Tesla’s lead battery expert hired by Uber to help power its ‘flying car’ service


flying car

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Uber Elevate eVTOL Batteries enable electric air taxis with advanced energy storage, lithium-ion cell quality, safety engineering, and zero-emissions performance for urban air mobility, ride-hailing aviation, and scalable battery pack development.

 

Key Points

Battery systems for Uber's electric air taxis, maximizing energy density, safety, and cycle life for urban air mobility.

✅ Ex-Tesla battery leader guides pack design and cell quality

✅ All-electric eVTOL targets zero-emissions urban air mobility

✅ Focus on safety, energy density, fast charge, and lifecycle

 

Celina Mikolajczak, a senior manager for battery pack development at Tesla, has been hired by Uber to help the ride-hail company’s “flying car” project get off the ground. It’s an important hire because it signals that Uber plans to get more involved in the engineering aspects of this outlandish-sounding project.

For six years, Mikolajczak served as senior manager and technical lead for battery technology, cell quality, and materials analysis. She worked with Tesla’s suppliers, tested the car company’s lithium-ion batteries for long-term use as the age of electric cars accelerates, oversaw quality assurance, and conducted “failure analysis” to drive battery cell production and design improvements. In other words, Mikolajczak was in charge of making sure the most crucial component in Tesla’s entire assembly line was top of the line.

Now she works for Uber — and not just for Uber, but for Uber Elevate, the absurdly ambitious air taxi service that hinges on the successful development of electric vertical take-off and landing (eVTOL) vehicles. There are practically zero electric planes in service today, and definitely none being used in a commercial ride-hail service. The hurdles to getting this type of service off the ground are enormous.

Her title at Uber is director of engineering and energy storage systems, and today marks her first week on the job. She joins Mark Moore, the former chief technologist for on-demand mobility at NASA’s Langley Research Center, who joined Uber almost a year ago to help lend a professional appearance to Elevate. Both serve under Jeff Holden, Uber’s head of product, who oversees the air taxi project.

Uber first introduced its plan to bring ride-sharing to the skies in a white paper last year. At the time, Uber said it wasn’t going to build its own eVTOL aircraft, but stood ready to “contribute to the nascent but growing VTOL ecosystem and to start to play whatever role is most helpful to accelerate this industry’s development.”

Instead, Uber said it would be partnering with a handful of aircraft manufacturers, real estate firms, and government regulators to better its chances of developing a fully functional, on-demand flying taxi service. It held a day-long conference on the project in Dallas in April, and plans to convene another one later this year in Los Angeles. In 2020, Uber says its aerial service will take off in three cities: LA, Dallas-Fort Worth, and Dubai.

 

UBER’S TAKING A MORE PROMINENT ROLE

Now, Uber’s taking a more prominent role in the design and manufacturing of its fleet of air taxis, which signals a stronger commitment to making this a reality — and also more of a responsibility if things eventually go south, as setbacks like Eviation's collapse underscore.

Perhaps most ambitiously, Uber says the aircraft it plans to use (but, importantly, do not exist yet) will run on pure battery-electric power, and not any hybrid of gasoline and electricity. Most of the companies exploring eVTOL admit that battery’s today aren’t light enough or powerful enough to sustain flights longer than just a few minutes, but many believe that battery technology will eventually catch up, with Elon Musk suggesting a three-year timeline for cheaper, more powerful cells.

Uber believes that in order to sustain a massive-scale new form of transportation, it will need to commit to an all-electric, zero-operational emissions approach from the start, even as potential constraints threaten the EV boom overall. And since the technology isn’t where it needs to be yet, the ride-hail company is taking a more prominent role in the development of the battery pack for its air taxi vehicles. Mikolajczak certainly has her work cut out for her.

 

Related News

Related News

Student group asking government for incentives on electric cars

PEI Electric Vehicle Incentives aim to boost EV adoption through subsidies and rebates, advocated by Renewable Transport PEI, with MLAs engagement, modeling Norway's approach, offsetting HST gaps, and making electric cars more competitive for Islanders.

 

Key Points

PEI Electric Vehicle Incentives are proposed subsidies and rebates to make EVs affordable and competitive for Islanders.

✅ Targets EV adoption with rebates up to 20 percent

✅ Modeled on Norway policies; offsets prior HST-era gaps

✅ Backed by Renewable Transport PEI engaging MLAs

 

Noah Ellis, assistant director of Renewable Transport P.E.I., is asking government to introduce incentives for Islanders to buy electric cars, as cost barriers remain a key hurdle for many.

RTPEI is a group composed of high school students at Colonel Gray going into their final year."We wanted to give back and contribute to our community and our country and we thought this would be a good way to do so," Ellis told Compass.

 

Meeting with government

"We want to see the government bring in incentives for electric vehicles, similar to New Brunswick's rebate program, because it would make them more competitive with their gasoline counterparts," Ellis said.

'We wanted to give back and contribute to our community … we thought this would be a good way to do so.'— Noah Ellis

Ellis said the group has spoken with opposition MLAs and is meeting with cabinet ministers soon to discuss subsidies for Islanders to buy electric cars, noting that Atlantic Canadians are less inclined to buy EVs compared to the rest of the country.

He referred to Norway as a prime example for the province to model potential incentives, even as Labrador's EV infrastructure gaps underscore regional challenges — a country that, as of last year, announced nearly 40 per cent of the nation's newly registered passenger vehicles as electric powered.

'Incentives that are fiscally responsible'

Ellis said they group isn't looking for anything less than a 20 per cent incentive on electric vehicles — 10 per cent higher than the provinces cancelled hybrid car tax rebate that existed prior to HST.

"Electric vehicle incentives do work we just have to work with economists and environmentalists, and address critics of EV subsidies, to find the right balance of incentives that are fiscally responsible for the province but will also be effective," Ellis said.

 

Related News

View more

Deepwater Wind Eyeing Massachusetts’ South Coast for Major Offshore Wind Construction Activity

Revolution Wind Massachusetts will assemble turbine foundations in New Bedford, Fall River, or Somerset, building a local offshore wind supply chain, creating regional jobs, and leveraging pumped storage and an offshore transmission backbone.

 

Key Points

An offshore wind project assembling MA foundations, building a local supply chain, jobs, and peak clean power.

✅ 400 MW offshore wind; local fabrication of 1,500-ton foundations

✅ 300+ direct jobs, 600 indirect; MA crew vessel builds and operations

✅ Expandable offshore transmission; pumped storage for peak power

 

Deepwater Wind will assemble the wind turbine foundations for its Revolution Wind in Massachusetts, and it has identified three South Coast cities – New Bedford, Fall River and Somerset – as possible locations for this major fabrication activity, the company is announcing today.

Deepwater Wind is committed to building a local workforce and supply chain for its 400-megawatt Revolution Wind project, now under review by state and utility officials as Massachusetts advances projects like Vineyard Wind statewide.

“No company is more committed to building a local offshore wind workforce than us,” said Deepwater Wind CEO Jeffrey Grybowski. “We launched America’s offshore wind industry right here in our backyard. We know how to build offshore wind in the U.S. in the right way, and our smart approach will be the most affordable solution for the Commonwealth. This is about building a real industry that lasts.”

#google#

The construction activity will involve welding, assembly, painting, commissioning and related work for the 1,500-ton steel foundations supporting the turbine towers. This foundation-related work will create more than 300 direct jobs for local construction workers during Revolution Wind’s construction period. An additional 600 indirect and induced jobs will support this effort.

In addition, Deepwater Wind is now actively seeking proposals from Massachusetts boat builders for the construction of purpose-built crew vessels for Revolution Wind. Several dozen workers are expected to build the first of these vessels at a local boat-building facility, and another dozen workers will operate this specialty vessel over the life of Revolution Wind. (Deepwater Wind commissioned America’s only offshore wind crew vessel – Atlantic Wind Transfer’s Atlantic Pioneer – to serve the Block Island Wind Farm.)

The company will issue a formal Request for Information to local suppliers in the coming weeks. Deepwater Wind’s additional wind farms serving Massachusetts will require the construction of additional vessels, as will growth along Long Island’s South Shore in the coming years.

These commitments are in addition to Deepwater Wind’s previously-announced plans to use the New Bedford Marine Commerce Terminal for significant construction and staging operations, and to pay $500,000 per year to the New Bedford Port Authority to use the facility. During construction, the turbine marshaling activity in New Bedford is expected to support approximately 700 direct regional construction jobs.

“Deepwater Wind is building a sustainable industry on the South Coast of Massachusetts,” said Matthew Morrissey, Deepwater Wind Vice President Massachusetts. “With Revolution Wind, we are demonstrating that we can build the industry in Massachusetts while enhancing competition and keeping costs low.”

The Revolution Wind project will be built in Deepwater Wind’s federal lease site, under the BOEM lease process, southwest of Martha’s Vineyard. If approved, local construction work on Revolution Wind would begin in 2020, with the project in operations in 2023. Survey work is already underway at Deepwater Wind’s offshore lease area.

Revolution Wind will deliver “baseload” power, allowing a utility-scale renewable energy project for the first time to replace the retiring fossil fuel-fired power plants closing across the region, a transition echoed by Vineyard Wind’s first power milestones elsewhere.

Revolution Wind will be capable of delivering clean energy to Massachusetts utilities when it’s needed most, during peak hours of demand on the regional electric grid. A partnership with FirstLight Power, using its Northfield Mountain hydroelectric pumped storage in Northfield, Massachusetts, makes this peak power offering possible. This is the largest pairing of hydroelectric pumped storage and offshore wind in the world.

The Revolution Wind offshore wind farm will also be paired with a first-of-its-kind offshore transmission backbone. Deepwater Wind is partnering with National Grid Ventures on an expandable offshore transmission network that supports not just Revolution Wind, but also future offshore wind farms, as New York’s biggest offshore wind farm moves forward across the region, even if they’re built by our competitors.

This cooperation is in the best interest of Massachusetts electric customers because it will reduce the amount of electrical infrastructure needed to support the state’s 1,600 MW offshore wind goal. Instead of each subsequent developer building its own standalone cable network, other offshore wind companies could use expandable infrastructure already installed for Revolution Wind, reducing project costs and saving ratepayers money.

 

 

Related News

View more

Clean energy stored in electric vehicles to power buildings

Vehicle-to-Grid (V2G) enables bidirectional charging, letting EV batteries supply smart grid services to large buildings, support renewable energy integration, reduce battery degradation, and optimize demand response for efficient, resilient power management.

 

Key Points

Vehicle-to-Grid (V2G) is bidirectional EV charging that feeds the grid and buildings while protecting battery health.

✅ Uses idle EVs to power buildings and support renewables

✅ Smart algorithms minimize lithium-ion battery degradation

✅ Provides grid services, demand response, and peak shaving

 

Stored energy from electric vehicles (EVs) can be used to power large buildings -- creating new possibilities for the future of smart, renewable energy -- thanks to ground-breaking battery research from WMG at the University of Warwick.

Dr Kotub Uddin, with colleagues from WMG's Energy and Electrical Systems group and Jaguar Land Rover, has demonstrated that vehicle-to-grid (V2G) technology can be intelligently utilised to take enough energy from idle EV batteries to be pumped into the grid and power buildings -- without damaging the batteries.

This new research into the potentials of V2G shows that it could actually improve vehicle battery life by around ten percent over a year.

For two years, Dr Uddin's team analysed some of the world's most advanced lithium ion batteries used in commercially available EVs -- and created one of the most accurate battery degradation models existing in the public domain -- to predict battery capacity and power fade over time, under various ageing acceleration factors -- including temperature, state of charge, current and depth of discharge.

Using this validated degradation model, Dr Uddin developed a 'smart grid' algorithm, which supports grid coordination and intelligently calculates how much energy a vehicle requires to carry out daily journeys, and -- crucially -- how much energy can be taken from its battery without negatively affecting it, or even improving its longevity.

The researchers used their 'smart grid' algorithm to see if they could power WMG's International Digital Laboratory -- a large, busy building which contains a 100-seater auditorium, two electrical laboratories, teaching laboratories, meeting rooms, and houses approximately 360 staff -- with vehicle-to-building charging from EVs parked on the University of Warwick campus.

They worked out that the number of EVs parked on the campus (around 2.1% of cars, in line with the UK market share of EVs) could spare the energy to power this building, acting as capacity on wheels for electricity networks -- and that in doing so, capacity fade in participant EV batteries would be reduced by up to 9.1%, and power fade by up to 12.1% over a year.

It has previously been thought that extracting energy from EVs with V2G technology causes their lithium ion batteries to degrade more rapidly.

Dr Uddin's group (along with collaborators from Jaguar Land Rover) have proved, however, that battery degradation is more complex -- and this complexity, in operation, can be exploited to improve a battery's lifetime.

Given that battery degradation is dependent on calendar age, capacity throughput, temperature, state of charge, current and depth of discharge, V2G is an effective tool that can be used to optimise a battery's conditions such that degradation is minimised. Hence, taking excess energy from an idle EV to power the grid actually keeps the battery healthier for longer.

Dr Uddin commented on the research:

"These findings reinforce the attractiveness of vehicle-to-grid technologies to automotive Original Equipment Manufacturers: not only is vehicle-to-grid an effective solution for grid support -- and subsequently a tidy revenue stream -- but we have shown that there is a real possibility of extending the lifetime of traction batteries in tandem.

"The results are also appealing to policy makers interested in grid decarbonisation and addressing grid challenges from rising EVs across power systems."

The research, 'On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system' is published in Energy.

It was funded by the Engineering and Physical Sciences Research Council and the WMG centre High Value Manufacturing Catapult, in partnership with Jaguar Land Rover.

 

Related News

View more

Israeli ministries order further reduction in coal use

Israel Coal Reduction accelerates the energy transition, cutting coal use in electricity production by 30% as IEC shifts to natural gas, retires Hadera units, and targets a 2030 phase-out to lower emissions.

 

Key Points

Plan to cut coal power by 30%, retire IEC units, and end coal by 2030, shifting electricity generation to natural gas.

✅ 30% immediate cut in coal use for electricity by IEC

✅ Hadera units scheduled for retirement and gas replacement by 2022

✅ Complete phase-out of coal and gasoil in power by 2030

 

Israel's Energy and Water and Environmental Protection Ministers have ordered an immediate 30% reduction in coal use for electricity production by state utility Israel Electric Corporation as the country increases its dependence on domestic natural gas.

IEC, which operates four coal power plants with a total capacity of 4,850 MW and imports thermal coal from Australia, Colombia, Russia and South Africa, has been planning, as part of the decision to reduce coal use, to shut one of its coal plants during autumn 2018, when demand is lowest.

Israel has already decided to shut the four units of the oldest coal power plant at Hadera by 2022, echoing Britain's coal-free week milestones, and replace the capacity with gas plants.

"By 2030 Israel will completely stop the use of coal and gasoil in electricity production," minister Yuval Steinmetz said.

Coal consumption peaked in 2012 at 14 million mt and has declined steadily, aligning with global trends where renewables poised to eclipse coal in power generation, with the coming on line of Israel's huge Tamar offshore gas field in 2013.

In 2015 coal accounted for more than 50% of electricity production, even as German renewables outpaced coal in generation across that market. Coal's share would decline to less than 30% under the latest decision.

Israel's coal consumption in 2016 totaled 8.7 million mt, as India rationed coal supplies amid surging demand, and was due to decline to 8 million mt last year.

Three years ago, the ministers ordered a 15% reduction in coal use, while Germany's coal generation share remained significant, and the following year a further 5% cut was added.

 

Related News

View more

Electric car market goes zero to 2 million in five years

Electric Vehicle Market Growth accelerated as EV adoption hit 2 million in 2016, per IEA, led by China, Tesla momentum, policy incentives, charging infrastructure buildout, and diesel decline under Paris Agreement goals.

 

Key Points

EV adoption rose to 2 million in 2016, driven by policy, China, and charging buildout, yet still only 0.2% of cars.

✅ 2M EVs on roads in 2016; 60% YoY growth

✅ China led with >40% of global EV sales

✅ Policies target 30% share by 2030 via EVI

 

The number of electric vehicles on the road rocketed to 2 million in 2016 as the age of electric cars accelerates after being virtually non-existent just five years ago, according to the International Energy Agency.

Registered plug-in and battery-powered vehicles on roads worldwide rose 60% from the year before, according to the Global EV Outlook 2017 report from the Paris-based IEA. Despite the rapid growth, electric vehicles still represent just 0.2% of total light-duty vehicles even as U.S. EV sales continue to soar into 2024, suggesting a turning point.

“China was by far the largest electric car market, accounting for more than 40% of the electric cars sold in the world and more than double the amount sold in the United States,” the IEA wrote in the report published Wednesday. “It is undeniable that the current electric car market uptake is largely influenced by the policy environment.”

A multi government program called the Electric Vehicle Initiative on Thursday will set a goal for 30% market share for battery power cars, buses, trucks and vans by 2030, aligning with projections that driving electric cars within a decade could become commonplace, according to IEA. The 10 governments in the initiative include China, France, Germany, the UK and US.

India, which isn’t part of the group, said last month that it plans to sell only electric cars by the end of the next decade. Countries and cities are looking to electric vehicles to help tackle their air pollution problems.

In order to limit global warming to below 2 degrees Celsius (3.6 degrees Fahrenheit), the target set by the landmark Paris Agreement on climate change, the world will need 600 million electric vehicles by 2040, according to the IEA.

After struggling for consumer acceptance, Tesla Inc. has made electric vehicles cool and trendy, and is pushing into the mass market as the United States approaches a tipping point for mass adoption with the new Model 3 sedan.

Consumer interest and charging infrastructure, as well as declining demand for diesel cars in the wake of Volkswagen’s emissions scandal, has spurred massive investments in plug-in cars, and across Europe the share of electric cars grew during virus lockdown months, reinforcing this momentum. An electrical vehicle “cool factor” could spur sales to 450 million by 2035, according to BP chief economist Spencer Dale.

Volkswagen, the world’s largest automaker, plans to roll out four affordable electric vehicles in the coming years as part of a goal to sell more than 2 million battery-powered vehicles a year by 2025. Mercedes-Benz accelerated the introduction of ten new electric vehicles by three years to 2022 to take on Tesla as the dominance of the combustion engine gradually fades. 

 

 

Related News

View more

Premier warns NDP, Greens that delaying Site C dam could cost $600M

Site C Project Delay raises BC Hydro costs as Christy Clark warns $600 million impact; NDP and Greens seek BCUC review of the hydroelectric dam on the Peace River, challenging evictions and construction contracts.

 

Key Points

A potential slowdown of B.C.'s Site C dam, risking $600M overruns, evictions, and schedule delays pending a BCUC review.

✅ Clark warns $600M cost if river diversion slips a year

✅ NDP-Green seek BCUC review; request to pause contracts, evictions

✅ Peace River hydro dam; schedule critical to budget, ratepayers

 

Premier Christy Clark is warning the NDP and Greens that delaying work on the Site C project in northeast British Columbia could cost taxpayers $600 million.

NDP Leader John Horgan wrote to BC Hydro last week asking it to suspend the evictions of two homeowners and urging it not to sign any new contracts on the $8.6-billion hydroelectric dam until a new government has gained the confidence of the legislature.

But Clark says in letters sent to Horgan and Green Leader Andrew Weaver on Tuesday that the evictions are necessary as part of a road and bridge construction project that are needed to divert a river in September 2019.

Any delay could postpone the diversion by a year and cost taxpayers hundreds of millions of dollars, she says.

“With a project of this size and scale, keeping to a tight schedule is critical to delivering a completed project on time and on budget,” she says. “The requests contained in your letter are not without consequences to the construction schedule and ultimately have financial ramifications to ratepayers.”

The premier has asked Horgan and Weaver to reply by Saturday on whether they still want to put the evictions on hold.

She also asks whether they want the government to issue a “tools down” request to BC Hydro on other decisions that she says are essential to maintaining the budget and construction schedule.

An agreement between the NDP and Green party was signed last week that would allow the New Democrats to form a minority government, ousting Clark's Liberals.

The agreement includes a promise to refer the Site C project to the B.C. Utilities Commission to determine its economic viability.

Some analysts argue that better B.C.-Alberta power integration could improve climate outcomes and market flexibility.

But Clark says the project is likely to progress past the “point of no return” before a review can be completed.

Clark did not define what she meant by “point of no return,” nor did she explain how she reached the $600-million figure. Her press secretary Stephen Smart referred questions to BC Hydro, which did not immediately respond.

During prolonged drought conditions, BC Hydro has had to adapt power generation across the province, affecting planning assumptions.

In a written response to Clark, Weaver says before he can comment on her assertions he requires access to supporting evidence, including signed contracts, the project schedule and potential alternative project timelines.

“Please let me express my disappointment in how your government is choosing to proceed with this project,” he says.

“Your government is turning a significant capital project that potentially poses massive economic risks to British Columbians into a political debate rather than one informed by evidence and supported by independent analysis.”

The dam will be the third on the Peace River, flooding an 83-kilometre stretch of valley, and local First Nations, landowners and farmers have fiercely opposed the project.

Construction began two years ago.

A report written by University of British Columbia researchers in April argued it wasn't too late to press pause on the project and that the electricity produced by Site C won't be fully required for nearly a decade after it's complete.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified