Smart Grid Solutions Using ProFieldMETER™ Technology


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

SGS AMI Deployment delivers Advanced Metering Infrastructure for Con Edison and O&R, installing smart meters, gas modules, and a territory-wide communications network with ProFieldMETER across NYC, Westchester, and northern New Jersey.

 

Key Points

SGS project deploying smart meters and AMI network for Con Edison and O&R across NYC, Westchester, and northern NJ.

✅ 3.9M electric and 1.3M gas meters across NY and NJ

✅ ProFieldMETER and AMI communications network integration

✅ Con Edison and O&R territories: NYC, Westchester, northern NJ

 

Smart Grid Solutions (SGS) has been awarded a contract by Consolidated Edison Company of NY, Inc. and Orange & Rockland (O&R) Utilities, Inc., both regulated operating companies of Consolidated Edison, Inc. (NYSE: ED), to install electric smart meters and gas smart modules.

The contract also includes building the supporting communications network for territory-wide coverage using SGS's industry-leading ProFieldMETER technology, a key component alongside digital transformer stations in modern grids.

The contract is part of a landmark plan to deploy Advanced Metering Infrastructure (AMI) across Consolidated Edison Inc.'s service territory, which covers New York City and Westchester County, and Orange & Rockland's service territory, which includes those two New York counties, as well as adjacent parts of northern New Jersey. Approximately 3.9 million electric meters and 1.3 million gas meters are involved.

Similar smart city efforts, such as Spokane's grid-out approach, illustrate how modern grid deployments support broader urban innovation.

"Being selected for the largest, most comprehensive smart grid project awarded since SGS introduced its innovative ProField technology cements its premier position in the smart grid industry," says Shashi Gupta, Chief Executive Officer of SGS.

"We felt that the technology being offered by SGS would integrate seamlessly into our existing processes and help ensure that safety and productivity remain a priority for Consolidated Edison," says Tom Magee, General Manager of the AMI Implementation team.

 

Related News

Related News

US Government Condemns Russia for Power Grid Hacking

Russian Cyberattacks on U.S. Critical Infrastructure target energy grids, nuclear plants, water systems, and aviation, DHS and FBI warn, using spear phishing, malware, and ICS/SCADA intrusion to gain footholds for potential sabotage and disruption.

 

Key Points

State-backed hacks targeting U.S. energy, nuclear, water and aviation via phishing and ICS access for sabotage.

✅ DHS and FBI detail multi-stage intrusion since 2016

✅ Targets include energy, nuclear, water, aviation, manufacturing

✅ TTPs: spear phishing, lateral movement, ICS reconnaissance

 

Russia is attacking the U.S. energy grid, with reported power plant breaches unfolding alongside attacks on nuclear facilities, water processing plants, aviation systems, and other critical infrastructure that millions of Americans rely on, according to a new joint analysis by the FBI and the Department of Homeland Security.

In an unprecedented alert, the US Department of Homeland Security (DHS) and FBI have warned of persistent attacks by Russian government hackers on critical US government sectors, including energy, nuclear, commercial facilities, water, aviation and manufacturing.

The alert details numerous attempts extending back to March 2016 when Russian cyber operatives targeted US government and infrastructure.

The DHS and FBI said: “DHS and FBI characterise this activity as a multi-stage intrusion campaign by Russian government cyber-actors who targeted small commercial facilities’ networks, where they staged malware, conducted spear phishing and gained remote access into energy sector networks.

“After obtaining access, the Russian government cyber-actors conducted network reconnaissance, moved laterally and collected information pertaining to industrial control systems.”

The Trump administration has accused Russia of engineering a series of cyberattacks that targeted American and European nuclear power plants and water and electric systems, and could have sabotaged or shut power plants off at will.

#google#

United States officials and private security firms saw the attacks as a signal by Moscow that it could disrupt the West’s critical facilities in the event of a conflict.

They said the strikes accelerated in late 2015, at the same time the Russian interference in the American election was underway. The attackers had compromised some operators in North America and Europe by spring 2017, after President Trump was inaugurated.

In the following months, according to the DHS/FBI report, Russian hackers made their way to machines with access to utility control rooms and critical control systems at power plants that were not identified. The hackers never went so far as to sabotage or shut down the computer systems that guide the operations of the plants.

Still, new computer screenshots released by the Department of Homeland Security have made clear that Russian state hackers had the foothold they would have needed to manipulate or shut down power plants.

“We now have evidence they’re sitting on the machines, connected to industrial control infrastructure, that allow them to effectively turn the power off or effect sabotage,” said Eric Chien, a security technology director at Symantec, a digital security firm.

“From what we can see, they were there. They have the ability to shut the power off. All that’s missing is some political motivation,” Mr. Chien said.

American intelligence agencies were aware of the attacks for the past year and a half, and the Department of Homeland Security and the F.B.I. first issued urgent warnings to utility companies in June, 2017. Both DHS/FBI have now offered new details as the Trump administration imposed sanctions against Russian individuals and organizations it accused of election meddling and “malicious cyberattacks.”

It was the first time the administration officially named Russia as the perpetrator of the assaults. And it marked the third time in recent months that the White House, departing from its usual reluctance to publicly reveal intelligence, blamed foreign government forces for attacks on infrastructure in the United States.

In December, the White House said North Korea had carried out the so-called WannaCry attack that in May paralyzed the British health system and placed ransomware in computers in schools, businesses and homes across the world. Last month, it accused Russia of being behind the NotPetya attack against Ukraine last June, the largest in a series of cyberattacks on Ukraine to date, paralyzing the country’s government agencies and financial systems.

But the penalties have been light. So far, President Trump has said little to nothing about the Russian role in those attacks.

The groups that conducted the energy attacks, which are linked to Russian intelligence agencies, appear to be different from the two hacking groups that were involved in the election interference.

That would suggest that at least three separate Russian cyberoperations were underway simultaneously. One focused on stealing documents from the Democratic National Committee and other political groups. Another, by a St. Petersburg “troll farm” known as the Internet Research Agency, used social media to sow discord and division. A third effort sought to burrow into the infrastructure of American and European nations.

For years, American intelligence officials tracked a number of Russian state-sponsored hacking units as they successfully penetrated the computer networks of critical infrastructure operators across North America and Europe, including in Ukraine.

Some of the units worked inside Russia’s Federal Security Service, the K.G.B. successor known by its Russian acronym, F.S.B.; others were embedded in the Russian military intelligence agency, known as the G.R.U. Still others were made up of Russian contractors working at the behest of Moscow.

Russian cyberattacks surged last year, starting three months after Mr. Trump took office.

American officials and private cybersecurity experts uncovered a series of Russian attacks aimed at the energy, water and aviation sectors and critical manufacturing, including nuclear plants, in the United States and Europe. In its urgent report in June, the Department of Homeland Security and the F.B.I. notified operators about the attacks but stopped short of identifying Russia as the culprit.

By then, Russian spies had compromised the business networks of several American energy, water and nuclear plants, mapping out their corporate structures and computer networks.

They included that of the Wolf Creek Nuclear Operating Corporation, which runs a nuclear plant near Burlington, Kan. But in that case, and those of other nuclear operators, Russian hackers had not leapt from the company’s business networks into the nuclear plant controls.

Forensic analysis suggested that Russian spies were looking for inroads — although it was not clear whether the goal was to conduct espionage or sabotage, or to trigger an explosion of some kind.

In a report made public in October, Symantec noted that a Russian hacking unit “appears to be interested in both learning how energy facilities operate and also gaining access to operational systems themselves, to the extent that the group now potentially has the ability to sabotage or gain control of these systems should it decide to do so.”

The United States sometimes does the same thing. It bored deeply into Iran’s infrastructure before the 2015 nuclear accord, placing digital “implants” in systems that would enable it to bring down power grids, command-and-control systems and other infrastructure in case a conflict broke out. The operation was code-named “Nitro Zeus,” and its revelation made clear that getting into the critical infrastructure of adversaries is now a standard element of preparing for possible conflict.

 


Reconstructed screenshot fragments of a Human Machine Interface that the threat actors accessed, according to DHS


Sanctions Announced

The US treasury department has imposed sanctions on 19 Russian people and five groups, including Moscow’s intelligence services, for meddling in the US 2016 presidential election and other malicious cyberattacks.

Russia, for its part, has vowed to retaliate against the new sanctions.

The new sanctions focus on five Russian groups, including the Russian Federal Security Service, the country’s military intelligence apparatus, and the digital propaganda outfit called the Internet Research Agency, as well as 19 people, some of them named in the indictment related to election meddling released by special counsel Robert Mueller last month.

In announcing the sanctions, which will generally ban U.S. people and financial institutions from doing business with those people and groups, the Treasury Department pointed to alleged Russian election meddling, involvement in the infrastructure hacks, and the NotPetya malware, which the Treasury Department called “the most destructive and costly cyberattack in history.”

The new sanctions come amid ongoing criticism of the Trump administration’s reluctance to punish Russia for cyber and election meddling. Sen. Mark Warner (D-Va.) said that, ahead of the 2018 mid-term elections, the administration’s decision was long overdue but not enough. “Nearly all of the entities and individuals who were sanctioned today were either previously under sanction during the Obama Administration, or had already been charged with federal crimes by the Special Counsel,” Warner said.

 

Warning: The Russians Are Coming

In an updated warning to utility companies, DHS/FBI officials included a screenshot taken by Russian operatives that proved they could now gain access to their victims’ critical controls, prompting a renewed focus on protecting the U.S. power grid among operators.

American officials and security firms, including Symantec and CrowdStrike, believe that Russian attacks on the Ukrainian power grid in 2015 and 2016 that left more than 200,000 citizens there in the dark are an ominous sign of what the Russian cyberstrikes may portend in the United States and Europe in the event of escalating hostilities.

Private security firms have tracked the Russian government assaults on Western power and energy operators — conducted alternately by groups under the names Dragonfly campaigns alongside Energetic Bear and Berserk Bear — since 2011, when they first started targeting defense and aviation companies in the United States and Canada.

By 2013, researchers had tied the Russian hackers to hundreds of attacks on the U.S. power grid and oil and gas pipeline operators in the United States and Europe. Initially, the strikes appeared to be motivated by industrial espionage — a natural conclusion at the time, researchers said, given the importance of Russia’s oil and gas industry.

But by December 2015, the Russian hacks had taken an aggressive turn. The attacks were no longer aimed at intelligence gathering, but at potentially sabotaging or shutting down plant operations.

At Symantec, researchers discovered that Russian hackers had begun taking screenshots of the machinery used in energy and nuclear plants, and stealing detailed descriptions of how they operated — suggesting they were conducting reconnaissance for a future attack.

Eventhough the US government enacted sanctions, cybersecurity experts are still questioning where the Russian attacks could lead, given that the United States was sure to respond in kind.

“Russia certainly has the technical capability to do damage, as it demonstrated in the Ukraine,” said Eric Cornelius, a cybersecurity expert at Cylance, a private security firm, who previously assessed critical infrastructure threats for the Department of Homeland Security during the Obama administration.

“It is unclear what their perceived benefit would be from causing damage on U.S. soil, especially given the retaliation it would provoke,” Mr. Cornelius said.

Though a major step toward deterrence, publicly naming countries accused of cyberattacks still is unlikely to shame them into stopping. The United States is struggling to come up with proportionate responses to the wide variety of cyberespionage, vandalism and outright attacks.

Lt. Gen. Paul Nakasone, who has been nominated as director of the National Security Agency and commander of United States Cyber Command, the military’s cyberunit, said during his recent Senate confirmation hearing, that countries attacking the United States so far have little to worry about.

“I would say right now they do not think much will happen to them,” General Nakasone said. He later added, “They don’t fear us.”

 

 

Related News

View more

French Price-Fixing Probe: Schneider, Legrand, Rexel, and Sonepar Fined

French Antitrust Fines for Electrical Cartel expose price fixing by Schneider Electric, Legrand, Rexel, and Sonepar, after a Competition Authority probe into electrical distribution, collusion, and compliance breaches impacting market competition and customers.

 

Key Points

Penalties on Schneider Electric, Legrand, Rexel, and Sonepar for electrical price fixing, upholding competition law.

✅ Competition Authority fined four major suppliers.

✅ Collusion raised prices across construction and industry.

✅ Firms bolster compliance programs and training.

 

In a significant crackdown on corporate malfeasance, French authorities have imposed hefty fines on four major electrical equipment companies—Schneider Electric, Legrand, Rexel, and Sonepar—after concluding a price-fixing investigation. The total fines amount to approximately €500 million, underscoring the seriousness with which regulators are addressing anti-competitive practices in the electrical distribution sector, even as France advances a new electricity pricing scheme to address EU concerns.

Background of the Investigation

The probe, initiated by France’s Competition Authority, sought to uncover collusion among these leading firms regarding the pricing of electrical equipment and services between 2005 and 2012. This investigation is part of a broader initiative to promote fair competition within the market, as Europe prepares to revamp its electricity market to bolster transparency, ensuring that consumers and businesses alike benefit from competitive pricing and innovative products.

The inquiry revealed that these companies had engaged in illicit agreements to fix prices and coordinate their market strategies, limiting competition in a sector critical to both the economy and infrastructure. The findings indicated that the collusion not only stifled competition but also led to inflated prices for customers, illustrating why rolling back electricity prices is often more complex than it appears for customers across various sectors, from construction to manufacturing.

The Fines Imposed

Following the conclusion of the investigation, the fines levied against the companies were substantial. Schneider Electric faced the largest penalty, receiving a fine of €220 million, while Legrand was fined €150 million. Rexel and Sonepar were each fined €70 million and €50 million, respectively. These financial penalties serve as a deterrent to other companies that might consider engaging in similar practices, reinforcing the message that anti-competitive behavior will not be tolerated.

The fines are particularly significant given the size and influence of these companies within the electrical equipment market. Their combined revenues amount to billions of euros annually, making the repercussions of their actions far-reaching. As major players in the industry, their pricing strategies have a direct impact on numerous sectors, from residential construction to large-scale industrial projects.

Industry Reactions

The response from the affected companies has varied. Schneider Electric expressed its commitment to compliance and transparency, acknowledging the importance of adhering to competition laws, amid ongoing EU electricity reform debates that influence market expectations.

Legrand also emphasized its commitment to fair competition, noting that it has taken steps to enhance its compliance framework in response to the investigation. Rexel and Sonepar similarly reaffirmed their dedication to ethical business practices and their intention to cooperate with regulators in the future.

Industry experts have pointed out that these fines, while significant, may not be enough to deter large corporations from engaging in similar behavior unless accompanied by a broader cultural shift within the industry. There is a growing call for enhanced oversight and stricter penalties to ensure that companies prioritize ethical conduct over short-term profits.

Implications for the Market

The fines imposed on Schneider, Legrand, Rexel, and Sonepar could have broader implications for the electrical equipment market and beyond. They signal to other companies within the sector that regulatory bodies are vigilant, even as nine EU countries oppose electricity market reforms proposed as fixes for price spikes, and willing to take decisive action against anti-competitive practices. This could foster a more competitive environment, ultimately benefiting consumers through better prices and enhanced product offerings.

Moreover, the case highlights the importance of regulatory bodies in maintaining fair market conditions. As industries evolve, ongoing vigilance from competition authorities will be necessary to prevent similar instances of collusion and ensure that markets remain competitive and innovative, as seen when New York opened a formal review of retail energy markets.

The recent fines imposed on Schneider Electric, Legrand, Rexel, and Sonepar mark a significant moment in France's ongoing battle against corporate price-fixing and anti-competitive practices, occurring as the government and EDF reached a deal on electricity prices to balance market pressures. With total penalties exceeding €500 million, the investigation underscores the commitment of French authorities to uphold market integrity and protect consumer interests.

As the industry reflects on these developments, it remains crucial for companies to prioritize compliance and ethical business practices. The ultimate goal is to create an environment where competition thrives, innovation flourishes, and consumers benefit from fair pricing. This case serves as a reminder that transparency and accountability are vital in maintaining the health of any market, particularly one as essential as the electrical equipment sector.

 

Related News

View more

Russia to Ban Bitcoin Mining Amid Electricity Deficit

Russia Bitcoin Mining Ban highlights electricity deficits, grid stability concerns, and sustainability challenges, prompting stricter cryptocurrency regulation as mining operations in Siberia face shutdowns, relocations, and renewed focus on energy efficiency and resource allocation.

 

Key Points

Policy halting Bitcoin mining in key regions to ease electricity deficits, stabilize the grid, and prioritize energy.

✅ Targets high-load regions like Siberia facing electricity deficits

✅ Protects residential and industrial energy security, limits outages

✅ Prompts miner relocations, regulation, and potential renewables

 

In a significant shift in its stance on cryptocurrency, Russia has announced plans to ban Bitcoin mining in several key regions, primarily due to rising electricity deficits. This move highlights the ongoing tensions between energy management and the growing demand for cryptocurrency mining, which has sparked a robust debate about sustainability and resource allocation in the country.

Background on Bitcoin Mining in Russia

Russia has long been a major player in the global cryptocurrency landscape, particularly in Bitcoin mining. The country’s vast and diverse geography offers ample opportunities for mining, with several regions boasting low electricity costs and cooler climates that are conducive to operating the high-powered computers used for mining, similar to Iceland's mining boom in cold regions.

However, the boom in mining activities has put a strain on local electricity grids, as seen with BC Hydro suspensions in Canada, particularly as demand for energy continues to rise. This situation has become increasingly untenable, leading government officials to reconsider the viability of allowing large-scale mining operations.

Reasons for the Ban

The decision to ban Bitcoin mining in certain regions stems from a growing electricity deficit that has been exacerbated by both rising temperatures and increased energy consumption. Reports indicate that some regions are struggling to meet domestic energy needs, and jurisdictions like Manitoba's pause on crypto connections reflect similar grid concerns, particularly during peak consumption periods. Officials have expressed concern that continuing to support cryptocurrency mining could lead to blackouts and further strain on the electrical infrastructure.

Additionally, this ban is seen as a measure to redirect energy resources toward more critical sectors, including residential heating and industrial needs. By curbing Bitcoin mining, the government aims to prioritize the energy security of its citizens and maintain stability within its energy markets and the wider global electricity market dynamics.

Regional Impact

The regions targeted by the ban include areas that have seen a significant influx of mining operations, often attracted by the low costs of electricity. For instance, Siberia, known for its abundant natural resources and inexpensive power, has become a major center for miners. The ban is likely to have profound implications for local economies that have come to rely on the influx of investments from cryptocurrency companies.

Many miners are expected to be affected financially as they may have to halt operations or relocate to regions with more favorable regulations. This could lead to job losses and a decline in local business activities that have sprung up around the mining industry, such as hardware suppliers and tech services.

Broader Implications for Cryptocurrency in Russia

This ban reflects a broader trend within Russia’s approach to cryptocurrencies. While the government has been cautious about outright banning digital currencies, it has simultaneously sought to regulate the industry more stringently. Recent legislation has aimed to establish a legal framework for cryptocurrencies, focusing on taxation and oversight while navigating the balance between innovation and regulation.

As other countries around the world grapple with the implications of cryptocurrency mining, Russia’s decision adds to the narrative of the challenges associated with energy consumption in this sector. The international community is increasingly aware of the environmental impact of Bitcoin mining, which has come under fire for its significant energy use and carbon footprint.

Future of Mining in Russia

Looking ahead, the future of Bitcoin mining in Russia remains uncertain. While some regions may implement strict bans, others could potentially embrace a more regulated approach to mining, provided it aligns with energy availability and environmental considerations. The country’s vast landscape offers opportunities for innovative solutions, such as utilizing renewable energy sources, even as India's solar growth slows amid rising coal generation, to power mining operations.

As global attitudes toward cryptocurrency evolve, Russia will likely continue to adapt its policies in response to both domestic energy needs and international pressures, including Europe's shift away from Russian energy that influence policy choices. The balance between fostering a competitive cryptocurrency market and ensuring energy sustainability will be a key challenge for Russian policymakers moving forward.

Russia’s decision to ban Bitcoin mining in key regions marks a pivotal moment in the intersection of cryptocurrency and energy management. As the nation navigates its energy deficits, the implications for the mining industry and the broader cryptocurrency landscape will be significant. This move not only underscores the need for responsible energy consumption in the digital age but also reflects the complexities of integrating emerging technologies within existing frameworks of governance and infrastructure. As the situation unfolds, all eyes will be on how Russia balances innovation with sustainability in its approach to cryptocurrency.

 

Related News

View more

Tesla’s Powerwall as the beating heart of your home

GMP Tesla Powerwall Program replaces utility meters with smart battery storage, enabling virtual power plant services, demand response, and resilient homes, integrating solar readiness, EV charging support, and smart grid controls across Vermont households.

 

Key Points

Green Mountain Power uses Tesla Powerwalls as smart meters, creating a VPP for demand response and home backup.

✅ $30 monthly for 10 years or $3,000 upfront for two units

✅ Utility controls batteries for peak shaving and demand response

✅ Enables backup power, solar readiness, and EV charging support

 

There are more than 100 million single-family homes in the United States of America. If each of these homes were to have two 13.5 kWh Tesla Powerwalls, that would total 2.7 Terawatt-hours worth of electricity stored. Prior research has suggested that this volume of energy storage could get us halfway to the 5.4 TWh of storage needed to let the nation get 80% of its electricity from solar and wind, as states like California increasingly turn to grid batteries to support the transition.

Vermont utility Green Mountain Power (GMP) seeks to remove standard electric utility metering hardware and replace it with the equipment inside of a Tesla Powerwall, as part of a broader digital grid evolution underway. Mary Powell, President and CEO of Green Mountain Power, says, “We have a vision of a battery system in every single home” and they’ve got a patent pending software solution to make it happen.

The Resilient Home program will install two standard Tesla Powerwalls each in 250 homes in GMP’s service area. The homeowner will pay either $30 a month for ten years ($3,600), or $3,000 up front. At the end of the ten year period, payments end, but the unit can stay in the home for an additional five years – or as long as it has a usable life.

A single Powerwall costs approximately $6,800, making this a major discount.

GMP notes that the home must have reliable internet access to allow GMP and Tesla to communicate with the Powerwall. GMP will control the functions of the Powerwall, effectively operating a virtual power plant across participating homes, expanding the scope of programs like those that saved the state’s ratepayers more than $500,000 during peak demand events last year. The utility specifically notes that customers agree to share stored energy with GMP on several peak demand days each year.

The hardware can be designed to interact with current backup generators during power outages, or emerging fuel cell solutions that maintain battery charge longer during extended outages, however, the units will not charge from the generator. As noted the utility will be making use of the hardware during normal operating times, however, during a power outage the private home owner will be able to use the electricity to back up both their house and top off their car.

The utility told pv magazine USA that the Powerwalls are standard from the factory, with GMP’s patent pending software solution being the special sauce (has a hint of recent UL certifications). GMP said the program will also get home owners “adoption ready” for solar power, including microgrid energy storage markets, and other smart devices.

Sonnen’s ecoLinx is already directly interacting with a home’s electrical panel (literally throwing wifi enabled circuit breakers). Now with Tesla Powerwalls being used to replace utility meters, we see one further layer of integration that will lead to design changes that will drive residential solar toward $1/W. Electric utilities are also experimenting with controlling module level electronics and smart solar inverters in 100% residential penetration situations. And of course, considering that California is requiring solar – and probably storage in the future – in all new homes, we should expect to see further experimentation in this model. Off grid solar inverter manufacturers already include electric panels with their offerings.

If we add in the electric car, and have vehicle-to-grid abilities, we start to see a very strong amount of electricity generation and energy storage, helping to keep the lights on during grid stress, potentially happening in more than 100 million residential power plants. Resilient homes indeed.

 

Related News

View more

Several Milestones Reached at Nuclear Power Projects Around the World

Nuclear Power Construction Milestones spotlight EPR builds, Hualong One steam generators, APR-1400 grid integration, and VVER startups, with hot functional testing, hydrostatic checks, and commissioning advancing toward fuel loading and commercial operation.

 

Key Points

Key reactor project steps, from testing and grid readiness to startup, marking progress toward safe commercial operation.

✅ EPR units advance through cold and hot functional testing

✅ Hualong One installs 365-ton steam generators at Fuqing 5

✅ APR-1400 and VVER projects progress toward grid connection

 

The world’s nuclear power industry has been busy in the new year, with several construction projects, including U.S. reactor builds, reaching key milestones as 2018 began.

 

EPR Units Making Progress

Four EPR nuclear units are under construction in three countries: Olkiluoto 3 in Finland began construction in August 2005, Flamanville 3 in France began construction in December 2007, and Taishan 1 and 2 in China began construction in November 2009. Each of the new units is behind schedule and over budget, but recent progress may signal an end to some of the construction difficulties.

EDF reported that cold functional tests were completed at Flamanville 3 on January 6. The main purpose of the testing was to confirm the integrity of primary systems, and verify that components important to reactor safety were properly installed and ready to operate. More than 500 welds were inspected while pressure was held greater than 240 bar (3,480 psi) during the hydrostatic testing, which was conducted under the supervision of the French Nuclear Safety Authority.

With cold testing successfully completed, EDF can now begin preparing for hot functional tests, which verify equipment performance under normal operating temperatures and pressures. Hot testing is expected to begin in July, with fuel loading and reactor startup possible by year end. The company also reported that the total cost for the unit is projected to be €10.5 billion (in 2015 Euros, excluding interim interest).

Olkiluoto 3 began hot functional testing in December. Teollisuuden Voima Oyj—owner and operator of the site—expects the unit to produce its first power by the end of this year, with commercial operation now slated to begin in May 2019.

Although work on Taishan 1 began years after Olkiluoto 3 and Flamanville 3, it is the furthest along of the EPR units. Reports surfaced on January 2 that China General Nuclear (CGN) had completed hot functional testing on Taishan 1, and that the company expects the unit to be the first EPR to startup. CGN said Taishan 1 would begin commercial operation later this year, with Taishan 2 following in 2019.

 

Hualong One Steam Generators Installed

Another Chinese project reached a notable milestone on January 8. China National Nuclear Corp. announced the third of three steam generators had been installed at the Hualong One demonstration project, which is being constructed as Unit 5 at the Fuqing nuclear power plant.

The Hualong One pressurized water reactor unit, also known as the HPR 1000, is a domestically developed design, part of China’s nuclear program, based on a French predecessor. It has a 1,090 MW capacity. The steam generators reportedly weigh 365 metric tons and stand more than 21 meters tall. The first steam generator was installed at Fuqing 5 on November 10, with the second placed on Christmas Eve.

 

Barakah Switchyard Energized

In the United Arab Emirates, more progress has been made on the four South Korean–designed APR-1400 units under construction at the Barakah nuclear power plant. On January 4, Emirates Nuclear Energy Corp. (ENEC) announced that the switchyard for Units 3 and 4 had been energized and connected to the power grid, a crucial step in Abu Dhabi toward completion. Unit 2’s main power transformer, excitation transformer, and auxiliary power transformer were also energized in preparation for hot functional testing on that unit.

“These milestones are a result of our extensive collaboration with our Prime Contractor and Joint Venture partner, the Korea Electric Power Corporation (KEPCO),” ENEC CEO Mohamed Al Hammadi said in a press release. “Working together and benefitting from the experience gained when conducting the same work on Unit 1, the teams continue to make significant progress while continuing to implement the highest international standards of safety, security and quality.”

In 2017, ENEC and KEPCO achieved several construction milestones including installation and concrete pouring for the reactor containment building liner dome section on Unit 3, and installation of the reactor containment liner plate rings, reactor vessel, steam generators, and condenser on Unit 4.

Construction began on the four units (Figure 1) in July 2012, May 2013, September 2014, and September 2015, respectively. Unit 1 is currently undergoing commissioning and testing activities while awaiting regulatory review and receipt of the unit’s operating license from the Federal Authority for Nuclear Regulation, before achieving 100% power in a later phase. According to ENEC, Unit 2 is 90% complete, Unit 3 is 79% complete, and Unit 4 is 60% complete.

 

VVER Units Power Up

On December 29, Russia’s latest reactor to commence operation—Rostov 4 near the city of Volgodonsk—reached criticality, as other projects like Leningrad II-1 advance across the fleet, and was operated at its minimum controlled reactor power (MCRP). Criticality is a term used in the nuclear industry to indicate that each fission event in the reactor is releasing a sufficient number of neutrons to sustain an ongoing series of reactions, which means the neutron population is constant and the chain reaction is stable.

“The transfer to the MCRP allows [specialists] to carry out all necessary physical experiments in the critical condition of [the] reactor unit (RU) to prove its design criteria,” Aleksey Deriy, vice president of Russian projects for ASE Engineering Co., said in a press release. “Upon the results of the experiments the specialists will decide on the RU powerup.”

Rostov 4 is a VVER-1000 reactor with a capacity of 1,000 MW. The site is home to three other VVER units: Unit 1 began commercial operation in 2001, Unit 2 in 2010, and Unit 3 in 2015.

 

Related News

View more

Opinion: Would we use Site C's electricity?

Site C Dam Electricity Demand underscores B.C.'s decarbonization path, enabling electrification of EVs, heat pumps, and industry, aligning with BC Hydro forecasts and 2030/2050 GHG targets to supply dependable, renewable baseload power.

 

Key Points

Projected clean power tied to Site C, driven by B.C. electrification to meet 2030 and 2050 greenhouse gas targets.

✅ Aligns with 25-30% by 2030 and 55-70% by 2050 GHG cuts

✅ Supports EVs, heat pumps, and industrial electrification

✅ Provides dependable baseload alongside efficiency gains

 

There are valid reasons not to build the Site C dam. There are also valid reasons to build it. One of the latter is the rapid increase in clean electricity needed to reduce B.C.’s greenhouse gas emissions from burning natural gas, gasoline, diesel and other harmful fossil fuel products.

Although former Premier Christy Clark casually avoided near-term emissions targets, Prime Minister Justin Trudeau has set Canadian targets for both 2030 and 2050, and cleaning up Canada's electricity is critical to meeting them. Studies by my research group at Simon Fraser University and other independent analysts show that B.C.’s cost-effective contribution to these national targets requires us to reduce our emissions 25 to 30 per cent by 2030 and 55 to 70 per cent by 2050 — an energy evolution involving, among other things, a much greater use of electricity in buildings, vehicles and industry.

Recent submissions to the Site C hearing have offered widely different estimates of B.C.’s electricity demand in the decade after the project’s completion in 2025, some arguing the dam’s output will be completely surplus to domestic need for years and perhaps decades, even though improved B.C.-Alberta grid links could help balance regional demand. Some of this variation in demand forecasts is understandable. Industrial demand is especially difficult to predict, dependent as it is on global economic conditions and shifting trade relations. And there are legitimate uncertainties about B.C. Hydro’s ability to reduce electricity demand by promoting efficient products and behaviour through its Power Smart program. But some of the forecasts appear to be deliberate exaggerations, designed to support fixed positions for or against Site C.

Our university-based research team models the energy system changes required to meet national and provincial emissions targets, and we have been comparing estimates of the electricity demand implications. These estimates are produced by academics, as well as by key institutions like B.C. Hydro, the National Energy Board, and the governments of Canada and B.C.

Most electricity forecasts for B.C., including the most recent by B.C. Hydro, do not assume that B.C. reduces its greenhouse gas emissions by 25 to 30 per cent by 2030 and 55 to 70 per cent by 2050. When we adjust Hydro’s forecast for just the low end of these targets, we find that in its latest, August 30, submission to the Site C hearing, which followed the premier’s over-budget go-ahead on the project, Hydro has underestimated the demand for its electricity by about three terawatt-hours in 2025, four in 2030 and 10 in 2035. Hydro’s forecast indicates that it will need the five terawatt-hours from Site C. Our research shows that even if Hydro’s demand forecast is too high, appropriate climate policy nationally and in B.C. will absorb all the electricity the dam can produce soon after its completion.

B.C. Hydro does not forecast electricity demand to 2050. But, studies by us and others show that B.C. electricity demand will be almost double today’s levels if we are to reduce emissions by 55 to 70 per cent, even amid a documented risk of missing the 2050 target, in just over three decades while our population, economy, buildings and equipment grow significantly. Most mid- and small-sized vehicles will be electric. Most buildings will be well insulated and heated by electric resistance or electric heat-pumps, either individually or via district heating systems. And many low temperature industrial applications will be electric.

Aggressive efforts to promote energy efficiency will make an important contribution, such that energy demand will not grow nearly as fast as the economy. But it is delusional to think that humans will stop using energy. Even climate policy scenarios in which we assume unprecedented success with energy efficiency show dramatic increases in the consumption of electricity, this being the most favoured zero-emission form of energy as a replacement for planet-destroying gasoline and natural gas.

The completion of the Site C dam is a complicated and challenging societal choice, and delay-related cost risks highlighted by the premier underscore the stakes. There is unbiased evidence and argument supporting either completion or cancellation. But let’s stick to the unbiased evidence. In the case of our 2030 and 2050 greenhouse gas reduction targets, such evidence shows that we must substantially increase our generation of dependable electricity. If the Site C dam is built, and if we are true to our climate goals, all its electricity will be used in B.C. soon after completion.

Mark Jaccard is a professor of sustainable energy in the School of Resource and Environmental Management at Simon Fraser University.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.