Stalled spending on electrical grids slows rollout of renewable energy


wind power

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

IEA Grid Expansion Warning highlights stalled investment in power lines and transmission infrastructure, risking renewable energy rollout for solar, wind, EVs, and heat pumps, and jeopardizing climate targets under the Paris Agreement amid connection bottlenecks.

 

Key Points

IEA alert urging grid investment to expand transmission, connect renewables, and keep 1.5 C climate goals on track.

✅ 80 million km of lines needed by 2040, per IEA

✅ Investment must double to $600B annually by 2030

✅ Permitting delays stall major cross-border projects

 

Stalled spending on electrical grids worldwide is slowing the rollout of renewable energy and could put efforts to limit climate change at risk if millions of miles of power lines are not added or refurbished in the next few years, the International Energy Agency said.

The Paris-based organization said in the report Tuesday that the capacity to connect to and transmit electricity is not keeping pace with the rapid growth of clean energy technologies such as solar and wind power, electric cars and heat pumps being deployed to move away from fossil fuels, a gap reflected in why the U.S. grid isn't 100% renewable today.

IEA Executive Director Fatih Birol told The Associated Press in an interview that there is a long line of renewable projects waiting for the green light to connect to the grid, including UK renewable backlog worth billions. The stalled projects could generate 1,500 gigawatts of power, or five times the amount of solar and wind capacity that was added worldwide last year, he said.

“It’s like you are manufacturing a very efficient, very speedy, very handsome car — but you forget to build the roads for it,” Birol said.

If spending on grids stayed at current levels, the chance of holding the global increase in average temperature to 1.5 degrees Celsius above pre-industrial levels — the goal set by the 2015 Paris climate accords — “is going to be diminished substantially,” he said.

The IEA assessment of electricity grids around the globe found that achieving the climate goals set by the world’s governments would require adding or refurbishing 80 million kilometers (50 million miles) of power lines by 2040 — an amount equal to the existing global grid in less than two decades.

Annual investment has been stagnant but needs to double to more than $600 billion a year by 2030, the agency said, with U.S. grid overhaul efforts aiming to accelerate upgrades.

It’s not uncommon for a single high-voltage overhead power line to take five to 13 years to get approved through bureaucracy in advanced economies, while lead times are significantly shorter in China and India, according to the IEA, though a new federal rule seeks to boost transmission planning.

The report cited the South Link transmission project to carry wind power from northern to southern Germany. First planned in 2014, it was delayed after political opposition to an overhead line meant it was buried instead, while more pylons in Scotland are being urged to keep the lights on, industry says. Completion is expected in 2028 instead of 2022.

Other important projects that have been held up: the 400-kilometer (250-mile) Bay of Biscay connector between Spain and France, now expected for 2028 instead of 2025, and the SunZia high-voltage line to bring wind power from New Mexico to Arizona and California, while Pacific Northwest goals are hindered by grid limits. Construction started only last month after years of delays.

On the East Coast, the Avangrid line to bring hydropower from Canada to New England was interrupted in 2021 following a referendum in Maine, as New England's solar growth is also creating tension over who pays for grid upgrades. A court overturned the statewide vote rejecting the project in April.

 

Related News

Related News

Manitoba has clean energy to help neighboring provinces

East-West Power Transmission Grid links provinces via hydroelectric interconnects, clean energy exports, and reliable grid infrastructure, requiring federal funding, multibillion-dollar transmission lines, and coordinated planning across Manitoba, Saskatchewan, Ontario, and Newfoundland.

 

Key Points

A proposed interprovincial grid to share hydro power, improve reliability, and cut emissions with federal funding.

✅ Hydroelectric exports from Manitoba to prairie and eastern provinces

✅ New interconnects and transmission lines require federal funding

✅ Enhances grid reliability and supports coal phase-out

 

Manitoba's energy minister is recharging the idea of building an east-west power transmission grid and says the federal government needs to help.

Cliff Cullen told the Energy Council of Canada's western conference on Tuesday that Manitoba has "a really clean resource that we're ready to share with our neighbours" as new hydro generation projects, including new turbines come online.

"This is a really important time to have that discussion about the reliability of energy and how we can work together to make that happen," said Cullen, minister of growth, enterprise and trade.

"And, clearly, an important component of that is the transmission side of it. We've been focused on transmission ... north and south, and we haven't had that dialogue about east-west."

Most hydro-producing provinces currently focus on exports to the United States, though transmission constraints can limit incremental deliveries.

Saskatchewan Energy Minister Dustin Duncan said his province, which relies heavily on coal-fired electricity plants, could be interested in getting electricity from Manitoba, even as a Manitoba Hydro warning highlights limits on serving new energy-intensive customers.

"They're big projects. They're multibillion-dollar projects," Duncan said after speaking on a panel with Cullen and Alberta Energy Minister Margaret McCuaig-Boyd.

"Even trying to do the interconnects to the transmission grid, I don't think they're as easy or as maybe low cost as we would just imagine, just hooking up some power lines across the border. It takes much more work than that."

Cullen said there's a lot of work to do on building east-west transmission lines if provinces are going to buy and sell electricity from each other. He suggested that money is a key factor.

"Each province has done their own thing in terms of transmission within their jurisdiction and we have to have that dialogue about how that interconnectivity is going to work. And these things don't happen overnight," he said.

"Hopefully the federal government will be at the table to have a look at that, because it's a fundamental expense, a capital expense, to connect our provinces."

The 2016 federal budget said significant investment in Canada's electricity sector will be needed over the next 20 years to replace aging infrastructure and meet growing demand for electricity, with Manitoba's demand potentially doubling over that period.

The budget allocated $2.5 million over two years to Natural Resources Canada for regional talks and studies to identify the most promising electricity infrastructure projects.

In April, the government told The Canadian Press that Natural Resources Canada has been talking with ministry representatives and electric utilities in the western and Atlantic provinces.

The idea of developing an east-west transmission grid has long been talked about as a way to bring energy reliability to Canadians.

At their annual meeting in 2007, Canada's premiers supported development and enhancement of transmission facilities across the country, although the premiers fell short of a firm commitment to an east-west energy grid.

Manitoba, Ontario and Newfoundland and Labrador are the most vocal proponents of east-west transmission, even as Quebec's electricity ambitions have reopened old wounds in Newfoundland and Labrador.

Manitoba and Newfoundland want the grid because of the potential to develop additional exports of hydro power, while Ontario sees the grid as an answer to its growing power needs.

 

Related News

View more

EV charging to solar panels: How connected tech is changing the homes we live in

Connected Home Energy Technologies integrate solar panels, smart meters, EV charging, battery storage, and IoT energy management to cut costs, optimize demand response, and monitor usage in real time for safer, lower-carbon homes.

 

Key Points

Devices and systems managing home energy: solar PV, smart meters, EV chargers, and storage to cut costs and emissions.

✅ Real-time visibility via apps, smart meters, and IoT sensors

✅ Integrates solar PV, batteries, and EV charging with the grid

✅ Enables demand response, lower bills, and lower carbon

 

Driven by advances in tech and the advent of high-speed internet connections, many of us now have easy access to a raft of information about the buildings we live in.

Thanks to the proliferation of hardware and software within the home, this trend shows no sign of letting up and comes in many different forms, from indoor air quality monitors to “smart” doorbells which provide us with visual, real-time notifications when someone is attempting to access our property.

Residential renewable electricity generation is also starting to gain traction, with a growing number of people installing solar panels in the hope of reducing bills and their environmental footprint.

In the U.S. alone, the residential solar market installed 738 megawatts of capacity in the third quarter of 2020, a 14% jump compared to the second quarter, according to a recent report from the Solar Energy Industries Association and Wood Mackenzie.

Earlier this month, California-headquartered SunPower — which specializes in the design, production and delivery of solar panels and systems — announced it was rolling out an app which will enable homeowners to assess and manage their energy generation, usage and battery storage settings with their mobile, as California looks to EVs for grid stability amid broader electrification.

The service will be available to customers using its SunPower Eqiunox system and represents yet another instance of how connected technologies can provide us with valuable information about how buildings operate.

Similar offerings in this increasingly crowded marketplace include so-called “smart” meters, which allow consumers to see how much energy they are using and money they are spending in real time.

Elsewhere products such as Hive, from Centrica, enable users to install a range of connected kit — from plugs and lighting to thermostats and indoor cameras — that can be controlled via an app on their cellphone and, in some cases, their voice. 

Connected car charging
Solar panels represent one way that sustainable tech can be integrated into homes. Other examples include the installation of charging points for electric vehicles, as EV growth challenges state grids in many markets.

With governments around the world looking to phase-out the sale of diesel and gasoline vehicles and encourage consumers to buy electric, and Model 3's utility impact underscoring likely shifts in demand, residential charging systems could become an integral part of the built environment in the years ahead.

Firms offering home-based, connected, charging include Pod Point and BP Pulse. Both of these services include apps which provide data such as how much energy has been used, the cost of charging and charge history.  

Another firm, Wallbox, recently announced it was launching its first electric vehicle charger for North American homes.

The company, which is based in Spain, said the system was compatible with all types of electric vehicles, would allow customers to schedule charges, and could be voice-controlled through Google Assistant and Amazon Alexa, while mobile energy storage promises added flexibility for strained grids.

Away from the private sector, governments are also making efforts to encourage the development of home charging infrastructure.

Over the weekend, U.K. authorities said the Electric Vehicle Homecharge Scheme — which gives drivers as much as £350 (around $487) toward a charging system — would be extended and expanded, targeting those who live in leasehold and rented properties, even as UK grid capacity for EVs remains under scrutiny.

Mike Hawes, chief executive of the Society of Motor Manufacturers and Traders, described the government’s announcement as “welcome and a step in the right direction.”

“As we race towards the phase out of sales of new petrol and diesel cars and vans by 2030, we need to accelerate the expansion of the electric vehicle charging network, and proper grid management can ensure EVs are accommodated at scale,” he added.

“An electric vehicle revolution will need the home and workplace installations this announcement will encourage, but also a massive increase in on-street public charging and rapid charge points on our strategic road network.”

Change afoot, but challenges ahead
As attempts to decarbonize buildings and society ramp up, the way our homes look and function could be on the cusp of quite a big shift.

“Grid-connected home generation technologies such as solar electric panels will be important in the shift to a 100% renewable electricity grid, but decarbonising the electricity supply is only one part of the transition,” Peter Tyldesley, chief executive of the Centre for Alternative Technology, told CNBC via email.

With reference to Britain, Tyldesley went on to explain how his organization envisaged “just under 10% of electricity in a future zero carbon society coming from solar PV, utilising 15-20% of … U.K. roof area.” This, he said, compared to over 75% of electricity coming from wind power. 

Heating, Tyldesley went on to state, represented “the bigger challenge.”

“To decarbonise the U.K.’s housing stock at the scale and speed needed to get to zero carbon, we’ll need to refurbish possibly a million houses every year for the next few decades to improve their insulation and airtightness and to install heat pumps or other non-fossil fuel heating,” he said.

“To do this, we urgently need a co-ordinated national programme with a commitment to multi-year government investment,” he added.

On the subject of buildings becoming increasingly connected, providing us with a huge amount of data about how they function, Tyldesley sought to highlight some of the opportunities this could create. 

“Studies of the roll out of smart metering technology have shown that consumers use less energy when they are able to monitor their consumption in real time, so this kind of technology can be a useful part of behaviour change programmes when combined with other forms of support for home efficiency improvements,” he said.

“The roll out of smart appliances can go one step further — responding to signals from the grid and, through vehicle-to-grid power, helping to shift consumption away from peak times towards periods when more renewable energy is available,” he added.

 

Related News

View more

Toronto to start trial run of 'driverless' electric vehicle shuttles

Toronto Olli 2.0 Self-Driving Shuttle connects West Rouge to Rouge Hill GO with autonomous micro-transit. Electric shuttle pilot by Local Motors and Pacific Western Transportation, funded by Transport Canada, features accessibility, TTC and Metrolinx support.

 

Key Points

An autonomous micro-transit pilot linking West Rouge to Rouge Hill GO, with accessibility and onboard staff.

✅ Last-mile link: West Rouge to Rouge Hill GO

✅ Accessible: ramp, wheelchair securement, A/V announcements

✅ Operated with attendants; funded by Transport Canada

 

The city of Toronto, which recently opened an EV education centre to support adoption, has approved the use of a small, self-driving electric shuttle vehicle that will connect its West Rouge neighbourhood to the Rouge Hill GO station, a short span of a few kilometres.

It’s called the Olli 2.0, and it’s a micro-shuttle with service provided by Local Motors, in partnership with Pacific Western Transportation, as the province makes it easier to build EV charging stations to support growing demand.

The vehicle is designed to hold only eight people, and has an accessibility ramp, a wheelchair securement system, audio and visual announcements, and other features for providing rider information, aligning with transit safety policies such as the TTC’s winter lithium-ion device restrictions across the system.

“We are continuing to move our city forward on many fronts including micro-transit as we manage the effects of COVID-19,” said Mayor John Tory. “This innovative project will provide valuable insight, while embracing innovation that could help us build a better, more sustainable and equitable transportation network.”

At the provincial level, the public EV charging network has faced delays, underscoring infrastructure challenges.


Although the vehicle is “self-driving,” it will still require two people onboard for every trip during the six- to 12-month trial; those people will be a certified operator from Pacific Western Transportation, and either a TTC ambassador from an agency introducing battery electric buses across its fleet, or a Metrolinx customer service ambassador.

Funding for the program comes from Transport Canada, as part of a ten-year pilot program to test automated vehicles on Ontario’s roads that was approved in 2016, and it complements lessons from the TTC’s largest battery-electric bus fleet as well as emerging vehicle-to-grid programs that engage EV owners.

 

Related News

View more

US Army deploys its first floating solar array

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

View more

UK firm plans to operate Vietnam mega wind power project by 2025

ThangLong Wind Project Vietnam targets $12b, 3,400 MW offshore wind in Binh Thuan, aligned with PDP8, 2025-2028 timeline, EVN grid integration, and private transmission lines to support renewable energy growth and local industry.

 

Key Points

A $12b, 3,400 MW offshore wind farm off Binh Thuan, aiming first power by 2025 and full capacity by 2028.

✅ 20-60 km offshore; 30-55 m water depth site

✅ Seeks licenses for private transmission lines, beyond EVN

✅ 50% local spend; boosts supply chain and jobs

 

U.K. energy firm Enterprize Energy, reflecting momentum in UK offshore wind, wants to begin operating its $12-billion offshore wind power project in central Vietnam by the end of 2025.
Company chairman Ian Hatton proposed the company’s ThangLong Wind Project in the central province of Binh Thuan be included in Vietnam’s 8th National Power Development Plan, which is being drafted at present, so that at least part of the project can begin operations by the end of 2025 and all of it by 2028.

Renewable energy is a priority in the development plan that the Ministry of Industry and Trade will submit to the government next month. About 37.5 percent of new energy supply in the next decade will come from renewable energy, aligning with wind leading the power mix trends globally, it envisages.

However, due to concerns of overload to the national grid, and as build-outs like North Sea wind farms show similar coordination needs, Hatton, at a Wednesday meeting with Prime Minister Nguyen Xuan Phuc and U.K. Minister of State for Trade Policy Greg Hands, proposed the government gives Enterprize Energy licenses to develop transmission lines to handle future output.

Developing transmission lines in Vietnam has been the exclusive preserve of the national utility Vietnam Electricity (EVN), and large domestic projects such as the Hoa Binh hydropower expansion have typically aligned with this framework.

The 3,400-megawatt ThangLong Wind Project is to be located between 20 and 60 kilometers off the coast of Binh Thuan, mirroring international interest where Japanese utilities in UK offshore wind have scaled similar assets, at a depth of 30-55 meters. Enterprize Energy had said wind resources in this area exceed its expectations.

The project’s construction is expected to stimulate Vietnam’s economic growth, and experiences from U.S. offshore wind competitiveness suggest improving economics, with 50 percent of construction and operational expenses made locally.

Vietnam needs $133.3 billion over the next decade for building new power plants and expanding the grid to meet the growing demand for electricity, while regional agreements like a Bangladesh power supply deal illustrate rising demand, the ministry has estimated.

 

Related News

View more

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified