Samsung SDI Unveils 600km-traveling Battery Cell for EVs


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Samsung SDI High-Energy Density EV Battery delivers 600km range and 80% fast charging in 20 minutes, plus an integrated battery module for higher kWh, improved safety, lighter design, and manufacturing efficiency for electric vehicles.

 

Key Points

A next-gen EV battery cell and module delivering 600km range, 20-minute 80% fast charging, safety, efficiency.

✅ Up to 600km range; 80% charge in 20 minutes

✅ Integrated module: 6-8kWh, >24 cells, fewer parts

✅ Enhanced safety via advanced electro-mechanical design

 

Samsung SDI is still trying to win trust from global customers. At this year’s North American International Auto Show (NAIAS) held in Detroit, Samsung SDI presented a high energy density battery cell and a concept battery module for electric vehicles (EVs), aligning with broader industry roadmaps such as Daimler's electrification plan underway.

The high energy density battery cell allows EVs using it to travel up to 600km, while the fast charging technology, exemplified by ABB's Terra 360 ultra-fast charger, allows 80% of the capacity to be charged in simply 20 minutes for traveling 500km. This means that only 20min in the highway rest area will be enough for a battery to be charged, eliminating the range anxiety of EV drivers.

Samsung SDI scheduled to start mass production of this new battery cell in 2021, echoing predictions like Musk's three-year timeline for cheaper, more powerful EV batteries.

In addition to the battery cell, Samsung SDI released a concept “integrated battery module” at the tradeshow as well. A conventional EV battery module which consists of 12 cells has a capacity of 2~3kWh, while the “integrated battery module” has more than 24 cells with a higher capacity of 6~8kWh, which makes it an adequate module in the full-fledged high-capacity EV era.

The integrated battery module shows a higher safety level because the advanced electro-mechanical design has been applied. This concept is expected to be a boon in the electro mobility, as it will be lighter with fewer components and supports trends in grid flexibility driven by rising EV adoption.

“The high-energy density battery cell with the fast charging capability and the integrated battery module are the innovative technologies with full potentials that can transform the market,” said an official from Samsung SDI. “Expectations are high that we will be able to accelerate the vehicle electrification across an industry where GM and Ford battery strategies are diverging to meet demand, utilizing these technologies with improved driving range, manufacturing efficiency and user convenience.”

 

Related News

Related News

Wynne defends 25% hydro rate cut:

Ontario Hydro Rate Cuts address soaring electricity prices, lowering hydro bills via refinancing, FAO-reviewed costs, and long-term infrastructure investment, balancing ratepayer relief with a projected $21 billion net expense over 30 years.

 

Key Points

Ontario electricity bill relief spreading infrastructure and green energy costs over 30 years via refinancing.

✅ 25% average bill cut; $156 to $123 per month

✅ FAO projects $21B net cost over 30 years

✅ Costs shifted to long-term debt, infrastructure, green energy

 

Premier Kathleen Wynne is making no apologies for the Liberals’ 25 per cent hydro rate cuts, legislation to lower electricity rates that a legislative watchdog warns will cost at least $21 billion over three decades.

In the wake of Financial Accountability Officer Stephen LeClair’s report on the “Fair Hydro Plan,” Wynne emphasized that Ontario electricity consumers demanded and deserved relief.

“You all read the newspaper, you listen to the radio and you watch television — you know the problems that families are having around the province paying for their electricity costs,” the premier told reporters Thursday in Timmins.

That’s why the government moved forward with a rate cut, with recent Hydro One reconnections underscoring the stakes, that will see the average household’s monthly hydro bill drop from $156 to $123 once it fully takes effect next month.

In a 15-page report released Wednesday, the financial accountability officer estimated the initiative would cost the province $45 billion over the next 29 years amid a cabinet warning on prices that electricity costs could soar, while saving ratepayers $24 billion for a next expense of $21 billion.

Both the Progressive Conservatives and the New Democrats oppose the Liberal rate cut, arguing that a deal with Quebec would not lower hydro bills.

But Wynne said the government has in effect renegotiated a mortgage so it will bankroll hydro infrastructure improvements over a longer time period, though some have urged the next government to scrap the Fair Hydro Plan and review options, in order to give customers a break now.

“We’re talking about a 30-year window here. It took at least 30 years, probably 40 years, to let the electricity system degrade to the stage that it had in 2003,” she said, noting “we were having blackouts and brownouts around the province” before her party took office that year.

“There were thousands of kilometres of line that needed to be rebuilt . . . that work hadn’t been done over those generations, so electricity costs were low over that period of time but the work wasn’t being done.”

When her predecessor Dalton McGuinty came to power in 2003, Wynne said Queen’s Park began spending billions on infrastructure improvements, including expensive subsidies for green energy, such as wind turbines and solar panels.

“There’s a lot of work that has been done since then. Literally thousands of kilometres of line have been rebuilt. The coal-fired plants have been shut down. The air is cleaner. There’s less pollution in the air. The system is reliable and renewable,” she said.

“So there’s a cost associated with that and what was happening was that was work that had to be done — and all of those costs were on the shoulders of people today.”

Wynne noted “this electricity grid is an asset that is going to be used for generations to come.”

“My grandchildren are going to benefit from this asset, so I think it’s fair that we spread the cost of that over that 30-year period,” she said.

“That’s how we made this decision.”

 

 

 

Related News

View more

More than a third of Irish electricity to be green within four years

Ireland Wind and Solar Share 2022 highlights IEA projections of over 33% electricity generation from renewables, with variable renewable energy growth, capacity targets, EU policy shifts, and investments accelerating wind and solar deployment.

 

Key Points

IEA forecasts wind and solar to exceed 33% of Ireland's electricity by 2022, second in variable renewables after Denmark.

✅ IEA expects Ireland to surpass 33% wind and solar by 2022

✅ Denmark leads at ~70%; Germany and UK exceed 25%

✅ Investments and capacity targets drive renewable growth

 

The share of wind and solar in total electricity generation in Ireland is expected to exceed 33pc by 2022, according to the 'Renewables 2017' report from the International Energy Agency (IEA).

Among the findings, the report says that Denmark is on course to be the world leader in the variable renewable energy sector, with 70pc of its electricity generation expected to come from wind and solar renewables by 2022.

The Nordic country will be followed by Ireland, Germany and the UK, all of which are expected see their share of wind and solar energy in total electricity generation exceed 25pc, according to the IEA report.

In a move to increase the level of wind generation in Ireland, the Government-controlled Ireland Strategic Investment Fund (Isif) teamed up with German solar and wind park operator Capital Stage in January to invest €140m in 20 solar parks in Ireland.

#google#

The parks are being developed by Dublin-based Power Capital, and it marks the first time that Isif has committed to financing solar park developments in this country.

Globally, renewables accounted for almost two-thirds of net new power capacity, with nearly 165 gigawatts (GW) coming online in 2016.

This was a record year that was largely driven by a booming solar market in China and around the world.

In 2016 solar capacity around the world grew by 50pc, reaching over 74 GW, with China's solar PV accounting for almost half of this expansion. In another first, solar energy additions rose faster than any other fuel, surpassing the net growth in coal, the IEA report found.

China alone is responsible for over two-fifths of global renewable capacity growth, which, according to the IEA, is largely driven by concerns about the country's air pollution and capacity targets.

The Asian giant is also the world market leader in hydropower, bioenergy for electricity and heat, and electric vehicles, the IEA report said. In 2016 the United States remained the second largest growth market for renewables.

However, with US President Donald Trump withdrawing the country from the Paris Agreement on climate change, the country's commitment to renewable energy faces policy uncertainty.

Meanwhile, India continues to grow its renewable electricity capacity, and by 2022, the country is expected to more than double its current renewable electricity capacity, according to the IEA. For the first time, this growth over the forecast period (2016-2022) is higher compared with the European Union, according to the report.

Meanwhile in the EU, renewable energy growth over the forecast period is 40pc lower compared with the previous five-year period.

The low forecast in respect of the EU is based on a number of factors, the IEA said, including weaker electricity demand, overcapacity, and limited visibility on forthcoming auction capacity volumes in some markets.

Overall, the Government has committed to generating 40pc of its electricity from renewable energy sources by 2020.

That target is set to be missed, which would see the Government eventually having to fork out hundreds of millions of euro for carbon credits.

Later this year, Ireland will host Europe's biggest summit on Climate Innovation, during which over 50 nationwide events and initiatives will be held.

 

Related News

View more

Sparking change: what Tesla's Model 3 could mean for electric utilities

EV Opportunity for Utilities spans EV charging infrastructure, grid modernization, demand response, time-of-use rates, and customer engagement, enabling predictable load growth, flexible charging, and stronger utility branding amid electrification and resilience challenges.

 

Key Points

It is the strategy to leverage EV adoption for load growth, grid flexibility, and branded charging services.

✅ Monetizes EV load via TOU rates, managed charging, and V2G.

✅ Uses rate-based infrastructure to expand equitable charging access.

✅ Enhances resilience and DER integration through smart grid upgrades.

 

Tesla recently announced delivery of the first 30 production units of its Model 3 electric vehicle (EV). EV technology has generated plenty of buzz in the electric utility industry over the past decade and, with last week’s announcement, it would appear that projections of a significant market presence for EVs could give way to rapid growth.

Tesla’s announcement could not have come at a more critical time for utilities, which face unprecedented challenges. For the past 15 years, utilities have been grappling with increasingly frequent “100-year storms,” including hurricanes, snowstorms and windstorms, underscoring the reality that the grid’s aging infrastructure is not fit to withstand increasingly extreme weather, along with other threats, such as cyber attacks.

Coupled with flat or declining load growth, changing regulations, increasing customer demand, and new technology penetration, these challenges have given the electric utility industry good reason to describe its future as “threatened.” These trends, each exacerbating the others, mean essentially that utilities can no longer rely on traditional ways of doing business.

EVs have significant potential to help relieve the industry’s pessimistic outlook. This article will explore what EV growth could mean for utilities and how they can begin establishing critical foundations today to help ensure their ability to exploit this opportunity.

 

The opportunity

At the Bloomberg New Energy Finance (BNEF) Global Summit 2017, BNEF Advisory Board Chairman Michael Liebreich announced the group’s prediction that electric vehicles will comprise 35-47 percent of new vehicle sales globally by 2040.

U.S. utilities have good reason to be optimistic about this potential new revenue source, as EV-driven demand growth could be substantial according to federal lab analyses. If all 236 million gas-powered cars in the U.S. — average miles driven per year: 12,000 — were replaced with electric vehicles, which travel an average of 100 miles on 34 kWh, they would require 956 billion kWh each year. At a national average cost of $0.12 / kWh, the incremental energy sold by utilities in the U.S. would bring in around $115 billion per year in new revenues. A variety of factors could increase or decrease this number, but it still represents an attractive opportunity for the utility sector.

Capturing this burgeoning market is not simply a matter of increased demand; it will also require utilities to be predictable, adaptable and brandable. Moreover, while the aggregate increase in demand might be only 3-4 percent, demand can come as a flexible and adaptable load through targeted programming. Also, if utilities target the appropriate customer groups, they can brand themselves as the providers of choice for EV charging. The power of stronger branding, in a sector that’s experiencing significant third-party encroachment, could be critical to the ongoing financial health of U.S. utilities.

Many utilities are already keenly aware of the EV opportunity and are speeding down this road (no pun intended) as part of their plans for utility business model reinvention. Following are several questions to be asked when evaluating the EV opportunity.

 

Is the EV opportunity feasible with today’s existing grid?

According to a study conducted by the U.S. Department of Energy’s Pacific Northwest National Laboratory, the grid is already capable of supporting more than 150 million pure electric vehicles, even as electric cars could challenge state grids in the years ahead, a number equal to at least 63 percent of all gas-powered cars on the road today. This is significant, considering that a single EV plugged into a Level 2 charger can double a home’s peak electricity demand. Assuming all 236 million car owners eventually convert to EVs, utilities will need to increase grid capacity. However, today’s grid already has the capacity to accommodate the most optimistic prediction of 35-47 percent EV penetration by 2040, which is great news.

 

Should the EV opportunity be owned by utilities?

There’s significant ongoing debate among regulators and consumer advocacy groups as to whether utilities should own the EV charging infrastructure, with fights for control over charging reflecting broader market concerns today. Those who are opposed to this believe that the utilities will have an unfair pricing advantage that will inhibit competition. Similarly, if the infrastructure is incorporated into the rate base, those who do not own electric vehicles would be subsidizing the cost for those who do.

If the country is going to meet the future demands of electric cars, the charging infrastructure and power grid will need help, and electric utilities are in the best position to address the problem, as states like California explore EVs for grid stability through utility-led initiatives that can scale. By rate basing the charging infrastructure, utilities can provide charging services to a wider range of customers. This would not favor one economic group over another, which many fear would happen if the private sector were to control the EV charging market.

 

If you build it, will they come?

At this point, we can conclude that growth in EV market penetration is a tremendous opportunity for utilities, one that’s most advantageous to electricity customers if utilities own some, if not all, of the charging infrastructure. The question is, if you build it, will they come — and what are the consequences if they don’t?

With any new technology, there’s always a debate centered around adoption timing — in this case, whether to build the infrastructure ahead of demand for EV or wait for adoption to spike. Either choice could have disastrous consequences if not considered properly. If utilities wait for the adoption to spike, their lack of EV charging infrastructure could stunt the growth of the EV sector and leave an opening for third-party providers. Moreover, waiting too long will inhibit GHG emissions reduction efforts and generally complicate EV technology adoption. On the other hand, building too soon could lead to costly stranded assets. Both problems are rooted in the inability to control adoption timing, and, until recently, utilities didn’t have the means or the savvy to influence adoption directly.

 

How should utilities prepare for the EV?

Beyond the challenges of developing the hardware, partnerships and operational programs to accommodate EV, including leveraging energy storage and mobile chargers for added flexibility, influencing the adoption of the infrastructure will be a large part of the challenge. A compelling solution to this problem is to develop an engaged customer base.

A more engaged customer base will enable utilities to brand themselves as preferred EV infrastructure providers and, similarly, empower them to influence the adoption rate. There are five key factors in any sector that influence innovation adoption:

  1. Relative advantage – how improved an innovation is over the previous generation.

  2. Compatibility – the level of compatibility an innovation has with an individual’s life.

  3. Complexity – if the innovation is to difficult to use, individuals will not likely adopt it.

  4. Trialability – how easily an innovation can be experimented with as it’s being adopted.

  5. Observability – the extent that an innovation is visible to others.

Although much of EV adoption will depend on the private vehicle sector influencing these five factors, there’s a huge opportunity for utilities to control the compatibility, complexity and observability of the EV. According to  “The New Energy Consumer: Unleashing Business Value in a Digital World,” utilities can influence customers’ EV adoption through digital customer engagement. Studies show that digitally engaged customers:

  • have stronger interest and greater likelihood to be early EV adopters;

  • are 16 percent more likely to purchase home-based electric vehicle charging stations and installation services;

  • are 17 percent more likely to sign up for financing for home-based electric vehicle charging stations; and

  • increase the adoption of consumer-focused programs.

These findings suggest that if utilities are going to seize the full potential of the EV opportunity, they must start engaging customers now so they can appropriately influence the timing and branding of EV charging assets.

 

How can utilities engage consumers in preparation?

If utilities establish the groundwork to engage customers effectively, they can reduce the risks of waiting for an adoption spike and of building and investing in the asset too soon. To improve customer engagement, utilities need to:

  1. Change their customer conversations from bills, kWh, and outages, to personalized, interesting topics, communicated at appropriate intervals and via appropriate communication channels, to gain customers’ attention.

  2. Establish their roles as trusted advisors by presenting useful, personalized recommendations that benefit customers. These tips should change dynamically with changing customer behavior, or they risk becoming stagnant and redundant, thereby causing customers to lose interest.

  3. Convert the perception of the utility as a monopolistic, inflexible entity to a desirable, consumer-oriented brand through appropriate EV marketing.

It’s critical to understand that this type of engagement strategy doesn’t even have to provide EV-specific messaging at first. It can start by engaging customers through topics that are relevant and unique, through established or evolving customer-facing programs, such as EE, BDR, TOU, HER.

As lines of communication open up between utility and users, utilities can begin to understand their customers’ energy habits on a more granular level. This intelligence can be used by business analysts to help educate program developers on the optimal EV program timing. For example, as customers become interested in services in which EV owners typically enlist, utilities can target them for EV program marketing. As the number of these customers grows, the window for program development opens, and their levels of interest can be used to inform program and marketing timelines.

While all this may seem like an added nuisance to an EV asset development strategy, there’s significant risk of losing this new asset to third-party providers. This is a much greater burden to utilities than spending the time to properly own the EV opportunity.

 

Related News

View more

As Trump ditches Paris, California is one step closer to getting wind power from Wyoming

TransWest Express Power Line will deliver Wyoming wind energy to California via a 730-mile high-voltage corridor, integrating 3,000 MW from the Chokecherry and Sierra Madre project to strengthen the Western grid and decarbonization goals.

 

Key Points

A 730-mile line delivering up to 3,000 MW of Wyoming wind to Western states, improving clean energy reliability.

✅ 3,000 MW from Chokecherry and Sierra Madre turbines

✅ 730-mile route linking Wyoming to CA, AZ, NV markets

✅ Supports 60% by 2030, 100% by 2045 clean mandates

 

A conservative billionaire wants to build America's biggest wind farm in Wyoming and send the clean electricity to California.

Federal officials have approved another section of the 730-mile TransWest Express power line, in line with a renewable transmission rule aimed at speeding upgrades, which would carry energy from Philip Anschutz's Chokecherry and Sierra Madre wind farm to potential customers in California, Arizona and Nevada. The 1,000-turbine, 3,000-megawatt wind project, which has been in the works for a decade, would be built in south-central Wyoming, in one of the windiest spots in the continental U.S.

Supporters say the massive power project would help California meet its clean energy goals, in part because Wyoming winds tend to blow strong into the evening, as the sun sets over the Pacific and the Golden State's many solar farms go offline, though expanding battery storage is starting to fill that gap. Under California law, electric utilities are required to get 50% of their power from renewable sources by 2030. The state Senate passed a bill Wednesday that would raise the clean energy mandate to 60% by 2030 and 100% by 2045.

The Denver-based Anschutz Corporation hasn't inked any contracts to sell the electricity its Wyoming wind farm would generate. But company officials are confident demand will materialize by the time they're ready to build turbines. Construction of roads and other project infrastructure started last year and picked back up in April after a winter hiatus.

The developer has already spent $100 million developing the wind farm and power line, and expects to spend a combined $8 billion on the two projects.

Bill Miller oversees the development of the Anschutz Corporation's Chokecherry and Sierra Madre wind farm in Wyoming, which would send as much as 3,000 megawatts of wind power to California. (Photo: Jay Calderon/The Desert Sun)

After an extensive environmental review, the U.S. Forest Service issued a permit Wednesday for portions of the TransWest Express transmission line that would cross through 19 miles of the Uinta-Wasatch-Cache and Manti-La Sal national forests in Utah.

"It's another step forward in the process of making this line a reality, and being able to provide a path that allows California, Arizona and Nevada to access the high volumes of renewable energy supplies that are available in Wyoming," said Kara Choquette, a spokesperson for the Anschutz subsidiaries developing the power project.

Between the Forest Service approval and a Bureau of Land Management permit issued in December, the developer now has the go-ahead to build about two-thirds of the 730-mile route, Choquette said, progress that comes as the U.S. grid overhaul for renewables accelerates nationwide. Company officials are reaching out to the roughly 450 private landowners along the proposed route. They must also apply for a state permit in Wyoming, and 14 county-level permits in Wyoming, Colorado, Utah and Nevada.

But Anschutz's Chokecherry and Sierra Madre wind farm is a reminder that Trump can't stop the ongoing transition from coal to cleaner sources of energy, which is being driven largely by market forces. Solar, wind and natural gas, which burns more cleanly than coal, are now the cheapest sources of new electricity across much of the country, even as Texas grid constraints sometimes force High Plains turbines to shut down during oversupply. Utility industry executives are abandoning coal and embracing renewable energy. And the American solar industry employs more people than coal or natural gas.

States and local governments in California, New York and elsewhere have also forged ahead with policies to reduce climate emissions, including New York's largest offshore wind project recently approved. So have major companies like Apple, Facebook and Google, which have invested billions of dollars in renewable energy.

"The (Trump) administration is so out of step with reality right now. The trend is powerful, whether it's coming the cities or corporations, or from the coastal states," said Don Furman, a former utility executive who now advocates for greater sharing of renewable energy across state lines in the West.

Turbines at Duke Energy's Happy Jack wind farm near Cheyenne, Wyoming generate electricity on Dec. 6, 2016. (Photo: Jay Calderon/The Desert Sun)

Clean energy advocates say the 3,000-megawatt Wyoming wind farm is an especially powerful example of the economic case for renewable energy, because its proprietor is Anschutz, a longtime fossil fuel magnate and major donor to Republican politicians.

"I don't think Philip Anschutz would be putting his money here if he thought this was a bad business bet," Furman said.

The Forest Service also issued a permit Wednesday for the 416-mile Energy Gateway South power line, which would run through Wyoming, Colorado and Utah, traversing nine miles of the same national forests TransWest Express would cross. Gateway South is part of the 1,900-mile Energy Gateway transmission project being developed by Warren Buffett's PacifiCorp utility, which serves customers across six western states.

PacifiCorp officials say the $6 billion transmission project is needed to meet growing electricity demand. They've also pitched the power lines as another opportunity to transmit wind power from Wyoming to California and other coastal states. Critics, though, see Energy Gateway as costly and unnecessary — and they're worried Californians would end up paying the price through higher electricity rates.

 

Related News

View more

Tesla’s lead battery expert hired by Uber to help power its ‘flying car’ service

Uber Elevate eVTOL Batteries enable electric air taxis with advanced energy storage, lithium-ion cell quality, safety engineering, and zero-emissions performance for urban air mobility, ride-hailing aviation, and scalable battery pack development.

 

Key Points

Battery systems for Uber's electric air taxis, maximizing energy density, safety, and cycle life for urban air mobility.

✅ Ex-Tesla battery leader guides pack design and cell quality

✅ All-electric eVTOL targets zero-emissions urban air mobility

✅ Focus on safety, energy density, fast charge, and lifecycle

 

Celina Mikolajczak, a senior manager for battery pack development at Tesla, has been hired by Uber to help the ride-hail company’s “flying car” project get off the ground. It’s an important hire because it signals that Uber plans to get more involved in the engineering aspects of this outlandish-sounding project.

For six years, Mikolajczak served as senior manager and technical lead for battery technology, cell quality, and materials analysis. She worked with Tesla’s suppliers, tested the car company’s lithium-ion batteries for long-term use as the age of electric cars accelerates, oversaw quality assurance, and conducted “failure analysis” to drive battery cell production and design improvements. In other words, Mikolajczak was in charge of making sure the most crucial component in Tesla’s entire assembly line was top of the line.

Now she works for Uber — and not just for Uber, but for Uber Elevate, the absurdly ambitious air taxi service that hinges on the successful development of electric vertical take-off and landing (eVTOL) vehicles. There are practically zero electric planes in service today, and definitely none being used in a commercial ride-hail service. The hurdles to getting this type of service off the ground are enormous.

Her title at Uber is director of engineering and energy storage systems, and today marks her first week on the job. She joins Mark Moore, the former chief technologist for on-demand mobility at NASA’s Langley Research Center, who joined Uber almost a year ago to help lend a professional appearance to Elevate. Both serve under Jeff Holden, Uber’s head of product, who oversees the air taxi project.

Uber first introduced its plan to bring ride-sharing to the skies in a white paper last year. At the time, Uber said it wasn’t going to build its own eVTOL aircraft, but stood ready to “contribute to the nascent but growing VTOL ecosystem and to start to play whatever role is most helpful to accelerate this industry’s development.”

Instead, Uber said it would be partnering with a handful of aircraft manufacturers, real estate firms, and government regulators to better its chances of developing a fully functional, on-demand flying taxi service. It held a day-long conference on the project in Dallas in April, and plans to convene another one later this year in Los Angeles. In 2020, Uber says its aerial service will take off in three cities: LA, Dallas-Fort Worth, and Dubai.

 

UBER’S TAKING A MORE PROMINENT ROLE

Now, Uber’s taking a more prominent role in the design and manufacturing of its fleet of air taxis, which signals a stronger commitment to making this a reality — and also more of a responsibility if things eventually go south, as setbacks like Eviation's collapse underscore.

Perhaps most ambitiously, Uber says the aircraft it plans to use (but, importantly, do not exist yet) will run on pure battery-electric power, and not any hybrid of gasoline and electricity. Most of the companies exploring eVTOL admit that battery’s today aren’t light enough or powerful enough to sustain flights longer than just a few minutes, but many believe that battery technology will eventually catch up, with Elon Musk suggesting a three-year timeline for cheaper, more powerful cells.

Uber believes that in order to sustain a massive-scale new form of transportation, it will need to commit to an all-electric, zero-operational emissions approach from the start, even as potential constraints threaten the EV boom overall. And since the technology isn’t where it needs to be yet, the ride-hail company is taking a more prominent role in the development of the battery pack for its air taxi vehicles. Mikolajczak certainly has her work cut out for her.

 

Related News

View more

Carnegie Teams with Sumitomo for Grid-Scale Vanadium Flow Battery Storage

Australian VRF Battery Market sees a commercial-scale solar and storage demonstration by Energy Made Clean, Sumitomo Electric, and TNG, integrating vanadium redox flow systems with microgrids for grid-scale renewable energy reliability across Australia.

 

Key Points

A growing sector deploying vanadium redox flow batteries for scalable, long-life energy storage across Australia.

✅ Commercial demo by EMC, Sumitomo Electric, and TNG

✅ Integrates solar PV with containerized VRF systems

✅ Targets microgrids and grid-scale renewable reliability

 

Carnegie Wave Energy’s 100 per cent owned subsidiary, Energy Made Clean, is set to develop and demonstrate a commercial-scale solar and battery storage plant in Australia, after entering into a joint venture targeting Australia’s vanadium redox flow (VRF) battery market.

Carnegie said on Tuesday that EMC had signed a memorandum of understanding with Japanese company Sumitomo Electric Industries and ASX-listed TNG Limited to assess the potential applications of VRF batteries through an initial joint energy storage demonstration project in Australia.

The deal builds on a June 2015 MOU between EMC and emerging strategic metals company TNG, to establish the feasibility of Vanadium Redox batteries. And it comes less than two months after Carnegie took full ownership of the Perth-based EMC, which has established itself as one of the Australia’s foremost micro-grid and battery storage businesses, reflecting momentum in areas such as green hydrogen microgrids internationally.

Energy Made Clean’s main role in the partnership will be to identify commercial project site opportunities, while also designing and supplying a compatible balance of plant – likely to include solar PV – to integrate with the VRF containerised system being supplied by Sumitomo.

The demonstration will be of commercial size, to best showcase Sumitomo’s technology, the companies said; with each party contributing to their core competencies, and subsequently cooperating on the marketing and sales of VRF batteries.

As we have noted on RE before, vanadium redox flow batteries are tipped to be one of the key players in the booming global energy storage market, alongside innovations like gravity storage investment, as more and more renewable energy sources are brought onto grids around the world.

The batteries are considered uniquely suited to on- and off-grid energy storage applications, and emerging models like vehicle-to-building power, due to their scalability and long asset lives, with deep and very high cycling capability.

Australia, as well as being a key market for battery storage uptake, has seen a recent grid rule change that could impact big batteries, and has been noted for its potential to become a top global producer of vanadium – a metal found in a range of mineral deposits.

A number of Australian companies are already active in the local vanadium redox flow battery market, including miner Australian Vanadium – which recently inked a deal with Germany battery maker Gildemeister Energy Storage to sell its CellCube range of VRF batteries – and Brisbane based battery maker Redflow.

Energy Made Clean CEO John Davidson said the signing of the MOU would bring key industry innovators together to help revolutionise the vanadium redox flow battery market in Australia.

“This strategic MoU represents a compelling three-way tie-up of an emerging miner, a manufacturer and an integrator to accelerate the development of a major new energy growth market,” Davidson said.  

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.