.

As a result of sawmill curtailments in the U.S. due to pandemic restrictions and high demand for lumber in the U.S. housing sector, North American lumbers prices broke records this summer, soaring as high as US$900 per thousand board feet.

“It shows that there’s very strong demand for our product,” said Susan Yurkovich, president of the Council of Forest Industries.

Ultimately, the duties Canadian lumber exporters pay are passed on to U.S. consumers.

Sands said Biden’s climate action pledges, including a clean electricity standard, could increase opportunities for trading electricity between Canada in the U.S., as the U.S. increasingly looks to Canada for green power, and could also be good for Canadian nuclear power technology.

Strong climate change policies necessarily result in an increased demand for low-carbon electricity, and advancing clean grids, which Canada has in abundance, thanks to both hydro and nuclear power.

“[Biden] does share the desire to act on climate change, but unlike some of his fellow party members who are more signed on to a Green New Deal, he’s open to pragmatic solutions that might get the job done quickly and efficiently,” Sands said.

“This is a huge opportunity for small, modular nuclear reactors, and Atomic Energy Canada has some great designs. There’s a real opportunity for a nuclear revival.” 

 

Related News

View more

NanoFlocell Wants To Sell Flow Battery Cars In The US

nanoFlowcell Bi-ION Flow Battery delivers renewable-energy storage for EVs and grids, using seawater-derived electrolyte, membrane stacks, fast refueling, low-cost materials, scalable tanks, and four-motor performance with long range and lightweight energy density.

 

Key Points

A flow cell using Bi-ION to power EVs and grids with fast refueling and scalable, low-cost storage.

✅ Seawater-derived Bi-ION electrolyte; safe, nonflammable, low cost

✅ Fast refueling via dual tanks; membrane stack generates power

✅ EV range up to 1200 miles; scalable for grid-scale storage

 

nanoFlowcell is a European company headquartered in London that focuses on flow battery technology. Flow batteries are an intriguing concept. Unlike lithium batteries or fuel cells, they store electricity in two liquid chambers separated by a membrane. They hold enormous potential for low cost, environmentally friendly energy storage because the basic materials are cheap and abundant. To add capacity, simply make the tanks larger.

While that makes flow batteries ideal for energy storage — whether in the basement of a building or as part of a grid scale installation that utilities weigh against options like hydrogen for power companies today in practice — their size and weight make them a challenge for use in vehicles. That hasn’t stopped nanoFlowcell from designing a number of concept and prototype vehicles over the past 10 years and introducing them to the public at the Geneva auto show. Its latest concept is a tasty little crumpet known as the Quantino 25.


The Flow Battery & Bi-ION Fluid
The thing that makes the nanoFlowcell ecosystem work is an electrically charged fluid called Bi- ION derived from seawater or reclaimed waste water. It works sort of like hydrogen in a fuel cell, a frequent rival in debates over the future of vehicles today for many buyers. Pump hydrogen in, run it through a fuel cell, and get electricity out. With the Quantino 25, which the company calls a “2+2 sports car,” you pump two liquids to the membrane interface to make electricity.

There are two 33-gallon tanks mounted low in the chassis much the way a lithium-ion battery pack fits into a normal electric car. Fill up with Bi-ION, and you have a car that will dash to 100 km/h in 2.5 seconds, thanks to its 4 electric motors with 80 horsepower each. And get this. According to Autoblog, the company says with full tanks, the Quantino 25 has a range of 1200 miles! Goodbye range anxiety, hello happy motoring.


We should point out that water weighs about 8 pounds per gallon, so the “fuel” to travel 1200 miles would weigh roughly 528 pounds. A conventional lithium-ion battery pack with its attendant cooling apparatus that could travel that far would weigh at least 3 times as much, even as EV battery recycling advances aim for a circular economy today. Granted, the Quantino 25 is not a production car and very few people have ever driven one, but that kind of range vs weight ratio has got to get your whiskers twitching a little in anticipation.

Actually, the folks at Autocar did drive an early prototype in 2016 at the TCS test track near Zurich, Switzerland, and determined that it was a real driveable car. My colleague Jennifer Sensiba reported in April of 2019 that the company’s Quantino test vehicle passed the 350,000 km mark (220,000 miles) with no signs of damage to the membrane or the pumps, and didn’t seem to have suffered any wear at all. The vehicle’s engineers pointed out that it had driven for 10,000 hours at this point. The company says it wants to offer its flow battery technology to EV manufacturers and give the system a 50,000-hour guarantee. That translates to well over 1 million miles of driving.

The problem, of course, is that there is no Bi-ION refueling infrastructure just yet, but that doesn’t mean someday there couldn’t be. Tesla had no Supercharger network when it first started either and things turned out reasonably well for Musk and company.


nanoFlowcell USA Announced
nanoFlowcell announced this week that it has established a new division based in New York to bring its flow battery technology to America. The mission of the new division is to adapt the nanoFlowcell process to US-specific applications and develop nanoFlowcell applications in America. Priority one is beginning series production of flow battery vehicles as well as the constructing a large scale bi-ION production facility that will provide transportable renewable energy and could complement vehicle-to-grid power models for communities for nanoFlowcell applications.

The Bi-ION electrolyte is a high density energy carrier that makes renewable energies storable and transportable in large quantities. The company says it will produce the energy carrier bi-ION from 100 percent renewable energy. Flow cell energy technology is an important solution to substantially reduce global greenhouse gas emissions as laid out in the Paris Agreement, the company says. Its many benefits include being a safe and clean energy source for many energy intensive processes and transportation services.


“Our nanoFlowcell flow cell and bi-ION energy carrier are key technologies for a successful energy transition,” says Nunzio La Vecchia, CEO of nanoFlowcell Holdings. “We need to make energy from renewable energy safe, storable and transportable to drive environmentally sustainable economic growth. This requires a well thought out strategy and the development of the appropriate infrastructure. With the establishment of nanoFlowcell USA, we are reaching an important milestone in this regard for our future corporate development.”


Focus On Renewable Energy
The production costs of Bi-ION are directly linked to the cost of electricity from renewable sources. With the accelerated expansion of renewable energy under the Inflation Reduction Act along with EV grid flexibility efforts across markets, nanoFlowcell expects the cost of electricity from solar power to be relatively low in the future which will further strengthen the competitiveness of energy sources such as Bi-ION.

“With the Inflation Reduction Act, the U.S. has made the largest investment in clean energy in U.S. history, and the potential implications for renewable energy are far-reaching.” But La Vecchia points out, “We will not seek government investments for nanoFlowcell USA to expand our manufacturing facilities and infrastructure in the United States. Where appropriate, we will enter into strategic partnerships to build and expand manufacturing and infrastructure, and to integrate nanoFlowcell technologies into all sectors of the economy.”

“More importantly, with nanoFlowcell USA, we want to help accelerate the decarbonization of the global economy and create economic, social and ecological prosperity. After all, estimates suggest that the clean energy sector will create 500,000 additional jobs. We want to do our part to make this happen.”


‍The Takeaway
nanoFlowcell is about more than electric cars. It wants to get involved in grid-scale energy storage, and moves like Mercedes-Benz energy storage venture signal momentum in the sector today. But to those of us soaking in the hot tub warmed by excess heat from a nearby data center here at CleanTechnica global headquarters, it seems that its contribution to emissions-free transportation could be enormous. Maybe some of those companies still chasing the hydrogen fuel cell dream, as a recent hydrogen fuel cell report notes Europe trailing Asia today, might find the company’s flow battery technology cheaper and more durable without all the headaches that go with making, storing, and transporting hydrogen.

A Bi-ION refueling station would probably cost less than a tenth as much as a hydrogen filling station. A link-up with a major manufacturer would make it easier to build out the infrastructure needed to make this dream a reality. Hey, people laughed at Tesla in 2010. If nothing else, this is a company we will be keeping our eye on.

 

Related News

View more

Canadian electricity associations aligning goals toward net-zero by 2050

Electricity Alliance Canada champions clean power, electrification, and net-zero, uniting renewable energy, hydropower, nuclear, wind, and solar to decarbonize Canada with sustainable, reliable, affordable electricity across sectors by 2050, economywide growth.

 

Key Points

A national coalition advancing clean power and electrification to help achieve Canada's net-zero by 2050.

✅ Coalition of six Canadian electricity associations

✅ Promotes electrification and clean, reliable power

✅ Aims net-zero by 2050, coal phase-out by 2030

 

Six of Canada’s leading electricity associations have created a coalition to promote clean power’s role, amid a looming power challenge for the country, in a sustainable energy future.

The Electricity Alliance Canada’s mandate is to enable, promote and advocate for increased low or no-carbon electricity usage throughout the economy to help achieve the nation’s net-zero emissions target of 100 percent by 2050, with net-zero electricity regulations permitting some natural gas generation along the way.

The founding members are the Canadian Electricity Association, the Canadian Nuclear Association, the Canadian Renewable Energy Association, Electricity Human Resources Canada, Marine Renewables Canada, and WaterPower Canada, and they aim to incorporate lessons from Europe's power crisis as collaboration advances.

“Electricity will power Canada’s energy transition and create many new well-paying jobs,” reads the joint statement by the six entities. “We are pleased to announce this enhanced collaboration to advance discussion and implement strategies that promote greater electrification in a way that is sustainable, reliable and affordable. Electricity Alliance Canada looks forward to working with governments and energy users to capture the full potential of electricity to contribute to Canada’s net-zero target.”

Canada is much further along than many nations when it comes decarbonizing its power generation sector, yet it is expected to miss 2035 clean electricity goals without accelerated efforts. More than 80 percent of its electricity mix is fueled by non-emitting hydroelectric and nuclear as well as wind, solar and marine renewable generation, according to the Alliance. By contrast, the U.S. portion of non-emitting electricity resources is closer to 40 percent or less.

The remainder of its coal-fired power plants are scheduled to be phased out by 2030, according to reports, though scrapping coal-fired electricity could be costly and ineffective according to one report.

Hydropower leads the way in Canada, with nearly 500 generating plant producing an average of 355 TWh per year, according to the Canadian Hydropower Association. Nuclear plants such as Ontario Power Generation’s Darlington station and Bruce Power also contribute massive-scale and carbon-free electricity capacity, as debates over Ontario's renewable future continue.

Observers note that clean, affordable electricity in Ontario should be a prominent election issue this year.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified