Stalled spending on electrical grids slows rollout of renewable energy


wind power

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

IEA Grid Expansion Warning highlights stalled investment in power lines and transmission infrastructure, risking renewable energy rollout for solar, wind, EVs, and heat pumps, and jeopardizing climate targets under the Paris Agreement amid connection bottlenecks.

 

Key Points

IEA alert urging grid investment to expand transmission, connect renewables, and keep 1.5 C climate goals on track.

✅ 80 million km of lines needed by 2040, per IEA

✅ Investment must double to $600B annually by 2030

✅ Permitting delays stall major cross-border projects

 

Stalled spending on electrical grids worldwide is slowing the rollout of renewable energy and could put efforts to limit climate change at risk if millions of miles of power lines are not added or refurbished in the next few years, the International Energy Agency said.

The Paris-based organization said in the report Tuesday that the capacity to connect to and transmit electricity is not keeping pace with the rapid growth of clean energy technologies such as solar and wind power, electric cars and heat pumps being deployed to move away from fossil fuels, a gap reflected in why the U.S. grid isn't 100% renewable today.

IEA Executive Director Fatih Birol told The Associated Press in an interview that there is a long line of renewable projects waiting for the green light to connect to the grid, including UK renewable backlog worth billions. The stalled projects could generate 1,500 gigawatts of power, or five times the amount of solar and wind capacity that was added worldwide last year, he said.

“It’s like you are manufacturing a very efficient, very speedy, very handsome car — but you forget to build the roads for it,” Birol said.

If spending on grids stayed at current levels, the chance of holding the global increase in average temperature to 1.5 degrees Celsius above pre-industrial levels — the goal set by the 2015 Paris climate accords — “is going to be diminished substantially,” he said.

The IEA assessment of electricity grids around the globe found that achieving the climate goals set by the world’s governments would require adding or refurbishing 80 million kilometers (50 million miles) of power lines by 2040 — an amount equal to the existing global grid in less than two decades.

Annual investment has been stagnant but needs to double to more than $600 billion a year by 2030, the agency said, with U.S. grid overhaul efforts aiming to accelerate upgrades.

It’s not uncommon for a single high-voltage overhead power line to take five to 13 years to get approved through bureaucracy in advanced economies, while lead times are significantly shorter in China and India, according to the IEA, though a new federal rule seeks to boost transmission planning.

The report cited the South Link transmission project to carry wind power from northern to southern Germany. First planned in 2014, it was delayed after political opposition to an overhead line meant it was buried instead, while more pylons in Scotland are being urged to keep the lights on, industry says. Completion is expected in 2028 instead of 2022.

Other important projects that have been held up: the 400-kilometer (250-mile) Bay of Biscay connector between Spain and France, now expected for 2028 instead of 2025, and the SunZia high-voltage line to bring wind power from New Mexico to Arizona and California, while Pacific Northwest goals are hindered by grid limits. Construction started only last month after years of delays.

On the East Coast, the Avangrid line to bring hydropower from Canada to New England was interrupted in 2021 following a referendum in Maine, as New England's solar growth is also creating tension over who pays for grid upgrades. A court overturned the statewide vote rejecting the project in April.

 

Related News

Related News

Use of electric vehicles associated with fewer asthma-related ER visits on a local level, study shows

Electric Vehicle Adoption Benefits include reduced air pollution, lower greenhouse gas emissions, and improved respiratory health, as regional studies show, with equity considerations for low-income communities and policy mandates accelerating zero-emission vehicles.

 

Key Points

The environmental and health gains from wider EV uptake, including cleaner air, lower emissions, and fewer asthma cases.

✅ Regional EV growth linked to lower NO2 and PM2.5 levels

✅ Fewer asthma ER visits in higher EV-adoption areas

✅ Address adoption gap to ensure equity in low-income communities

 

In an effort to mitigate the effects of climate change, countries across the globe are involving electric vehicles in their plans to reduce greenhouse gas emissions, citing the EV climate and cost benefits highlighted by recent analyses.

A federal mandate in Canada, for instance, aims to ensure that one-fifth of all passenger cars, SUVs and trucks sold in Canada are electrically-powered by 2026, with Ottawa set to release EV sales regulations to guide industry. By 2035, if this mandate is carried out, every passenger vehicle sold in Canada will need to be electric, though some critics deem the 2035 target unrealistic based on current conditions.

But what will this shift to electric vehicles actually do for the environment, especially given that 18% of Canada's 2019 electricity came from fossil fuels which affects lifecycle emissions?

One team of researchers with the Keck School of Medicine of USC aimed to find out, conducting what it describes as one of the first studies to analyze the environmental and health impacts of electric vehicles on a regional scale. Their research linked the wider integration of zero-emission vehicles with lower levels of local air pollution and some respiratory problems, a pattern consistent with analyses showing EVs are greener across all 50 states in the U.S.

“When we think about the actions related to climate change, often it’s on a global level,” Erika Garcia, an assistant professor of population and public health at the Keck School of Medicine, said in a press release.

“But the idea that changes being made at the local level can improve the health of your own community could be a powerful message to the public and to policy makers.”

Using data that spanned from 2013 to 2019, Garcia and the team of researchers compared the registration of zero-emissions vehicles with air pollution levels and asthma-related emergency room visits in California. They found that in regions where more electric vehicles were adopted, emergency room visits dropped, along with with pollution levels.

Sandrah Eckel, an associate professor of population and public health sciences and the study’s senior author, said their findings offer hope among a reality of climate anxieties.

“We’re excited about shifting the conversation towards climate change mitigation and adaptation, and these results suggest that transitioning to [electric vehicles] is a key piece of that.”

Garcia added that the study also evaluated disadvantages faced by those living in lower-income communities, which often see higher pollution levels and related respiratory problems, underscoring that EVs are not a silver bullet in broader climate and health policy.

Researchers discovered that adoption of zero-emissions vehicles in low-resource neighbourhoods was slower compared to more affluent areas, amid ongoing debate over whether EV purchase subsidies are an effective tool for Canada.

The study attributes this disparity to what the researchers call an “adoption gap” – referring to groups of people that cannot afford newer vehicles that are electrically-powered.


According to the study, which was published in the journal Science of the Total Environment, the adoption gap “threatens the equitable distribution of possible co-benefits.”

“Should continuing research support our findings, we want to make sure that those communities that are overburdened with traffic-related air pollution are truly benefiting from this climate mitigation effort,” Garcia said in the release.

 

Related News

View more

Ontario to Reintroduce Renewable Energy Projects 5 Years After Cancellations

Ontario Renewable Energy Procurement 2024 will see the IESO secure wind, solar, and hydro power to meet rising electricity demand, support transit electrification, bolster grid reliability, and serve manufacturing growth across the province.

 

Key Points

A provincial IESO initiative to add 2,000 MW of clean power and plan 3,000 MW more to meet rising demand.

✅ IESO to procure 2,000 MW from wind, solar, hydro

✅ Exploring 3,000 MW via upgrades and expansions

✅ Demand growth ~2% yearly; electrification and industry

 

After the Ford government terminated renewable energy contracts five years ago, despite warnings about wind project cancellation costs that year, Ontario's electricity operator, the Independent Electricity System Operator (IESO), is now planning to once again incorporate wind and solar initiatives to address the province's increasing power demands.

The IESO, responsible for managing the provincial power supply, is set to secure 2,000 megawatts of electricity from clean sources, which include wind, solar, and hydro power, as wind power competitiveness increases across Canada. Additionally, the IESO is exploring the possibilities of reacquiring, upgrading, or expanding existing facilities to generate an additional 3,000 MW of electricity in the future.

These new power procurement efforts in Ontario aim to meet the rising energy demand driven by transit electrification and large-scale manufacturing projects, even as national renewable growth projections were scaled back after Ontario scrapped its clean energy program, which are expected to exert greater pressure on the provincial grid.

The IESO projects a consistent growth in demand of approximately two percent per year over the next two decades. This growth has prompted the Ford government, amid debate over Ontario's electricity future in the province, to take proactive measures to prevent potential blackouts or disruptions for both residential and commercial consumers.

This renewed commitment to renewable energy represents a significant policy shift for Premier Doug Ford, reflecting his new stance on wind power over time, who had previously voiced strong opposition to wind turbines and pledged to dismantle all windmills in the province. In 2018, shortly after taking office, the government terminated 750 renewable energy contracts that had been signed by the previous Liberal government, incurring fees of $230 million for taxpayers.

At the time, the government cited reasons such as surplus electricity supply and increased costs for ratepayers as grounds for contract cancellations. Premier Ford expressed pride in the decision, echoing a proud of cancelling contracts stance, claiming that it saved taxpayers $790 million and eliminated what he viewed as detrimental wind turbines that had negatively impacted the province's energy landscape for 15 years.

The Ontario government's new wind and solar energy procurement initiatives are scheduled to commence in 2024, following a court ruling on a Cornwall wind farm that spotlighted cancellation decisions.

 

Related News

View more

America's Largest Energy Customers Set a Bold New Ambition to Achieve a 90% Carbon-free U.S. Electricity System by 2030 and Accelerate Clean Energy Globally

Clean Energy Buyers Alliance 2030 Goal targets a 90% carbon-free U.S. grid, accelerating power-sector decarbonization via corporate renewable energy procurement, market and policy reforms, and customer demand to enable net-zero electrification across industries.

 

Key Points

The Alliance's plan to reach a 90% carbon-free U.S. electricity system by 2030 via customer-driven markets and policy.

✅ Corporate buyers scale renewable PPAs and aggregation

✅ Market and policy reforms unlock clean power access

✅ Goal aligns with net-zero and widespread electrification

 

The Clean Energy Buyers Association (CEBA) and the Clean Energy Buyers Institute (CEBI), which together make up the Clean Energy Buyers Alliance, have announced a profound new aspiration for impact: a 90% carbon-free U.S. electricity system by 2030 and a global community of energy customers driving the global energy transition forward.

Alongside the two organizations’ bold new vision of the future – customer-driven clean energy for all – the Alliance will super-charge the work of its predecessor organizations, the Renewable Energy Buyers Alliance (REBA) and the REBA Institute, which represent the most iconic global companies with more than $6 trillion dollars in annual revenues and 14 million employees.

“This is the decisive decade for climate action and especially for decarbonization of the power sector,” said Miranda Ballentine, CEO of CEBA and CEBI. “To achieve a net-zero economy worldwide by 2050, the United States must lead. And the power sector must accelerate toward a 2030 timeline as electrification of other industries will be driving up power use.”

In the U.S. alone, more than 60% of electricity is consumed by the commercial and industrial sectors. Institutional energy customers have accelerated the deployment of clean energy solutions over the last 10 years to achieve increasingly ambitious greenhouse gas reduction targets, even as a federal coal plan remains under debate, and further cement the critical role of customers in decarbonizing the energy system. The Clean Energy Buyers Association Deal Tracker shows that 7.9 GW of new corporate renewable energy project announcements in the first three quarters of this year are equivalent to 40% of all new carbon free energy capacity added in the U.S. so far in 2021.

“With our new vision of customer-driven clean energy for all, we are also unveiling new organization brands,” Ballentine continued. “I’m excited to announce that REBA will become CEBA—the Clean Energy Buyers Association—and will focus on activating our community of energy customers and partners to deploy market and policy solutions for a carbon-free energy system. The REBA Institute will become the Clean Energy Buyers Institute (CEBI) and will focus on solving the toughest market and policy barriers to achieving a carbon-free energy system in collaboration with policymakers, leading philanthropies, and energy market stakeholders. Together, CEBA and CEBI will make up the new Clean Energy Buyers Alliance.”

To decarbonize the U.S. electricity system 90% by 2030, a goal aligned with California's 100% carbon-free mandate efforts, and to activate a community of customers driving clean energy around the world, the Clean Energy Buyers Alliance will drive three critical transformations to:

Unlock markets so that energy customers can use their buying power and market-influence, building on a historic U.S. climate deal this year, to accelerate electricity decarbonization.

Catalyze communities of energy customers to actively choose clean energy through Mission Innovation collaborations and to do more together than they could on their own.

Decarbonize the grid for all, since not every energy customer can or will use their buying power to choose clean energy.

“The Clean Energy Buyers Alliance is setting the bar for what energy buyers, utilities and governments should and need to be doing to achieve a carbon-free energy future,” said Michael Terrell, CEBA board chair and Director of Energy at Google. “This ambitious approach is a critical step in tackling climate change. The time for meaningful climate action is now and we must collectively be bolder and more ambitious in our actions in both the public and private sectors – starting today.”

This new vision of customer-driven clean energy for all is an unprecedented opportunity for every member of the Clean Energy Buyers Alliance community – from energy customers to providers to manufacturers – to all parties up and down the energy supply chain to lead the evolution of a new energy economy, which will require incentives to double investment in clean energy to rise to $4 trillion by 2030.

 

Related News

View more

Sales Of Electric Cars Top 20% In California, Led By Tesla

California EV Sales 2023 show rising BEV market share, strong Tesla Model Y and Model 3 demand, hybrid growth, and ICE decline, per CNCDA Q3 data, underscoring California auto trends and ZEV policy momentum.

 

Key Points

BEVs hit 21.5% YTD in 2023 (22.3% in Q3); 35.4% with hybrids, as ICE share fell and Tesla led the California market.

✅ BEVs 21.5% YTD; 22.3% in Q3 per CNCDA data

✅ Tesla Model Y, Model 3 dominate; 62.9% BEV share

✅ ICE share down to 64.6%; hybrids lift to 35.4% YTD

 

The California New Car Dealers Association (CNCDA) reported on November 1, 2023, that sales of battery electric cars accounted for 21.5% of new car sales in the Golden State during the first 9 months of the year and 22.3% in the third quarter. At the end of Q3 in 2022, sales of electric cars stood at 16.4%. In 2021, that number was 9.1%. So, despite all the weeping and wailing and gnashing of teeth lately about green new car wreck warnings in some coverage, the news is pretty good, at least in California.

When hybrid and hydrogen fuel cell vehicles are included in the calculations, the figure jumps up 35.4% for all vehicles sold year to date in California. Not surprisingly this means EVs still trail gas cars in the state, with the CNCDA reporting ICE market share (including gasoline and diesel vehicles) was 64.6% so far this year, down from 71.6% in 2022 and 88.4% in 2018.

California is known as the vanguard for automotive trends in the country, with shifts in preferences and government policy eventually spreading to the rest of the country. While the state’s share of electric cars exceeds one fifth of all vehicles sold year to date, the figure for the US as a whole stands at 7.4%, with EV sales momentum into 2024 continuing nationwide. California has banned the sale of gas-powered vehicles starting in 2035, and its push toward electrification will require a much bigger grid to support charging, although the steady increase in the sale of electric cars suggests that ban may never need to be implemented as people embrace the EV revolution.

Not surprisingly, when digging deeper into the sales data, the Tesla Model Y and Model 3 dominate sales in the state’s electric car market this year, at 103,398 and 66,698 respectively. Tesla’s overall market share of battery electric car sales is at 62.9%. In fact, the Tesla Model Y is the top selling vehicle overall in California, followed by the Model 3, the Toyota RAV4 (40,622), and the Toyota Camry (39,293).

While that is good news for Tesla, its overall market share has slipped from 71.8% year to date last year at this time. Competing models from brands like Chevrolet, BMW, Mercedes, Hyundai, Volkswagen, and Kia have been slowly eating into Tesla’s market share. Overall, in California, Toyota is the sales king with 15% of sales, even as the state leads in EV charging deployment statewide, followed by Tesla at 13.5%. In the second quarter, Tesla narrowly edged out Toyota for top sales in the state before sales swung back in Toyota’s favor in the third quarter.

That being said, Tesla’s sales in the state climbed by 38.5% year to date, while Toyota’s actually shrank by 0.7%. Time will tell if Tesla’s popularity with the state’s car buyers improves and it can overtake Toyota for the 2023 crown, even as U.S. EV market share dipped in early 2024, or if other EV makers can offer better products at better prices and lure California customers who want to purchase electric cars away from the Tesla brand. Certainly, no company can expect to have two thirds of the market to itself forever.

 

Related News

View more

Low-emissions sources are set to cover almost all the growth in global electricity demand in the next three years

IEA Electricity Market Outlook 2023-2025 projects faster demand growth as renewables and nuclear dominate supply, stabilizing power-sector carbon emissions, with Asia leading expansion despite energy crisis shocks and weather-driven volatility.

 

Key Points

IEA forecast for 2023-2025 electricity demand: renewables and nuclear meet growth as power-sector emissions hold steady.

✅ Asia drives >70% of demand growth

✅ Renewables and nuclear meet most new supply

✅ CO2 intensity declines; grid flexibility vital

 

The world’s electricity demand growth slowed only slightly in 2022, despite headwinds from the energy crisis, and is expected to accelerate in the years ahead

Renewables are set to dominate the growth of the world’s electricity supply over the next three years as, renewables eclipse coal in global generation, together with nuclear power they meet the vast majority of the increase in global demand through to 2025, making significant rises in the power sector’s carbon emissions unlikely, according to a new IEA report.

After slowing slightly last year to 2% amid the turmoil of the global energy crisis and exceptional weather conditions in some regions, the growth in world electricity demand is expected to accelerate to an average of 3% over the next three years, the IEA’s Electricity Market Report 2023 finds. Emerging and developing economies in Asia are the driving forces behind this faster pace, which is a step up from average growth of 2.4% during the years before the pandemic and above pre-pandemic levels globally.

More than 70% of the increase in global electricity demand over the next three years is expected to come from China, India and Southeast Asia, as Asia’s power use nears half of the world by mid-decade, although considerable uncertainties remain over trends in China as its economy emerges from strict Covid restrictions. China’s share of global electricity consumption is currently forecast to rise to a new record of one-third by 2025, up from one-quarter in 2015. At the same time, advanced economies are seeking to expand electricity use to displace fossil fuels in sectors such as transport, heating and industry.

“The world’s growing demand for electricity is set to accelerate, adding more than double Japan’s current electricity consumption over the next three years,” said IEA Executive Director Fatih Birol. “The good news is that renewables and nuclear power are growing quickly enough to meet almost all this additional appetite, suggesting we are close to a tipping point for power sector emissions. Governments now need to enable low-emissions sources to grow even faster and drive down emissions so that the world can ensure secure electricity supplies while reaching climate goals.”

While natural gas-fired power generation in the European Union is forecast to fall in the coming years, as wind and solar outpaced gas in 2022, based on current trends, significant growth in the Middle East is set to partly offset this decrease. Sharp spikes in natural gas prices amid the energy crisis have in turn fuelled soaring electricity prices in some markets, particularly in Europe, prompting debate in policy circles over reforms to power market design.

Meanwhile, expected declines in coal-fired generation in Europe and the Americas are likely to be matched by a rise in the Asia-Pacific region, despite increases in nuclear power deployment and restarts of plants in some countries such as Japan. This means that after reaching an all-time high in 2022, carbon dioxide (CO2) emissions from global power generation are set to remain around the same level through 2025.

The strong growth of renewables means their share of the global power generation mix is forecast to rise from 29% in 2022 to 35% in 2025, with the shares of coal- and gas-fired generation falling. As a result, the CO2 intensity of global power generation will continue to decrease in the coming years. Europe bucked this global trend last year, however. The CO2 intensity of Europe’s power generation increased as a result of higher use of coal and gas amid steep drops in output from both hydropower, due to drought, and nuclear power, due to plant closures and maintenance. This setback will be temporary, though, as Europe’s power generation emissions are expected to decrease on average by about 10% a year through 2025.

Electricity demand trends varied widely by region in 2022. India’s electricity consumption rose strongly, while China’s growth was more subdued due to its zero-Covid policy weighing heavily on economic activity. The United States recorded a robust increase in demand, driven by economic activity and higher residential use amid hotter summer weather and a colder-than-normal winter, even as electricity sales projections continue to decline according to some outlooks.

Demand in the European Union contracted due to unusually mild winter weather and a decline in electricity consumption in the industrial sector, which significantly scaled back production because of high energy prices and supply disruptions caused by Russia’s invasion of Ukraine. The 3.5% decrease in EU demand was its second largest percentage decline since the global financial crisis in 2009, with the largest being the exceptional contraction due to the COVID-19 shock in 2020.

The new IEA report notes that electricity demand and supply worldwide are becoming increasingly weather dependent, with extreme conditions a recurring theme in 2022. In addition to the drought in Europe, there were heatwaves in India, resulting in the country’s highest ever peak in power demand. Similarly, central and eastern regions of China were hit by heatwaves and drought, which caused demand for air conditioning to surge amid reduced hydropower generation in Sichuan province. The United States also saw severe winter storms in December, triggering massive power outages.

These highlight the need for faster decarbonisation and accelerated deployment of clean energy technologies, the report says. At the same time, as the clean energy transition gathers pace, the impact of weather events on electricity demand will intensify due to the increased electrification of heating, while the share of weather-dependent renewables will continue to grow in the generation mix. In such a world, increasing the flexibility of power systems, which are under growing strain across grids and markets, while ensuring security of supply and resilience of networks will be crucial.

 

Related News

View more

Feds announce $500M contract with Edmonton company for green electricity

Canada Renewable Energy Partnerships advance wind power and clean electricity in Alberta and Saskatchewan, cutting emissions and supporting net-zero goals through Capital Power and SaskPower agreements with Indigenous participation and 25-year supply contracts.

 

Key Points

Government-backed deals with Capital Power and SaskPower to deliver clean electricity and reduce emissions.

✅ 25-year renewable supply for federal facilities

✅ New Halkirk 2 Wind project in Alberta

✅ Emissions cuts with Indigenous participation

 

The Government of Canada has partnered with two major energy providers in Western Canada (Prairie provinces) on renewable energy projects.

Tourism Minister Randy Boissonnault appeared in Edmonton on Friday to announce a new Alberta wind-generation facility in partnership with Capital Power.

It's one of two new energy partnerships in Western Canada as part of the 2030 emissions reduction plan by Public Services and Procurement Canada.

On Jan. 1, the federal government awarded a contract worth up to $500 million to Capital Power to provide all federal facilities in Alberta with renewable electricity as part of Alberta's renewable energy surge for 25 years.

"We're proud to partner with the government of Canada to help them reach their 100 per cent clean electricity by 2025 goal," said Jason Comandante, Capital Power vice president of commercial services.

The agreement also includes opportunities for Indigenous participation, including facility development partnerships and employment and training opportunities.

"At Capital Power, we are committed to net-zero by 2045, and are proud to take action against climate change. Collaborative agreements like this help support our net-zero goals, provide us opportunities to meaningfully engage Indigenous communities, and help decarbonize Alberta's power grid," Comandante said.

Capital Power will provide around 250,000 megawatt-hours of electricity each year through existing renewable energy credits while the new Capital Power Halkirk 2 Wind facility is being developed.

Located near Paintearth, Alta., the proposed wind farm will have up to 35 turbines and generate enough power for the average yearly electricity needs of more than 70,000 Alberta homes.

The project is currently awaiting regulatory approval, within Alberta's energy landscape, with construction projected to begin this summer. When complete, it will supply 49 per cent of its output to the federal government.

"Through the agreement, the federal government is supporting the ongoing development of renewable energy infrastructure development within the province," Boissonnault said.

The new partnership will join another in Saskatchewan and complement Alberta solar facilities that have been contracted at lower cost than natural gas.

In 2022, the federal government signed an agreement with SaskPower to supply clean electricity to the approximately 600 federal facilities in Saskatchewan. That wind project is expected to come online by 2024.

Boissonnault said the two initiatives combined will reduce carbon dioxide emissions in Alberta and Saskatchewan by about 166 kilotonnes.

"That is the equivalent of the emissions from more than 50,000 cars driven for one year. So, if you think about that, that's a great reduction right here in Alberta and Saskatchewan," he said.

"These are concrete steps to ensuring that Canada remains a leader of renewable energy on the global stage and grid modernization projects to help the fight against climate change." 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified