EPA moves to rewrite limits for coal power plant wastewater


coal plant pollution

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

EPA Wastewater Rule Rollback signals a move to rewrite 2015 Clean Water Act guidelines for coal-fired power plants, easing wastewater rules as heavy metals, mercury, lead, arsenic, and selenium threaten rivers, lakes, public health.

 

Key Points

A planned EPA rewrite of 2015 wastewater limits for coal plants, weakening protections against toxic heavy metals.

✅ Targets 2015 Clean Water Act wastewater guidelines

✅ Affects coal-fired steam electric power plants

✅ Raises risks from mercury, lead, arsenic, selenium

 

The Environmental Protection Agency says it plans to scrap an Obama-era measure limiting water pollution from coal-fired power plants, mirroring moves to replace the Clean Power Plan elsewhere in power-sector policy.

A letter from EPA Administrator Scott Pruitt released Monday as part of a legal appeal and amid a broader rewrite of NEPA rules said he will seek to revise the 2015 guidelines mandating increased treatment for wastewater from steam electric power-generating plants.

Acting at the behest of energy groups and electric utilities who opposed the stricter standards, Pruitt first moved in April to delay implementation of the new guidelines. The wastewater flushed from the coal-fired plants into rivers and lakes typically contains traces of such highly toxic heavy metals as lead, arsenic, mercury and selenium.

“After carefully considering your petitions, I have decided that it is appropriate and in the public interest to conduct a rulemaking to potentially revise (the regulations),” Pruitt wrote in the letter addressed to the pro-industry Utility Water Act Group and the U.S. Small Business Administration.

Pruitt’s letter, dated Friday, was filed Monday with the Fifth Circuit U. S. Court of Appeals in New Orleans, which is hearing legal challenges of the wastewater rule. With Pruitt now moving to rewrite the standards, EPA has asked to court to freeze the legal fight.

While that process moves ahead, EPA’s existing guidelines from 1982 remian in effect. Those standards were set when far less was known about the detrimental impacts of even tiny levels of heavy metals on human health and aquatic life.

“Power plants are by far the largest offenders when it comes to dumping deadly toxics into our lakes and rivers,” said Thomas Cmar, a lawyer for the legal advocacy group Earthjustice. “It’s hard to believe that our government officials right now are so beholden to big business that they are willing to let power plants continue to dump lead, mercury, chromium and other dangerous chemicals into our water supply.”

EPA estimates that the 2015 rule, if implemented, would reduce power plant pollution, consistent with new pollution limits proposed for coal and gas plants, by about 1.4 billion pounds a year. Only about 12 per cent of the nation’s steam electric power plants would have to make new investments to meet the higher standards, according to the agency.

Utilities would need to spend about $480 million on new wastewater treatment systems, resulting in about $500 million in estimated public benefits, such as fewer incidents of cancer and childhood developmental defects.

 

Related News

Related News

Tesla’s lead battery expert hired by Uber to help power its ‘flying car’ service

Uber Elevate eVTOL Batteries enable electric air taxis with advanced energy storage, lithium-ion cell quality, safety engineering, and zero-emissions performance for urban air mobility, ride-hailing aviation, and scalable battery pack development.

 

Key Points

Battery systems for Uber's electric air taxis, maximizing energy density, safety, and cycle life for urban air mobility.

✅ Ex-Tesla battery leader guides pack design and cell quality

✅ All-electric eVTOL targets zero-emissions urban air mobility

✅ Focus on safety, energy density, fast charge, and lifecycle

 

Celina Mikolajczak, a senior manager for battery pack development at Tesla, has been hired by Uber to help the ride-hail company’s “flying car” project get off the ground. It’s an important hire because it signals that Uber plans to get more involved in the engineering aspects of this outlandish-sounding project.

For six years, Mikolajczak served as senior manager and technical lead for battery technology, cell quality, and materials analysis. She worked with Tesla’s suppliers, tested the car company’s lithium-ion batteries for long-term use as the age of electric cars accelerates, oversaw quality assurance, and conducted “failure analysis” to drive battery cell production and design improvements. In other words, Mikolajczak was in charge of making sure the most crucial component in Tesla’s entire assembly line was top of the line.

Now she works for Uber — and not just for Uber, but for Uber Elevate, the absurdly ambitious air taxi service that hinges on the successful development of electric vertical take-off and landing (eVTOL) vehicles. There are practically zero electric planes in service today, and definitely none being used in a commercial ride-hail service. The hurdles to getting this type of service off the ground are enormous.

Her title at Uber is director of engineering and energy storage systems, and today marks her first week on the job. She joins Mark Moore, the former chief technologist for on-demand mobility at NASA’s Langley Research Center, who joined Uber almost a year ago to help lend a professional appearance to Elevate. Both serve under Jeff Holden, Uber’s head of product, who oversees the air taxi project.

Uber first introduced its plan to bring ride-sharing to the skies in a white paper last year. At the time, Uber said it wasn’t going to build its own eVTOL aircraft, but stood ready to “contribute to the nascent but growing VTOL ecosystem and to start to play whatever role is most helpful to accelerate this industry’s development.”

Instead, Uber said it would be partnering with a handful of aircraft manufacturers, real estate firms, and government regulators to better its chances of developing a fully functional, on-demand flying taxi service. It held a day-long conference on the project in Dallas in April, and plans to convene another one later this year in Los Angeles. In 2020, Uber says its aerial service will take off in three cities: LA, Dallas-Fort Worth, and Dubai.

 

UBER’S TAKING A MORE PROMINENT ROLE

Now, Uber’s taking a more prominent role in the design and manufacturing of its fleet of air taxis, which signals a stronger commitment to making this a reality — and also more of a responsibility if things eventually go south, as setbacks like Eviation's collapse underscore.

Perhaps most ambitiously, Uber says the aircraft it plans to use (but, importantly, do not exist yet) will run on pure battery-electric power, and not any hybrid of gasoline and electricity. Most of the companies exploring eVTOL admit that battery’s today aren’t light enough or powerful enough to sustain flights longer than just a few minutes, but many believe that battery technology will eventually catch up, with Elon Musk suggesting a three-year timeline for cheaper, more powerful cells.

Uber believes that in order to sustain a massive-scale new form of transportation, it will need to commit to an all-electric, zero-operational emissions approach from the start, even as potential constraints threaten the EV boom overall. And since the technology isn’t where it needs to be yet, the ride-hail company is taking a more prominent role in the development of the battery pack for its air taxi vehicles. Mikolajczak certainly has her work cut out for her.

 

Related News

View more

Australia electricity market: Plan to avoid threats to electricity supply

National Electricity Market review calls for clear coal-fired closure schedules to safeguard energy security, backing a technology-agnostic clean energy and low emissions target with tradeable certificates to stabilise prices and support a smoother transition.

 

Key Points

A review proposing orderly coal closures and a technology-agnostic clean energy target to protect grid reliability.

✅ Mandates advance notice of coal plant closure schedules

✅ Supports clean energy and low emissions target with certificates

✅ Aims to stabilise prices and ensure system security

 

THE Latrobe Valley’s coal-fired power stations could be forced to give details of planned closures well in advance to help governments avoid major threats to electricity supply, amid an AEMO warning on reduced reserves across the grid.

The much-anticipated review of the national electricity market, to be released on Friday, will outline the need for clear schedules for the closure of coal-fired power stations to avoid rushed decisions on ­energy security.

It is believed the Turnbull government, which has ruled out taxpayer-funded power plants in the current energy debate, will move toward either a clean-energy or a low-emissions target that aims to bolster power security while reducing household bills and emissions.

The system, believed to be also favoured by industry, would likely provide a more stable transition to clean energy by engaging with the just transition concept seen in other markets, because coal-fired power would not be driven out of the market as quickly.

Sources said that would lead to greater investment in the energy sector, a surplus of production and, as seen in Alberta's shift to gas and price cap debate driving market changes, a cut in prices.

It is likely most coal-fired power stations, such as Yallourn and Loy Yang in the Latrobe Valley, would see out their “natural lives” under the government’s favoured system, rather than be forced out of business by an EIS.

The new target would be separate from the Renewable Energy Target which have come under fire because of ad hoc federal and state targets.

The Herald Sun has been told the policy would provide tradeable clean-energy certificates for low-emissions generation, such as wind, solar and gas and coal which used carbon capture and storage technology.

Energy retailers and large industrial users would then be ­required to source a mandated amount of certified clean power.

Federal Energy Minister Josh Frydenberg has repeatedly said any solution must be “technology agnostic” including gas, renewable energy and coal, amid ongoing debates over whether to save or close nuclear plants such as the Three Mile Island debate in other markets.

Energy Networks Australia’s submission to the review, chaired by Chief Scientist Alan Finkel, acknowledged the challenges in identifying potential generation closures, particularly with uncertain and poorly integrated state and national carbon policy settings.

The group said given the likelihood of further closures of coal fired generation units a new mechanism was needed to better manage changes in the generation mix, well in advance of the closure of the plant.

It said the implications for system stability were “too significant” to rely on the past short-term closures, such as Hazelwood, particularly when the amount of power generated could drive energy security to “tipping point”.

 

 

Related News

View more

San Diego utility offers $10,000 off Nissan Leaf, BMW i3 electric cars

San Diego Gas & Electric EV incentives deliver $10,000 utility discounts plus a $200 EV Climate Credit, stackable with California rebates and federal tax credits on BMW i3 and Nissan Leaf purchases through participating dealers.

 

Key Points

Utility-backed rebates that cut EV purchase costs and stack with California and federal tax credits for added savings.

✅ $10,000 off BMW i3 or Nissan Leaf via SDG&E partner dealers

✅ Stack with $7,500 federal and up to $4,500 California rebates

✅ $200 annual EV Climate Credit for eligible account holders

 

For southern California residents, it's an excellent time to start considering the purchase of a BMW i3 or Nissan Leaf electric car as EV sales top 20% in California today.

San Diego Gas & Electric has joined a host of other utility companies in the state in offering incentives towards the purchase of an i3 or a Leaf as part of broader efforts to pursue EV grid stability initiatives in California.

In total, the incentives slash $10,000 from the purchase price of either electric car, and an annual $200 credit to reduce the buyer's electricity bill is included through the EV Climate Credit program, which can complement home solar and battery options for some households.

SDG&E's incentives may be enough to sway some customers into either electric car, but there's better news: the rebates can be combined with state and federal incentives.

The state of California offers a $4,500 purchase rebate for qualified low-income applicants, while others are eligible for $2,500

Additionally, the federal government income-tax credit of up to $7,500 can bring the additional incentives to $10,000 on top of the utility's $10,000.

While the federal and state incentives are subject to qualifications and paperwork established by the two governments, the utility company's program is much more straight forward.

SDG&E simply asks a customer to provide a copy of their utility bill and a discount flyer to any participating BMW or Nissan dealership.

Additional buyers who live in the same household as the utility's primary account holder are also eligible for the incentives, although proof of residency is required.

Nissan is likely funding some of the generous incentives to clear out remaining first-generation Nissan Leafs.

The 2018 Nissan Leaf will be revealed next month and is expected to offer a choice of two battery packs—one of which should be rated at 200 miles of range or more.

SDG&E joins Southern California Edison as the latest utility company to offer discounts on electric cars as California aims for widespread electrification and will need a much bigger grid to support it, though SCE has offered just $450 towards a purchase.

However, the $450 incentive can be applied to new and used electric cars.

Up north, California utility company Pacific Gas & Electric offers $500 towards the purchase of an electric car as well, and is among utilities plotting a bullish course for EV charging infrastructure across the state today.

Two Hawaiian utilities—Kaua'i Island Utility Cooperative and the Hawaiian Electric Company—offered $10,000 rebates similar to those in San Diego from this past January through March.

Those rebates once again were destined for the Nissan Leaf.

SDG&E's program runs through September 30, 2017, or while supplies of the BMW i3 and Nissan Leaf last at participating local dealers.

 

Related News

View more

Sparking change: what Tesla's Model 3 could mean for electric utilities

EV Opportunity for Utilities spans EV charging infrastructure, grid modernization, demand response, time-of-use rates, and customer engagement, enabling predictable load growth, flexible charging, and stronger utility branding amid electrification and resilience challenges.

 

Key Points

It is the strategy to leverage EV adoption for load growth, grid flexibility, and branded charging services.

✅ Monetizes EV load via TOU rates, managed charging, and V2G.

✅ Uses rate-based infrastructure to expand equitable charging access.

✅ Enhances resilience and DER integration through smart grid upgrades.

 

Tesla recently announced delivery of the first 30 production units of its Model 3 electric vehicle (EV). EV technology has generated plenty of buzz in the electric utility industry over the past decade and, with last week’s announcement, it would appear that projections of a significant market presence for EVs could give way to rapid growth.

Tesla’s announcement could not have come at a more critical time for utilities, which face unprecedented challenges. For the past 15 years, utilities have been grappling with increasingly frequent “100-year storms,” including hurricanes, snowstorms and windstorms, underscoring the reality that the grid’s aging infrastructure is not fit to withstand increasingly extreme weather, along with other threats, such as cyber attacks.

Coupled with flat or declining load growth, changing regulations, increasing customer demand, and new technology penetration, these challenges have given the electric utility industry good reason to describe its future as “threatened.” These trends, each exacerbating the others, mean essentially that utilities can no longer rely on traditional ways of doing business.

EVs have significant potential to help relieve the industry’s pessimistic outlook. This article will explore what EV growth could mean for utilities and how they can begin establishing critical foundations today to help ensure their ability to exploit this opportunity.

 

The opportunity

At the Bloomberg New Energy Finance (BNEF) Global Summit 2017, BNEF Advisory Board Chairman Michael Liebreich announced the group’s prediction that electric vehicles will comprise 35-47 percent of new vehicle sales globally by 2040.

U.S. utilities have good reason to be optimistic about this potential new revenue source, as EV-driven demand growth could be substantial according to federal lab analyses. If all 236 million gas-powered cars in the U.S. — average miles driven per year: 12,000 — were replaced with electric vehicles, which travel an average of 100 miles on 34 kWh, they would require 956 billion kWh each year. At a national average cost of $0.12 / kWh, the incremental energy sold by utilities in the U.S. would bring in around $115 billion per year in new revenues. A variety of factors could increase or decrease this number, but it still represents an attractive opportunity for the utility sector.

Capturing this burgeoning market is not simply a matter of increased demand; it will also require utilities to be predictable, adaptable and brandable. Moreover, while the aggregate increase in demand might be only 3-4 percent, demand can come as a flexible and adaptable load through targeted programming. Also, if utilities target the appropriate customer groups, they can brand themselves as the providers of choice for EV charging. The power of stronger branding, in a sector that’s experiencing significant third-party encroachment, could be critical to the ongoing financial health of U.S. utilities.

Many utilities are already keenly aware of the EV opportunity and are speeding down this road (no pun intended) as part of their plans for utility business model reinvention. Following are several questions to be asked when evaluating the EV opportunity.

 

Is the EV opportunity feasible with today’s existing grid?

According to a study conducted by the U.S. Department of Energy’s Pacific Northwest National Laboratory, the grid is already capable of supporting more than 150 million pure electric vehicles, even as electric cars could challenge state grids in the years ahead, a number equal to at least 63 percent of all gas-powered cars on the road today. This is significant, considering that a single EV plugged into a Level 2 charger can double a home’s peak electricity demand. Assuming all 236 million car owners eventually convert to EVs, utilities will need to increase grid capacity. However, today’s grid already has the capacity to accommodate the most optimistic prediction of 35-47 percent EV penetration by 2040, which is great news.

 

Should the EV opportunity be owned by utilities?

There’s significant ongoing debate among regulators and consumer advocacy groups as to whether utilities should own the EV charging infrastructure, with fights for control over charging reflecting broader market concerns today. Those who are opposed to this believe that the utilities will have an unfair pricing advantage that will inhibit competition. Similarly, if the infrastructure is incorporated into the rate base, those who do not own electric vehicles would be subsidizing the cost for those who do.

If the country is going to meet the future demands of electric cars, the charging infrastructure and power grid will need help, and electric utilities are in the best position to address the problem, as states like California explore EVs for grid stability through utility-led initiatives that can scale. By rate basing the charging infrastructure, utilities can provide charging services to a wider range of customers. This would not favor one economic group over another, which many fear would happen if the private sector were to control the EV charging market.

 

If you build it, will they come?

At this point, we can conclude that growth in EV market penetration is a tremendous opportunity for utilities, one that’s most advantageous to electricity customers if utilities own some, if not all, of the charging infrastructure. The question is, if you build it, will they come — and what are the consequences if they don’t?

With any new technology, there’s always a debate centered around adoption timing — in this case, whether to build the infrastructure ahead of demand for EV or wait for adoption to spike. Either choice could have disastrous consequences if not considered properly. If utilities wait for the adoption to spike, their lack of EV charging infrastructure could stunt the growth of the EV sector and leave an opening for third-party providers. Moreover, waiting too long will inhibit GHG emissions reduction efforts and generally complicate EV technology adoption. On the other hand, building too soon could lead to costly stranded assets. Both problems are rooted in the inability to control adoption timing, and, until recently, utilities didn’t have the means or the savvy to influence adoption directly.

 

How should utilities prepare for the EV?

Beyond the challenges of developing the hardware, partnerships and operational programs to accommodate EV, including leveraging energy storage and mobile chargers for added flexibility, influencing the adoption of the infrastructure will be a large part of the challenge. A compelling solution to this problem is to develop an engaged customer base.

A more engaged customer base will enable utilities to brand themselves as preferred EV infrastructure providers and, similarly, empower them to influence the adoption rate. There are five key factors in any sector that influence innovation adoption:

  1. Relative advantage – how improved an innovation is over the previous generation.

  2. Compatibility – the level of compatibility an innovation has with an individual’s life.

  3. Complexity – if the innovation is to difficult to use, individuals will not likely adopt it.

  4. Trialability – how easily an innovation can be experimented with as it’s being adopted.

  5. Observability – the extent that an innovation is visible to others.

Although much of EV adoption will depend on the private vehicle sector influencing these five factors, there’s a huge opportunity for utilities to control the compatibility, complexity and observability of the EV. According to  “The New Energy Consumer: Unleashing Business Value in a Digital World,” utilities can influence customers’ EV adoption through digital customer engagement. Studies show that digitally engaged customers:

  • have stronger interest and greater likelihood to be early EV adopters;

  • are 16 percent more likely to purchase home-based electric vehicle charging stations and installation services;

  • are 17 percent more likely to sign up for financing for home-based electric vehicle charging stations; and

  • increase the adoption of consumer-focused programs.

These findings suggest that if utilities are going to seize the full potential of the EV opportunity, they must start engaging customers now so they can appropriately influence the timing and branding of EV charging assets.

 

How can utilities engage consumers in preparation?

If utilities establish the groundwork to engage customers effectively, they can reduce the risks of waiting for an adoption spike and of building and investing in the asset too soon. To improve customer engagement, utilities need to:

  1. Change their customer conversations from bills, kWh, and outages, to personalized, interesting topics, communicated at appropriate intervals and via appropriate communication channels, to gain customers’ attention.

  2. Establish their roles as trusted advisors by presenting useful, personalized recommendations that benefit customers. These tips should change dynamically with changing customer behavior, or they risk becoming stagnant and redundant, thereby causing customers to lose interest.

  3. Convert the perception of the utility as a monopolistic, inflexible entity to a desirable, consumer-oriented brand through appropriate EV marketing.

It’s critical to understand that this type of engagement strategy doesn’t even have to provide EV-specific messaging at first. It can start by engaging customers through topics that are relevant and unique, through established or evolving customer-facing programs, such as EE, BDR, TOU, HER.

As lines of communication open up between utility and users, utilities can begin to understand their customers’ energy habits on a more granular level. This intelligence can be used by business analysts to help educate program developers on the optimal EV program timing. For example, as customers become interested in services in which EV owners typically enlist, utilities can target them for EV program marketing. As the number of these customers grows, the window for program development opens, and their levels of interest can be used to inform program and marketing timelines.

While all this may seem like an added nuisance to an EV asset development strategy, there’s significant risk of losing this new asset to third-party providers. This is a much greater burden to utilities than spending the time to properly own the EV opportunity.

 

Related News

View more

Electric car market goes zero to 2 million in five years

Electric Vehicle Market Growth accelerated as EV adoption hit 2 million in 2016, per IEA, led by China, Tesla momentum, policy incentives, charging infrastructure buildout, and diesel decline under Paris Agreement goals.

 

Key Points

EV adoption rose to 2 million in 2016, driven by policy, China, and charging buildout, yet still only 0.2% of cars.

✅ 2M EVs on roads in 2016; 60% YoY growth

✅ China led with >40% of global EV sales

✅ Policies target 30% share by 2030 via EVI

 

The number of electric vehicles on the road rocketed to 2 million in 2016 as the age of electric cars accelerates after being virtually non-existent just five years ago, according to the International Energy Agency.

Registered plug-in and battery-powered vehicles on roads worldwide rose 60% from the year before, according to the Global EV Outlook 2017 report from the Paris-based IEA. Despite the rapid growth, electric vehicles still represent just 0.2% of total light-duty vehicles even as U.S. EV sales continue to soar into 2024, suggesting a turning point.

“China was by far the largest electric car market, accounting for more than 40% of the electric cars sold in the world and more than double the amount sold in the United States,” the IEA wrote in the report published Wednesday. “It is undeniable that the current electric car market uptake is largely influenced by the policy environment.”

A multi government program called the Electric Vehicle Initiative on Thursday will set a goal for 30% market share for battery power cars, buses, trucks and vans by 2030, aligning with projections that driving electric cars within a decade could become commonplace, according to IEA. The 10 governments in the initiative include China, France, Germany, the UK and US.

India, which isn’t part of the group, said last month that it plans to sell only electric cars by the end of the next decade. Countries and cities are looking to electric vehicles to help tackle their air pollution problems.

In order to limit global warming to below 2 degrees Celsius (3.6 degrees Fahrenheit), the target set by the landmark Paris Agreement on climate change, the world will need 600 million electric vehicles by 2040, according to the IEA.

After struggling for consumer acceptance, Tesla Inc. has made electric vehicles cool and trendy, and is pushing into the mass market as the United States approaches a tipping point for mass adoption with the new Model 3 sedan.

Consumer interest and charging infrastructure, as well as declining demand for diesel cars in the wake of Volkswagen’s emissions scandal, has spurred massive investments in plug-in cars, and across Europe the share of electric cars grew during virus lockdown months, reinforcing this momentum. An electrical vehicle “cool factor” could spur sales to 450 million by 2035, according to BP chief economist Spencer Dale.

Volkswagen, the world’s largest automaker, plans to roll out four affordable electric vehicles in the coming years as part of a goal to sell more than 2 million battery-powered vehicles a year by 2025. Mercedes-Benz accelerated the introduction of ten new electric vehicles by three years to 2022 to take on Tesla as the dominance of the combustion engine gradually fades. 

 

 

Related News

View more

As Trump ditches Paris, California is one step closer to getting wind power from Wyoming

TransWest Express Power Line will deliver Wyoming wind energy to California via a 730-mile high-voltage corridor, integrating 3,000 MW from the Chokecherry and Sierra Madre project to strengthen the Western grid and decarbonization goals.

 

Key Points

A 730-mile line delivering up to 3,000 MW of Wyoming wind to Western states, improving clean energy reliability.

✅ 3,000 MW from Chokecherry and Sierra Madre turbines

✅ 730-mile route linking Wyoming to CA, AZ, NV markets

✅ Supports 60% by 2030, 100% by 2045 clean mandates

 

A conservative billionaire wants to build America's biggest wind farm in Wyoming and send the clean electricity to California.

Federal officials have approved another section of the 730-mile TransWest Express power line, in line with a renewable transmission rule aimed at speeding upgrades, which would carry energy from Philip Anschutz's Chokecherry and Sierra Madre wind farm to potential customers in California, Arizona and Nevada. The 1,000-turbine, 3,000-megawatt wind project, which has been in the works for a decade, would be built in south-central Wyoming, in one of the windiest spots in the continental U.S.

Supporters say the massive power project would help California meet its clean energy goals, in part because Wyoming winds tend to blow strong into the evening, as the sun sets over the Pacific and the Golden State's many solar farms go offline, though expanding battery storage is starting to fill that gap. Under California law, electric utilities are required to get 50% of their power from renewable sources by 2030. The state Senate passed a bill Wednesday that would raise the clean energy mandate to 60% by 2030 and 100% by 2045.

The Denver-based Anschutz Corporation hasn't inked any contracts to sell the electricity its Wyoming wind farm would generate. But company officials are confident demand will materialize by the time they're ready to build turbines. Construction of roads and other project infrastructure started last year and picked back up in April after a winter hiatus.

The developer has already spent $100 million developing the wind farm and power line, and expects to spend a combined $8 billion on the two projects.

Bill Miller oversees the development of the Anschutz Corporation's Chokecherry and Sierra Madre wind farm in Wyoming, which would send as much as 3,000 megawatts of wind power to California. (Photo: Jay Calderon/The Desert Sun)

After an extensive environmental review, the U.S. Forest Service issued a permit Wednesday for portions of the TransWest Express transmission line that would cross through 19 miles of the Uinta-Wasatch-Cache and Manti-La Sal national forests in Utah.

"It's another step forward in the process of making this line a reality, and being able to provide a path that allows California, Arizona and Nevada to access the high volumes of renewable energy supplies that are available in Wyoming," said Kara Choquette, a spokesperson for the Anschutz subsidiaries developing the power project.

Between the Forest Service approval and a Bureau of Land Management permit issued in December, the developer now has the go-ahead to build about two-thirds of the 730-mile route, Choquette said, progress that comes as the U.S. grid overhaul for renewables accelerates nationwide. Company officials are reaching out to the roughly 450 private landowners along the proposed route. They must also apply for a state permit in Wyoming, and 14 county-level permits in Wyoming, Colorado, Utah and Nevada.

But Anschutz's Chokecherry and Sierra Madre wind farm is a reminder that Trump can't stop the ongoing transition from coal to cleaner sources of energy, which is being driven largely by market forces. Solar, wind and natural gas, which burns more cleanly than coal, are now the cheapest sources of new electricity across much of the country, even as Texas grid constraints sometimes force High Plains turbines to shut down during oversupply. Utility industry executives are abandoning coal and embracing renewable energy. And the American solar industry employs more people than coal or natural gas.

States and local governments in California, New York and elsewhere have also forged ahead with policies to reduce climate emissions, including New York's largest offshore wind project recently approved. So have major companies like Apple, Facebook and Google, which have invested billions of dollars in renewable energy.

"The (Trump) administration is so out of step with reality right now. The trend is powerful, whether it's coming the cities or corporations, or from the coastal states," said Don Furman, a former utility executive who now advocates for greater sharing of renewable energy across state lines in the West.

Turbines at Duke Energy's Happy Jack wind farm near Cheyenne, Wyoming generate electricity on Dec. 6, 2016. (Photo: Jay Calderon/The Desert Sun)

Clean energy advocates say the 3,000-megawatt Wyoming wind farm is an especially powerful example of the economic case for renewable energy, because its proprietor is Anschutz, a longtime fossil fuel magnate and major donor to Republican politicians.

"I don't think Philip Anschutz would be putting his money here if he thought this was a bad business bet," Furman said.

The Forest Service also issued a permit Wednesday for the 416-mile Energy Gateway South power line, which would run through Wyoming, Colorado and Utah, traversing nine miles of the same national forests TransWest Express would cross. Gateway South is part of the 1,900-mile Energy Gateway transmission project being developed by Warren Buffett's PacifiCorp utility, which serves customers across six western states.

PacifiCorp officials say the $6 billion transmission project is needed to meet growing electricity demand. They've also pitched the power lines as another opportunity to transmit wind power from Wyoming to California and other coastal states. Critics, though, see Energy Gateway as costly and unnecessary — and they're worried Californians would end up paying the price through higher electricity rates.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified