Stalled spending on electrical grids slows rollout of renewable energy


wind power

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

IEA Grid Expansion Warning highlights stalled investment in power lines and transmission infrastructure, risking renewable energy rollout for solar, wind, EVs, and heat pumps, and jeopardizing climate targets under the Paris Agreement amid connection bottlenecks.

 

Key Points

IEA alert urging grid investment to expand transmission, connect renewables, and keep 1.5 C climate goals on track.

✅ 80 million km of lines needed by 2040, per IEA

✅ Investment must double to $600B annually by 2030

✅ Permitting delays stall major cross-border projects

 

Stalled spending on electrical grids worldwide is slowing the rollout of renewable energy and could put efforts to limit climate change at risk if millions of miles of power lines are not added or refurbished in the next few years, the International Energy Agency said.

The Paris-based organization said in the report Tuesday that the capacity to connect to and transmit electricity is not keeping pace with the rapid growth of clean energy technologies such as solar and wind power, electric cars and heat pumps being deployed to move away from fossil fuels, a gap reflected in why the U.S. grid isn't 100% renewable today.

IEA Executive Director Fatih Birol told The Associated Press in an interview that there is a long line of renewable projects waiting for the green light to connect to the grid, including UK renewable backlog worth billions. The stalled projects could generate 1,500 gigawatts of power, or five times the amount of solar and wind capacity that was added worldwide last year, he said.

“It’s like you are manufacturing a very efficient, very speedy, very handsome car — but you forget to build the roads for it,” Birol said.

If spending on grids stayed at current levels, the chance of holding the global increase in average temperature to 1.5 degrees Celsius above pre-industrial levels — the goal set by the 2015 Paris climate accords — “is going to be diminished substantially,” he said.

The IEA assessment of electricity grids around the globe found that achieving the climate goals set by the world’s governments would require adding or refurbishing 80 million kilometers (50 million miles) of power lines by 2040 — an amount equal to the existing global grid in less than two decades.

Annual investment has been stagnant but needs to double to more than $600 billion a year by 2030, the agency said, with U.S. grid overhaul efforts aiming to accelerate upgrades.

It’s not uncommon for a single high-voltage overhead power line to take five to 13 years to get approved through bureaucracy in advanced economies, while lead times are significantly shorter in China and India, according to the IEA, though a new federal rule seeks to boost transmission planning.

The report cited the South Link transmission project to carry wind power from northern to southern Germany. First planned in 2014, it was delayed after political opposition to an overhead line meant it was buried instead, while more pylons in Scotland are being urged to keep the lights on, industry says. Completion is expected in 2028 instead of 2022.

Other important projects that have been held up: the 400-kilometer (250-mile) Bay of Biscay connector between Spain and France, now expected for 2028 instead of 2025, and the SunZia high-voltage line to bring wind power from New Mexico to Arizona and California, while Pacific Northwest goals are hindered by grid limits. Construction started only last month after years of delays.

On the East Coast, the Avangrid line to bring hydropower from Canada to New England was interrupted in 2021 following a referendum in Maine, as New England's solar growth is also creating tension over who pays for grid upgrades. A court overturned the statewide vote rejecting the project in April.

 

Related News

Related News

Invenergy and GE Renewable Energy complete largest wind project constructed in North America

North Central Energy Facilities deliver 1,484 MW of renewable power in Oklahoma, uniting Invenergy, GE Renewable Energy, and AEP with the Traverse, Maverick, and Sundance wind farms, 531 turbines, grid-scale clean energy, and regional decarbonization.

 

Key Points

A 1,484 MW trio of Oklahoma wind farms by Invenergy with GE turbines, owned by AEP to supply regional customers.

✅ 1,484 MW capacity from 531 GE 2 MW platform turbines

✅ Largest single-phase wind farm: 998 MW Traverse

✅ Owned by AEP subsidiaries SWEPCO and PSO

 

Invenergy, the largest privately held global developer, owner and operator of sustainable energy solutions and GE Renewable Energy, today announced commercial operations for the 998-megawatt Traverse Wind Energy Center, the largest wind farm constructed in a single phase in North America, reflecting broader growth such as Enel's 450 MW project announced recently.

Located in north central Oklahoma, Traverse joins the operational 199-megawatt Sundance Wind Energy Center and the 287-megawatt Maverick Wind Energy Center, as the last of three projects developed by Invenergy for American Electric Power (AEP) to reach commercial operation, amid investor activity like WEC Energy's Illinois stake in wind assets this year. These projects make up the North Central Energy Facilities and have 531 GE turbines with a combined capacity of 1,484 megawatts, making them collectively among the largest wind energy facilities globally, even as new capacity comes online such as TransAlta's 119 MW addition in the US.

"This is a moment that Invenergy and our valued partners at AEP, GE Renewable Energy, and the gracious members of our home communities in Oklahoma have been looking forward to," said Jim Shield, Senior Executive Vice President and Development Business Leader at Invenergy, reflecting broader momentum as projects like Building Energy project begin operations nationwide. "With the completion of Traverse and with it the North Central Energy Facilities, we're proud to further our commitment to responsible, clean energy development and to advance our mission to build a sustainable world."

The North Central Energy Facilities represent a $2 billion capital investment in north central Oklahoma, mirroring Iowa wind investments that spur growth, directly investing in the local economy through new tax revenues and lease payments to participating landowners and will generate enough electricity to power 440,000 American homes.

"GE was honored to work with Invenergy on this milestone wind project, continuing our long-standing partnership," said Steve Swift, Global Commercial Leader for GE's Onshore Wind business, a view reinforced by projects like North Carolina's first wind farm coming online. "Wind power is a key element of driving decarbonization, and a dependable and affordable energy option here in the US and around the world. GE's 2 MW platform turbines are ideally suited to bring reliable and sustainable renewable energy to the region for many years to come."

AEP's subsidiaries Southwestern Electric Power Company (SWEPCO) and Public Service Company of Oklahoma (PSO) assumed ownership of the three wind farms upon start of commercial operations, alongside emerging interstate delivery efforts like Wyoming-to-California wind plans, to serve their customers in Arkansas, Louisiana and Oklahoma.

 

Related News

View more

Canadian climate policy and its implications for electricity grids

Canada Electricity Decarbonization Costs indicate challenging greenhouse gas reductions across a fragmented grid, with wind, solar, nuclear, and natural gas tradeoffs, significant GDP impacts, and Net Zero targets constrained by intermittency and limited interties.

 

Key Points

Costs to cut power CO2 via wind, solar, gas, and nuclear, considering grid limits, intermittency, and GDP impacts.

✅ Alberta model: eliminate coal; add wind, solar, gas; 26-40% CO2 cuts

✅ Nuclear option enables >75% cuts at higher but feasible system costs

✅ National costs 1-2% GDP; reserves, transmission, land, and waste not included

 

Along with many western developed countries, Canada has pledged to reduce its greenhouse gas emissions by 40–45 percent by 2030 from 2005 emissions levels, and to achieve net-zero emissions by 2050.

This is a huge challenge that, when considered on a global scale, will do little to stop climate change because emissions by developing countries are rising faster than emissions are being reduced in developed countries. Even so, the potential for achieving emissions reduction targets is extremely challenging as there are questions as to how and whether targets can be met and at what cost. Because electricity can be produced from any source of energy, including wind, solar, geothermal, tidal, and any combustible material, climate change policies have focused especially on nations’ electricity grids, and in Canada cleaning up electricity is viewed as critical to meeting climate pledges.

Canada’s electricity grid consists of ten separate provincial grids that are weakly connected by transmission interties to adjacent grids and, in some cases, to electricity systems in the United States. At times, these interties are helpful in addressing small imbalances between electricity supply and demand so as to prevent brownouts or even blackouts, and are a source of export revenue for provinces that have abundant hydroelectricity, such as British Columbia, Manitoba, and Quebec.

Due to generally low intertie capacities between provinces, electricity trade is generally a very small proportion of total generation, though electricity has been a national climate success in recent years. Essentially, provincial grids are stand alone, generating electricity to meet domestic demand (known as load) from the lowest cost local resources.

Because climate change policies have focused on electricity (viz., wind and solar energy, electric vehicles), and Canada will need more electricity to hit net-zero according to the IEA, this study employs information from the Alberta electricity system to provide an estimate of the possible costs of reducing national CO2 emissions related to power generation. The Alberta system serves as an excellent case study for examining the potential for eliminating fossil-fuel generation because of its large coal fleet, favourable solar irradiance, exceptional wind regimes, and potential for utilizing BC’s reservoirs for storage.

Using a model of the Alberta electricity system, we find that it is infeasible to rely solely on renewable sources of energy for 100 percent of power generation—the costs are prohibitive. Under perfect conditions, however, CO2 emissions from the Alberta grid can be reduced by 26 to 40 percent by eliminating coal and replacing it with renewable energy such as wind and solar, and gas, but by more than 75 percent if nuclear power is permitted. The associated costs are estimated to be some $1.4 billion per year to reduce emissions by at most 40 percent, or $1.9 billion annually to reduce emissions by 75 percent or more using nuclear power (an option not considered feasible at this time).

Based on cost estimates from Alberta, and Ontario’s experience with subsidies to renewable energy, and warnings that the switch from fossil fuels to electricity could cost about $1.4 trillion, the costs of relying on changes to electricity generation (essentially eliminating coal and replacing it with renewable energy sources and gas) to reduce national CO2 emissions by about 7.4 percent range from some $16.8 to $33.7 billion annually. This constitutes some 1–2 percent of Canada’s GDP.

The national estimates provided here are conservative, however. They are based on removing coal-fired power from power grids throughout Canada. We could not account for scenarios where the scale of intermittency turned out worse than indicated in our dataset—available wind and solar energy might be lower than indicated by the available data. To take this into account, a reserve market is required, but the costs of operating such a capacity market were not included in the estimates provided in this study. Also ignored are the costs associated with the value of land in other alternative uses, the need for added transmission lines, environmental and human health costs, and the life-cycle costs of using intermittent renewable sources of energy, including costs related to the disposal of hazardous wastes from solar panels and wind turbines.

 

Related News

View more

Biden's Climate Law Is Working, and Not Working

Inflation Reduction Act Clean Energy drives EV adoption and renewable power, but grid interconnection, permitting, and supply chain bottlenecks slow wind, solar, and offshore projects, risking emissions targets despite domestic manufacturing growth and tax incentives.

 

Key Points

An IRA push to scale EVs and renewables, meeting EV goals but lagging wind and solar amid grid and permitting delays.

✅ EV sales up 50%, 9.2% of 2023 new cars; growth may moderate.

✅ 32.3 GW added, below 46-79 GW/year needed for climate targets.

✅ Grid, permitting, and supply chain delays bottleneck wind and solar.

 

A year and a half following President Biden's enactment of an ambitious climate change bill, the landscape of the United States' clean energy transition, shaped by 2021 electricity lessons, presents a mix of successes and challenges. A recent study by a consortium of research organizations highlights that while electric vehicle (EV) sales have surged, aligning with the law's projections, the expansion of renewable energy sources like wind and solar has encountered significant hurdles.

The legislation, known as the Inflation Reduction Act, aimed for a dual thrust in America's climate strategy: boosting EV adoption, alongside EPA emission limits, and significantly increasing the generation of electricity from renewable resources. The Act, passed in 2022, was anticipated to propel the United States toward reducing its greenhouse gas emissions by approximately 40 percent from 2005 levels by the end of this decade, backed by extensive financial incentives for clean energy advancements.

Electric vehicle sales have indeed seen a remarkable uptick, with a more than 50 percent increase over the past year, as EV sales surge into 2024 across the market, culminating in EVs comprising 9.2 percent of all new car sales in the United States in 2023. This growth trajectory met the upper range of analysts' predictions post-law enactment, signaling a strong start toward achieving the Act's emission reduction targets.

However, the EV market faces uncertainties regarding the sustainability of this rapid growth. The initial surge in sales was largely driven by early adopters, and the market now confronts challenges such as high prices and limited charging infrastructure, while EVs still trail gas cars in overall market share. Despite these concerns, projections suggest that even a slowdown to 30-40 percent growth in EV sales for 2024 would align with the law's emission goals.

The renewable energy sector's progress is less straightforward. Despite achieving a record addition of 32.3 gigawatts of clean electricity capacity in the past year, the pace falls short of the projected 46 to 79 gigawatts needed annually to meet the United States' climate objectives. While there is potential for about 60 gigawatts of projects in the pipeline for this year, not all are expected to materialize on schedule, indicating a lag in the deployment of new renewable energy sources.

Logistical challenges are a significant barrier to scaling up renewable energy, especially as EV-driven electricity demand rises in the coming years. Lengthy grid connection processes, permitting delays, and local opposition hinder wind and solar project developments. Moreover, ambitious plans for offshore wind farms are hampered by supply chain issues and regulatory constraints.

To achieve the Inflation Reduction Act's ambitious targets, the United States needs to add 70 to 126 gigawatts of renewable capacity annually from 2025 to 2030—a formidable task given the current logistical and regulatory bottlenecks. The analysis underscores the urgency of addressing these non-cost barriers to unlock the full potential of the law's clean energy and emissions reduction ambitions.

In addition to promoting clean energy generation and EV adoption, the Inflation Reduction Act has spurred domestic manufacturing of clean energy technologies. With $44 billion invested in U.S. clean-energy manufacturing last year, this aspect of the law has seen considerable success, and permanent clean energy tax credits are being debated to sustain momentum, demonstrating the Act's capacity to drive economic and industrial transformation.

The law's impact extends to emerging clean energy technologies, offering tax incentives for advanced nuclear reactors, renewable hydrogen production, and carbon capture and storage projects. While these initiatives hold promise for further emissions reductions, their development and deployment are still in the early stages, with tangible outcomes expected in the longer term.

While the Inflation Reduction Act has catalyzed significant strides in certain areas of the United States' clean energy transition, including an EV inflection point in adoption trends, it faces substantial hurdles in fully realizing its objectives. Overcoming logistical, regulatory, and market challenges will be crucial for the nation to stay on course toward its ambitious climate goals, underscoring the need for continued innovation, investment, and policy refinement in the journey toward a sustainable energy future.

 

Related News

View more

Factory Set to Elevate the United States in the Clean Energy Race

Maxeon IBC Solar Factory USA will scale clean energy with high-efficiency interdigitated back contact panels, DOE-backed manufacturing in Albuquerque, utility-scale supply, domestic production, 3 GW capacity, reduced imports, carbon-free electricity leadership.

 

Key Points

DOE-backed Albuquerque plant making high-efficiency IBC panels, 3 GW yearly, for utility-scale, domestic solar supply.

✅ 3 GW annual capacity; up to 8 million panels produced

✅ IBC cell efficiency up to 24.7% for utility-scale projects

✅ Reduces U.S. reliance on imported panels via domestic manufacturing

 

Solar energy stands as a formidable source of carbon-free electricity, with the No. 3 renewable source in the U.S. offering a clean alternative to traditional power generation methods reliant on polluting fuels. Advancements in solar technology continue to emerge, with a U.S.-based company poised to spearhead progress from a cutting-edge factory in New Mexico.

Maxeon, initially hailing from Silicon Valley in the 1980s, recently ventured into independence after separating from its parent company, SunPower, in 2020. Over the past few years, Maxeon has been manufacturing solar panels in Mexico, Malaysia, and the Philippines, as record U.S. panel shipments underscored rising demand.

Now, with backing from the U.S. Department of Energy's Loans Programs Office, Maxeon is preparing to commence construction on a new facility in Albuquerque in 2024, amid unprecedented growth in solar and storage nationwide. This state-of-the-art factory aims to produce up to 8 million panels annually, featuring the company's interdigitated back contact (IBC) technology, which has the capacity to generate three gigawatts of power each year. Notably, the entire U.S. solar industry completed five gigawatts of panels in 2022, making Maxeon's endeavor particularly ambitious and aligned with Biden's proposed tenfold increase in solar power goals.

Maxeon's presence in the United States holds the potential to reduce the country's reliance on imported panels, particularly from China. The primary focus will be on providing this advanced technology for utility departments, where pairing with increasingly affordable batteries can enhance grid reliability while shifting away from residential and commercial rooftops.

Maxeon has achieved a remarkable milestone in solar efficiency, with its latest IBC technology boasting an efficiency rating of 24.7%, as reported by PV Magazine.

This strategic move to the United States could be a game-changer, not only for Maxeon's success but also for clean power generation in a nation that has traditionally depended on external sources for its supply of solar panels, as energy-hungry Europe turns to U.S. solar equipment makers for solutions. Matt Dawson, Maxeon's Chief Technology Officer, emphasized the importance of achieving the lowest levelized cost of electricity with the lowest overall capital, a feat that China has accomplished in recent years due to the strength of its supply chain. As energy independence becomes a global concern, solar manufacturing is poised to expand beyond China, with Southeast Asia already showing signs of growth, and now the United States and possibly Europe, including Germany's solar boost during the energy crisis, following suit.

 

Related News

View more

Hydro One Networks Inc. - Ivy, ONroute and Canadian Tire make it easy to charge your next road trip

ONroute EV Charging Stations now live on Ontario's Highways 401 and 400, powered by Ivy Charging Network with 150 kW fast chargers, Tesla-compatible ports, Canadian Tire support, and government-backed clean transportation infrastructure.

 

Key Points

ONroute EV Charging Stations are Ivy-managed 150 kW fast-charging hubs along Highways 401/400, compatible with all EVs.

✅ Up to 150 kW DC fast charging; ~100 km added in about 10 minutes

✅ Compatible with all EV models, including Tesla-compatible ports

✅ Located along Highways 401/400; 2-4 chargers per ONroute site

 

Electric vehicle (EV) drivers can now charge at 10 ONroute locations along Highways 401 and 400, reflecting progress on the province's charging network rollout to date.

Ivy Charging Network, ONroute and their partners, Canadian Tire Corporation (CTC) and the Ministry of Transportation (MTO) announced the opening of four Charge & Go EV fast-charging stations today: Ingleside, Innisfil, Tilbury North, Woodstock

Each of Ivy's Charge & Go level 3 fast-chargers at ONroute locations will support the charging of all EV models, including charging ports for Tesla drivers.

 

Quick Facts

Ivy Charging Network is installing 69 level 3 fast-chargers across all ONroute locations, with the possibility of further expansion as Ontario makes it easier to build charging stations through supportive measures.

Ivy's ONroute Charge & Go locations will offer charging speeds of up-to 150 kWs, delivering up to a 100 km charge in 10 minutes.

This partnership is part of CTC's ongoing expansion of EV charging infrastructure across Canada, as utilities like BC Hydro add more stations across southern B.C.

Ivy Charging Network is a joint venture between Hydro One and Ontario Power Generation.

Natural Resources Canada, through its Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative, invested $8-million to help build the broader Ivy Charging Network, alongside other federal funding for smart chargers supporting deployments, providing access to 160 level 3 fast-chargers across Ontario including these ONroute locations.

'Our partnership with ONroute, Canadian Tire and the Ontario Ministry of Transportation will end range anxiety for EV drivers travelling on the province's major highways. These new fast-charging locations will give drivers the confidence they need on their road trips, to get them where they need to go this summer,' said Michael Kitchen, General Manager, Ivy Charging Network.

'ONroute is proud to now offer EV charging stations to our customers, in partnership with Ivy and Canadian Tire. We are focused on supporting the growth of electric cars and offering this convenience for our customers as we strive to be the recharge destination for all travelers across Ontario,' said Melanie Teed-Murch, Chief Executive Officer of ONroute.

'Together with our partners, CTC is proud to announce the opening of EV fast-charging stations at four additional ONroute locations along the 400-series highways. Our network of EV charging stations is just one of the ways CTC is supporting EV drivers of today and tomorrow to make life in Canada better, with growth similar to NB Power's public charging network underway,' said Micheline Davies, SVP, Automotive, Canadian Tire Corporation. 'We will have approximately 140 sites across the country by the end of the year, making CTC one of the largest retail networks of EV fast charging stations in Canada.'

'We're giving Canadians cleaner transportation options to get to where they need to go by making zero-emission charging and alternative-fuels refueling infrastructure more accessible, as seen with new fast-charging stations in N.B. announced recently. Investments like the ones announced today in Ontario will put Canadians in the driver's seat on the road to a net-zero future and help achieve our climate goals,' said the Honourable Jonathan Wilkinson, Minister of Natural Resources.

'Ontario is putting shovels in the ground to build critical infrastructure that will boost EV ownership, support Ontario's growing EV manufacturing industry and reduce emissions, complementing progress such as the first fast-charging network in N.L. now in place,' said Todd Smith, Minister of Energy. 'With EV fast chargers now available at ten ONroute stations along our province's business highways it's even more convenient than ever for workers and families to grab a coffee or a meal while charging their car.'

 

Related News

View more

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified