Samsung SDI Unveils 600km-traveling Battery Cell for EVs


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Samsung SDI High-Energy Density EV Battery delivers 600km range and 80% fast charging in 20 minutes, plus an integrated battery module for higher kWh, improved safety, lighter design, and manufacturing efficiency for electric vehicles.

 

Key Points

A next-gen EV battery cell and module delivering 600km range, 20-minute 80% fast charging, safety, efficiency.

✅ Up to 600km range; 80% charge in 20 minutes

✅ Integrated module: 6-8kWh, >24 cells, fewer parts

✅ Enhanced safety via advanced electro-mechanical design

 

Samsung SDI is still trying to win trust from global customers. At this year’s North American International Auto Show (NAIAS) held in Detroit, Samsung SDI presented a high energy density battery cell and a concept battery module for electric vehicles (EVs), aligning with broader industry roadmaps such as Daimler's electrification plan underway.

The high energy density battery cell allows EVs using it to travel up to 600km, while the fast charging technology, exemplified by ABB's Terra 360 ultra-fast charger, allows 80% of the capacity to be charged in simply 20 minutes for traveling 500km. This means that only 20min in the highway rest area will be enough for a battery to be charged, eliminating the range anxiety of EV drivers.

Samsung SDI scheduled to start mass production of this new battery cell in 2021, echoing predictions like Musk's three-year timeline for cheaper, more powerful EV batteries.

In addition to the battery cell, Samsung SDI released a concept “integrated battery module” at the tradeshow as well. A conventional EV battery module which consists of 12 cells has a capacity of 2~3kWh, while the “integrated battery module” has more than 24 cells with a higher capacity of 6~8kWh, which makes it an adequate module in the full-fledged high-capacity EV era.

The integrated battery module shows a higher safety level because the advanced electro-mechanical design has been applied. This concept is expected to be a boon in the electro mobility, as it will be lighter with fewer components and supports trends in grid flexibility driven by rising EV adoption.

“The high-energy density battery cell with the fast charging capability and the integrated battery module are the innovative technologies with full potentials that can transform the market,” said an official from Samsung SDI. “Expectations are high that we will be able to accelerate the vehicle electrification across an industry where GM and Ford battery strategies are diverging to meet demand, utilizing these technologies with improved driving range, manufacturing efficiency and user convenience.”

 

Related News

Related News

Deepwater Wind Eyeing Massachusetts’ South Coast for Major Offshore Wind Construction Activity

Revolution Wind Massachusetts will assemble turbine foundations in New Bedford, Fall River, or Somerset, building a local offshore wind supply chain, creating regional jobs, and leveraging pumped storage and an offshore transmission backbone.

 

Key Points

An offshore wind project assembling MA foundations, building a local supply chain, jobs, and peak clean power.

✅ 400 MW offshore wind; local fabrication of 1,500-ton foundations

✅ 300+ direct jobs, 600 indirect; MA crew vessel builds and operations

✅ Expandable offshore transmission; pumped storage for peak power

 

Deepwater Wind will assemble the wind turbine foundations for its Revolution Wind in Massachusetts, and it has identified three South Coast cities – New Bedford, Fall River and Somerset – as possible locations for this major fabrication activity, the company is announcing today.

Deepwater Wind is committed to building a local workforce and supply chain for its 400-megawatt Revolution Wind project, now under review by state and utility officials as Massachusetts advances projects like Vineyard Wind statewide.

“No company is more committed to building a local offshore wind workforce than us,” said Deepwater Wind CEO Jeffrey Grybowski. “We launched America’s offshore wind industry right here in our backyard. We know how to build offshore wind in the U.S. in the right way, and our smart approach will be the most affordable solution for the Commonwealth. This is about building a real industry that lasts.”

#google#

The construction activity will involve welding, assembly, painting, commissioning and related work for the 1,500-ton steel foundations supporting the turbine towers. This foundation-related work will create more than 300 direct jobs for local construction workers during Revolution Wind’s construction period. An additional 600 indirect and induced jobs will support this effort.

In addition, Deepwater Wind is now actively seeking proposals from Massachusetts boat builders for the construction of purpose-built crew vessels for Revolution Wind. Several dozen workers are expected to build the first of these vessels at a local boat-building facility, and another dozen workers will operate this specialty vessel over the life of Revolution Wind. (Deepwater Wind commissioned America’s only offshore wind crew vessel – Atlantic Wind Transfer’s Atlantic Pioneer – to serve the Block Island Wind Farm.)

The company will issue a formal Request for Information to local suppliers in the coming weeks. Deepwater Wind’s additional wind farms serving Massachusetts will require the construction of additional vessels, as will growth along Long Island’s South Shore in the coming years.

These commitments are in addition to Deepwater Wind’s previously-announced plans to use the New Bedford Marine Commerce Terminal for significant construction and staging operations, and to pay $500,000 per year to the New Bedford Port Authority to use the facility. During construction, the turbine marshaling activity in New Bedford is expected to support approximately 700 direct regional construction jobs.

“Deepwater Wind is building a sustainable industry on the South Coast of Massachusetts,” said Matthew Morrissey, Deepwater Wind Vice President Massachusetts. “With Revolution Wind, we are demonstrating that we can build the industry in Massachusetts while enhancing competition and keeping costs low.”

The Revolution Wind project will be built in Deepwater Wind’s federal lease site, under the BOEM lease process, southwest of Martha’s Vineyard. If approved, local construction work on Revolution Wind would begin in 2020, with the project in operations in 2023. Survey work is already underway at Deepwater Wind’s offshore lease area.

Revolution Wind will deliver “baseload” power, allowing a utility-scale renewable energy project for the first time to replace the retiring fossil fuel-fired power plants closing across the region, a transition echoed by Vineyard Wind’s first power milestones elsewhere.

Revolution Wind will be capable of delivering clean energy to Massachusetts utilities when it’s needed most, during peak hours of demand on the regional electric grid. A partnership with FirstLight Power, using its Northfield Mountain hydroelectric pumped storage in Northfield, Massachusetts, makes this peak power offering possible. This is the largest pairing of hydroelectric pumped storage and offshore wind in the world.

The Revolution Wind offshore wind farm will also be paired with a first-of-its-kind offshore transmission backbone. Deepwater Wind is partnering with National Grid Ventures on an expandable offshore transmission network that supports not just Revolution Wind, but also future offshore wind farms, as New York’s biggest offshore wind farm moves forward across the region, even if they’re built by our competitors.

This cooperation is in the best interest of Massachusetts electric customers because it will reduce the amount of electrical infrastructure needed to support the state’s 1,600 MW offshore wind goal. Instead of each subsequent developer building its own standalone cable network, other offshore wind companies could use expandable infrastructure already installed for Revolution Wind, reducing project costs and saving ratepayers money.

 

 

Related News

View more

Premier warns NDP, Greens that delaying Site C dam could cost $600M

Site C Project Delay raises BC Hydro costs as Christy Clark warns $600 million impact; NDP and Greens seek BCUC review of the hydroelectric dam on the Peace River, challenging evictions and construction contracts.

 

Key Points

A potential slowdown of B.C.'s Site C dam, risking $600M overruns, evictions, and schedule delays pending a BCUC review.

✅ Clark warns $600M cost if river diversion slips a year

✅ NDP-Green seek BCUC review; request to pause contracts, evictions

✅ Peace River hydro dam; schedule critical to budget, ratepayers

 

Premier Christy Clark is warning the NDP and Greens that delaying work on the Site C project in northeast British Columbia could cost taxpayers $600 million.

NDP Leader John Horgan wrote to BC Hydro last week asking it to suspend the evictions of two homeowners and urging it not to sign any new contracts on the $8.6-billion hydroelectric dam until a new government has gained the confidence of the legislature.

But Clark says in letters sent to Horgan and Green Leader Andrew Weaver on Tuesday that the evictions are necessary as part of a road and bridge construction project that are needed to divert a river in September 2019.

Any delay could postpone the diversion by a year and cost taxpayers hundreds of millions of dollars, she says.

“With a project of this size and scale, keeping to a tight schedule is critical to delivering a completed project on time and on budget,” she says. “The requests contained in your letter are not without consequences to the construction schedule and ultimately have financial ramifications to ratepayers.”

The premier has asked Horgan and Weaver to reply by Saturday on whether they still want to put the evictions on hold.

She also asks whether they want the government to issue a “tools down” request to BC Hydro on other decisions that she says are essential to maintaining the budget and construction schedule.

An agreement between the NDP and Green party was signed last week that would allow the New Democrats to form a minority government, ousting Clark's Liberals.

The agreement includes a promise to refer the Site C project to the B.C. Utilities Commission to determine its economic viability.

Some analysts argue that better B.C.-Alberta power integration could improve climate outcomes and market flexibility.

But Clark says the project is likely to progress past the “point of no return” before a review can be completed.

Clark did not define what she meant by “point of no return,” nor did she explain how she reached the $600-million figure. Her press secretary Stephen Smart referred questions to BC Hydro, which did not immediately respond.

During prolonged drought conditions, BC Hydro has had to adapt power generation across the province, affecting planning assumptions.

In a written response to Clark, Weaver says before he can comment on her assertions he requires access to supporting evidence, including signed contracts, the project schedule and potential alternative project timelines.

“Please let me express my disappointment in how your government is choosing to proceed with this project,” he says.

“Your government is turning a significant capital project that potentially poses massive economic risks to British Columbians into a political debate rather than one informed by evidence and supported by independent analysis.”

The dam will be the third on the Peace River, flooding an 83-kilometre stretch of valley, and local First Nations, landowners and farmers have fiercely opposed the project.

Construction began two years ago.

A report written by University of British Columbia researchers in April argued it wasn't too late to press pause on the project and that the electricity produced by Site C won't be fully required for nearly a decade after it's complete.

 

Related News

View more

Clean energy's dirty secret

Renewable Energy Market Reform aligns solar and wind with modern grid pricing, tackling intermittency via batteries and demand response, stabilizing wholesale power prices, and enabling capacity markets to finance flexible supply for deep decarbonization.

 

Key Points

A market overhaul that integrates variable renewables, funds flexibility, and stabilizes grids as solar and wind grow.

✅ Dynamic pricing rewards flexibility and demand response

✅ Capacity markets finance reliability during intermittency

✅ Smart grids, storage, HV lines balance variable supply

 

ALMOST 150 years after photovoltaic cells and wind turbines were invented, they still generate only 7% of the world’s electricity. Yet something remarkable is happening. From being peripheral to the energy system just over a decade ago, they are now growing faster than any other energy source and their falling costs are making them competitive with fossil fuels. BP, an oil firm, expects renewables to account for half of the growth in global energy supply over the next 20 years. It is no longer far-fetched to think that the world is entering an era of clean, unlimited and cheap, abundant electricity for all. About time, too. 

There is a $20trn hitch, though. To get from here to there requires huge amounts of investment over the next few decades, to replace old smog-belching power plants and to upgrade the pylons and wires that bring electricity to consumers. Normally investors like putting their money into electricity because it offers reliable returns. Yet green energy has a dirty secret. The more it is deployed, the more it lowers the price of power from any source. That makes it hard to manage the transition to a carbon-free future, during which many generating technologies, clean and dirty, need to remain profitable if the lights are to stay on. Unless the market is fixed, subsidies to the industry will only grow.

Policymakers are already seeing this inconvenient truth as a reason to put the brakes on renewable energy. In parts of Europe and China, investment in renewables is slowing as subsidies are cut back, even as Europe’s electricity demand continues to rise. However, the solution is not less wind and solar. It is to rethink how the world prices clean energy in order to make better use of it.

 

Shock to the system

At its heart, the problem is that government-supported renewable energy has been imposed on a market designed in a different era. For much of the 20th century, electricity was made and moved by vertically integrated, state-controlled monopolies. From the 1980s onwards, many of these were broken up, privatised and liberalised, so that market forces could determine where best to invest. Today only about 6% of electricity users get their power from monopolies. Yet everywhere the pressure to decarbonise power supply has brought the state creeping back into markets. This is disruptive for three reasons. The first is the subsidy system itself. The other two are inherent to the nature of wind and solar: their intermittency and their very low running costs. All three help explain why power prices are low and public subsidies are addictive.

First, the splurge of public subsidy, of about $800bn since 2008, has distorted the market. It came about for noble reasons—to counter climate change and prime the pump for new, costly technologies, including wind turbines and solar panels. But subsidies hit just as electricity consumption in the rich world was stagnating because of growing energy efficiency and the financial crisis. The result was a glut of power-generating capacity that has slashed the revenues utilities earn from wholesale power markets and hence deterred investment.

Second, green power is intermittent. The vagaries of wind and sun—especially in countries without favourable weather—mean that turbines and solar panels generate electricity only part of the time. To keep power flowing, the system relies on conventional power plants, such as coal, gas or nuclear, to kick in when renewables falter. But because they are idle for long periods, they find it harder to attract private investors. So, to keep the lights on, they require public funds.

Everyone is affected by a third factor: renewable energy has negligible or zero marginal running costs—because the wind and the sun are free. In a market that prefers energy produced at the lowest short-term cost, wind and solar take business from providers that are more expensive to run, such as coal plants, depressing wholesale electricity prices, and hence revenues for all.

 

Get smart

The higher the penetration of renewables, the worse these problems get—especially in saturated markets. In Europe, which was first to feel the effects, utilities have suffered a “lost decade” of falling returns, stranded assets and corporate disruption. Last year, Germany’s two biggest electricity providers, E.ON and RWE, both split in two. In renewable-rich parts of America, power providers struggle to find investors for new plants, reflecting U.S. grid challenges that slow a full transition. Places with an abundance of wind, such as China, are curtailing wind farms to keep coal plants in business.

The corollary is that the electricity system is being re-regulated as investment goes chiefly to areas that benefit from public support. Paradoxically, that means the more states support renewables, the more they pay for conventional power plants, too, using “capacity payments” to alleviate intermittency. In effect, politicians rather than markets are once again deciding how to avoid blackouts. They often make mistakes: Germany’s support for cheap, dirty lignite caused emissions to rise, notwithstanding huge subsidies for renewables. Without a new approach the renewables revolution will stall.

The good news is that new technology can help fix the problem.  Digitalisation, smart meters and batteries are enabling companies and households to smooth out their demand—by doing some energy-intensive work at night, for example. This helps to cope with intermittent supply. Small, modular power plants, which are easy to flex up or down, are becoming more popular, as are high-voltage grids that can move excess power around the network more efficiently, aligning with common goals for electricity networks worldwide.

The bigger task is to redesign power markets to reflect the new need for flexible supply and demand. They should adjust prices more frequently, to reflect the fluctuations of the weather. At times of extreme scarcity, a high fixed price could kick in to prevent blackouts. Markets should reward those willing to use less electricity to balance the grid, just as they reward those who generate more of it. Bills could be structured to be higher or lower depending how strongly a customer wanted guaranteed power all the time—a bit like an insurance policy. In short, policymakers should be clear they have a problem and that the cause is not renewable energy, but the out-of-date system of electricity pricing. Then they should fix it.

 

Related News

View more

Renewables generated more electricity than brown coal over summer, report finds

Renewables Beat Brown Coal in Australia, as solar and wind surged to nearly 10,000 GWh, stabilizing the grid with battery storage during peak demand, after Hazelwood's closure, Green Energy Markets reported.

 

Key Points

It describes a 2017-18 summer when solar, wind, and storage generated more electricity than brown coal in Australia.

✅ Solar and wind hit nearly 10,000 GWh in summer 2017-18

✅ Brown coal fell to about 9,100 GWh after Hazelwood closure

✅ Batteries stabilized peak demand; Tesla responded in milliseconds

 

Renewable energy generated more electricity than brown coal during Australia’s summer for the first time in 2017-18, according to a new report by Green Energy Markets.

Continued growth in solar, as part of Australia's energy transition, pushed renewable generation in Australia to just under 10,000 gigawatt hours between December 2017 and February 2018. With the Hazelwood plant knocked out of the system last year, brown coal’s output in the same period was just over 9,100 GWh.

Renewables produced 40% more than gas over the period, and was exceeded only by black coal, reflecting trends seen in U.S. renewables surpassing coal in 2022.

#google#

The report, commissioned by GetUp, found renewables were generating particularly large amounts of electricity when it was most needed, producing 32% more than brown coal during summer between 11am and 7pm, when demand peaks.

 

Coal in decline: an energy industry on life support

Solar in particular was working to support the system, on average producing more than Hazelwood was capable of producing between 9am and 5pm.

A further 5,000 megawatts of large-scale renewables projects was under construction in February, supporting 17,445 jobs, while renewables became the second-most prevalent U.S. electricity source in 2020.

GetUp’s campaign director, Miriam Lyons, said the latest renewable energy index showed renewables were keeping the lights on while coal became increasingly unreliable, a trend echoed as renewables surpassed coal in the U.S. in recent years.

“Over summer renewables kept houses cool and lights on during peak demand times when people needed electricity most,” Lyons said. “Meanwhile dirty old coal plants are becoming increasingly unreliable in the heat.

“These ageing clunkers failed 36 times over summer.

“Clean energy rescued people from blackouts this summer. When the clapped-out Loy Yang coal plant tripped, South Australia’s giant Tesla battery reacted in milliseconds to keep the power on.

“It’s clear that a smart electricity grid based on a combination of renewable energy and storage is the best way to deliver clean, affordable energy for all Australians.”

 

Related News

View more

Coal comeback unlikely after Paris climate pact withdrawal, says utility CEO

US Shift From Coal to Renewables accelerates as natural gas, solar, and wind power gain market share, driven by the Paris climate agreement, clean energy mandates, smart grid upgrades, and energy efficiency.

 

Key Points

An industry trend where power producers replace coal with natural gas, solar, and wind to meet clean energy goals.

✅ Shareholders and customers demand cleaner power portfolios

✅ Natural gas, solar, and wind outcompete coal on cost and risk

✅ Smart grid and efficiency investments reduce emissions further

 

President Trump once again promised to revive the U.S. coal industry when he announced his intention to withdraw the U.S. from the Paris climate agreement.

But that reversal seems as unlikely as ever as electric power producers, the biggest consumers of coal in the U.S., continue to shift to natural gas and renewable energy sources like solar and wind power. In 2016, natural gas became the leading fuel for U.S. electricity generation for the first time, responsible for 33.8% of the output, compared with 30.4% for coal, according to the U.S. Energy Information Administration, even as coal-fired generation was projected to rise in 2021 in the short term.

Nick Akins, the CEO of American Electric Power, one of the largest utilities in the U.S., says the preference for gas, renewables and energy efficiency, will only grow in response to increasing demands from shareholders and customers for cleaner energy, regardless of changes in national energy policy.

With 5.4 million customers in 11 states, AEP plans to spend $1.5 billion on renewable energy from 2017 through 2019, and $13 billion on transmission and distribution improvements, including new “smart” technologies that will make the grid more resilient and efficient, AEP says.

We spoke with Akins on Thursday, just after Trump’s announcement. The transcript is edited for length and clarity.

 

What do you think of Trump’s decision to pull the U.S. from the climate agreement?

I don’t think it’s unexpected. He obviously made the point that he’s willing to renegotiate or have further dialogue about it. That’s a good sign. From our perspective, we’re going to continue along the path we’re already on toward a cleaner energy economy.

 

AEP and the U.S. electric power industry in general have been moving away from coal in favor of natural gas and renewable energy. Will this decision by the Trump administration have any impact on that trend?

If you look at our resource plans in all of the states we serve, they are focused on renewables, natural gas and transmission, as declining returns from coal generation pressure investment choices across the industry. And big-data analytics improves the efficiency of the grid, so energy efficiency is obviously a key component, as Americans use less electricity overall.

Our carbon dioxide emissions in 2016 were 44% below 2000 levels, and that progress will continue with the additions of more renewables, energy efficiency and natural gas.

So, you don’t see coal making a comeback at AEP or other utilities?

No, I don’t think so. … You wouldn’t make a decision (to build a coal power plant) at this point because it’s heavily capital-intensive, and involves a longer-term process and risk to build. And, of course, you can add renewables that are very efficient and natural gas that’s efficient and much less expensive and risky, in terms of construction and operation.

 

Do you plan to close any more coal-powered plants soon? 

I suspect we’ll see some more retirements in the future, with coal and nuclear closures test just transition in many communities, and as we progress towards that cleaner energy economy, and consider the expectations of our customers and shareholders for us to mitigate risk, you’ll continue to see that happen.

But on the other hand, I want to make sure there’s an understanding that coal will remain a part of the portfolio, even though in rare cases new coal plants are still being built where options are limited, but it will be of a lesser degree because of these other resources that are available to us now that weren’t available to us just a few years ago.

 

Do you find yourself under more or less pressure from customers and shareholders to move to cleaner forms of energy?

I think there’s more pressure. Investors are looking for the sustainability of the company going forward and mitigation of risks … From a customer standpoint, we have some large customers interested in moving into our service territory who are looking for cleaner energy, and want to know if we’re focused on that. Some of them want to be supplied entirely by those clean sources. So, we’re clearly responding to our customers’ and our shareholders’ expectations.

 

What’s the solution for workers at coal mines and coal power plants who have lost their jobs?

Certainly, the skill sets of employees in mining and around machinery are transferable to other areas of manufacturing, like aerospace and defense. So, we’re really focusing on economic-development efforts in our service territories … particularly in the coal states … to bring coal miners back to work, not necessarily in coal mines but certainly (in manufacturing).

 

Related News

View more

Israeli ministries order further reduction in coal use

Israel Coal Reduction accelerates the energy transition, cutting coal use in electricity production by 30% as IEC shifts to natural gas, retires Hadera units, and targets a 2030 phase-out to lower emissions.

 

Key Points

Plan to cut coal power by 30%, retire IEC units, and end coal by 2030, shifting electricity generation to natural gas.

✅ 30% immediate cut in coal use for electricity by IEC

✅ Hadera units scheduled for retirement and gas replacement by 2022

✅ Complete phase-out of coal and gasoil in power by 2030

 

Israel's Energy and Water and Environmental Protection Ministers have ordered an immediate 30% reduction in coal use for electricity production by state utility Israel Electric Corporation as the country increases its dependence on domestic natural gas.

IEC, which operates four coal power plants with a total capacity of 4,850 MW and imports thermal coal from Australia, Colombia, Russia and South Africa, has been planning, as part of the decision to reduce coal use, to shut one of its coal plants during autumn 2018, when demand is lowest.

Israel has already decided to shut the four units of the oldest coal power plant at Hadera by 2022, echoing Britain's coal-free week milestones, and replace the capacity with gas plants.

"By 2030 Israel will completely stop the use of coal and gasoil in electricity production," minister Yuval Steinmetz said.

Coal consumption peaked in 2012 at 14 million mt and has declined steadily, aligning with global trends where renewables poised to eclipse coal in power generation, with the coming on line of Israel's huge Tamar offshore gas field in 2013.

In 2015 coal accounted for more than 50% of electricity production, even as German renewables outpaced coal in generation across that market. Coal's share would decline to less than 30% under the latest decision.

Israel's coal consumption in 2016 totaled 8.7 million mt, as India rationed coal supplies amid surging demand, and was due to decline to 8 million mt last year.

Three years ago, the ministers ordered a 15% reduction in coal use, while Germany's coal generation share remained significant, and the following year a further 5% cut was added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.