This Thin-Film Turns Heat Waste From Electronics Into Electricity


printed circuit board

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Pyroelectric Energy Harvesting captures low-grade heat via thin-film materials, converting temperature fluctuations into power for waste heat recovery in electronics, vehicles, and industrial machinery, offering a thermoelectric alternative for microelectronics and exascale systems.

 

Key Points

Thin-film pyroelectric harvesting turns temperature changes into electricity, enabling low-grade waste heat recovery.

✅ Converts low-grade heat fluctuations into usable power

✅ Thin-film design suits microelectronics and edge devices

✅ Alternative to thermoelectrics for waste heat recovery

 

The electronic device you are reading this on is currently producing a modest to significant amount of waste heat that emerging thermoelectric materials could help recover in principle. In fact, nearly 70% of the energy produced annually in the US is ultimately wasted as heat, much of it less than 100 degrees Celsius. The main culprits are computers and other electronic devices, vehicles, as well as industrial machinery. Heat waste is also a big problem for supercomputers, because as more circuitry is condensed into smaller and smaller areas, the hotter those microcircuits get.

It’s also been estimated that a single next-generation exascale supercomputer could feasibly use up to 10% of the energy output of just one coal-fired power station, and that nearly all of that energy would ultimately be wasted as heat.

What if it were possible to convert that heat energy into a useable energy source, and even to generate electricity at night from temperature differences as well?

#google#

It’s not a new idea, of course. In fact the possibility of thermoelectric energy generation, where thermal energy is turned into electricity was recognised as early as 1821, around the same time that Michael Faraday developed the electric motor.

Unfortunately, when the heat source is ‘low grade’, aka less than 100 degrees Celsius, a number of limitations arise, and related approaches for nighttime renewable generation face similar challenges as well. For it to work well, you need materials that have quite high electrical conductivity, but low thermal conductivity. It’s not an easy combination to come by.

Taking a different approach, researchers at the University of California, Berkeley, have developed thin-film that uses pyroelectric harvesting to capture heat-waste and convert heat to electricity in prototype demonstrations. The findings were published today in Nature Materials.

 

Related News

Related News

Tesla prepares to bring its electric cars to South America

Tesla Chile Market Entry signals EV expansion into South America, with a Santiago country manager, service technicians, and advisors, leveraging lithium supply, competing with BYD, and preparing sales, service, and charging infrastructure.

 

Key Points

Tesla will enter Chile to launch EV sales, service, and charging from Santiago, opening its South America expansion.

✅ Country manager role based in Santiago to lead market launch

✅ Focus on EV sales, service centers, and charging infrastructure

✅ Leverages Chile's lithium ecosystem; competes with BYD

 

Tesla is preparing to bring its electric cars to South America, according to a new job posting in Chile.

It has been just over a decade since Tesla launched the Model S and significantly accelerated EV inflection point in the deployment of electric vehicles around the world.

The automaker has expanded its efforts across North America, where the U.S. EV tipping point has been reached, and most countries in Europe, and it is still gradually expanding in Asia.

But there’s one continent that Tesla hasn’t touched yet: South America, even as global EV adoption raced to two million in five years.

It sounds like it is about to change.

Tesla has started to promote a job posting on LinkedIn for a country manager in Chile, aligning with international moves like UK expansion plans it has signaled.

The country manager is generally the first person hired when Tesla expands in a new market.

The job is going to be based in Santiago, the capital of Chile, where the company is also looking for some Tesla advisors and service technicians.

Chile is an interesting choice for a first entry into the South American market. The Chilean auto market consists of only about 234,000 vehicles sold year-to-date and that’s down 29% versus the previous year.

That’s roughly the number of vehicles sold in Brazil every month.

While the size of the auto market in the country is small, there’s a strong interest for electric vehicles as the EV era arrives ahead of schedule there, which might explain Tesla’s foray.

The country is rich in lithium, a critical material for EV batteries, where lithium supply concerns have also emerged, which has helped create interest for electric vehicles in the country. The government also announced an initiative to allow for only new sales of electric vehicles in the country starting in 2035.

Tesla’s Chinese competitor BYD has set its sight on the South American market by bringing its cheaper China-made EVs to the market, part of a broader Chinese EV push in Europe as well, but now it looks like Tesla is willing to test the market on the higher-end.

 

Related News

View more

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

UK electric car inquiries soar during fuel supply crisis

UK Petrol Shortages Drive EV Adoption as fuel crisis spurs electric vehicles, plug-in car demand, home charging, lower running costs, zero-emission mobility, ULEZ compliance, accelerating the shift from diesel to battery EVs.

 

Key Points

Fuel shortages push drivers to EVs, boosting inquiries and sales while highlighting the convenience of home charging.

✅ Surge in EV dealer inquiries and test drives

✅ Home charging avoids queues and fuel shortages

✅ Policy signals: ULEZ expansion, 2030 ICE ban

 

Sellers of plug-in vehicles say petrol shortages are driving people to adopt the new technology as the age of electric cars accelerates worldwide.

As petrol stations in parts of the UK started running out of fuel on Friday, business at Martin Miller’s electric car dealership in Guildford, Surrey, started soaring.

After what ended up being his company EV Experts busiest day ever, interest does not appear to be dying down. This week the diary is booked up with test drives and the business is low on stock amid supply constraints.

“People buy electric cars for environmental reasons, for cost-saving reasons and because the technology’s great, even though higher upfront prices remain a concern,” he said. “But Friday was one of those moments where people said, ‘Do you know what, this is a sign that we need to go electric’.”

While scenes of chaos play out at petrol stations across the country amid shortages, for many electric vehicle (EV) dealers the fuel crisis has led to an unexpected surge in inquiries and sales, even as some question an electric-car revolution narrative today.

EVA England, a non-profit representing new and prospective EV drivers, reports a rise in electric car inquiries and in interest at EV dealers, particularly in the last week.

“Saturday was bonkers but Friday even surpassed that, it was very strange,” said Miller, who founded his company four years ago. “I’ve now got trade-in cars with no petrol to move them.”

Along with existing factors such as the expansion of London’s ultra-low emission zone, the fuel crisis has proved to be another trigger point, he said. “People were using it as ‘this is the moment where I’m not going to put this off any longer’.”

The EV market is no longer the preserve of innovators and early adopters, he said, with the most popular models the Nissan Leaf, Volkswagen ID 3 and Jaguar I-Pace.

Ben Strzalko, the owner of Electric Cars UK in Leyland, Lancashire, said that as a small business it would take a few months to feel the knock-on effect of the fuel crisis on sales.

But every time there are problems with petrol or diesel, he said they acted as “one more tick for people making that transition to electric cars”.

He said “a lot of electric car owners will be chuffed to bits this last week” being able to plug in their cars at home. And as an EV driver himself, he admitted feeling a little smug as he drove past queues of 20 cars outside petrol stations over the weekend in his Tesla.

Matt Cleevely, the owner of Cleevely Electric Vehicles in Cheltenham, Gloucestershire, which specialises in used EVs, had a surge of inquiries over the weekend and on Monday morning from customers citing the fuel crisis as a reason for switching to electric.

He expects enthusiasm to continue rising, with petrol shortages adding “fuel to the fire”.

Although he feels sorry for non-EV drivers who have been unable to get fuel, he said as an electric car owner it was “very nice” not to have to worry about where to get petrol at the weekend.

“It’s very convenient that we’ve been able to just fuel up on our driveway. It’s one of the biggest pros of having an electric vehicle.”

The National Franchised Dealers Association also said multiple dealers have reported a spike in EV enquiries since the start of the crisis.

The Society of Motor Manufacturers and Traders reported “bumper growth” in the sale of plug-in cars in July, reflecting broader global market growth in recent years, with battery electric vehicles comprising 9% of sales. Plug-in hybrids accounted for 8% of sales and hybrid electric vehicles nearly 12%. Also in July, more electric vehicles were registered than diesel for the second consecutive month.

The UK has pledged to ban the sale of new petrol and diesel cars by 2030 and of new hybrids by 2035, a timeline that aligns with expectations that within a decade most driving could be electric.

Warren Philips, the volunteer communities director at EVA England, said the tipping point for EVs had already been reached but the fuel crisis “underlines how electric cars could work for the majority of people”.

He added: “The interest is already there, this just adds to it. And going forward with things like Cop26, with the climate crisis, with the cost of fuel probably going to rise … people will start looking at electric cars where you just skip that entire step.”

 

Related News

View more

UK Electric Vehicle Sales Surge to Record High

UK electric vehicle sales reached a record high in September, with battery and hybrid cars making up over half of new registrations. SMMT credits carmaker discounts, new models, and a £3,750 EV grant for driving strong demand across the UK market.

 

Why are UK Electric Vehicle Sales Surging to a Record High?

UK electric vehicle sales are surging to a record high because automakers are offering major discounts, more models are available than ever, and the government’s new £3,750 EV grant is making electric cars more affordable and appealing to both fleets and private buyers.

✅ BEV sales up nearly one-third in September

✅ Over half of all new cars are now electrified

✅ £3,750 EV grants boost consumer confidence

 

Electric vehicle (EV) sales in the United Kingdom reached a record high last month, marking a significant milestone in the country’s transition to cleaner transportation. According to the latest figures from the Society of Motor Manufacturers and Traders (SMMT), sales of pure battery electric vehicles (BEVs) surged by nearly one-third to 72,779 units in September, while plug-in hybrid registrations grew even faster.

The combined total of fully electric and hybrid vehicles accounted for more than half of all new car registrations, underscoring the growing appeal of electrified transport, alongside global EV market growth, among both businesses and private consumers. In total, 312,887 new vehicles were registered across the country — the strongest September performance since 2020, according to SMMT data.

SMMT chief executive Mike Hawes said the surge in electrified vehicle sales showed that “electrified vehicles are powering market growth after a sluggish summer.” He credited carmaker incentives, a wider choice of models, and government support for helping accelerate adoption, though U.S. EV market share dipped in Q1 2024 by comparison. “Industry investment in electric vehicles is paying off,” Hawes added, even as he acknowledged that “consumer demand still trails ambition.”

The UK government’s new electric car grant scheme has played a significant role in the rebound. The program offers buyers discounts of up to £3,750 on eligible EVs priced under £37,000. So far, more than 20,000 motorists have benefited, with 36 models approved for reductions of at least £1,500. Participating manufacturers include Ford, Toyota, Vauxhall, and Citroën.

Ian Plummer, chief commercial officer at Autotrader, said the grant had given a “real lift to the market,” echoing fuel-crisis EV inquiry surge in the UK. He noted that “since July, enquiries for new electric vehicles on Autotrader are up by almost 50%. For models eligible for the grant, interest has more than doubled.”

While the majority of BEVs — about 71.4% — were purchased by companies and fleets, the number of private buyers has also been increasing. Zero-emission vehicles now account for more than one in five (22.1%) new car registrations so far in 2025, similar to France’s 20% EV share record, highlighting the growing mainstream appeal of electric mobility.

The surge comes amid a challenging backdrop for the automotive sector, even as U.S. EV sales soared into 2024 across the Atlantic. The UK car industry is still reeling from the effects of US trade tariffs and recent disruptions, such as Jaguar Land Rover’s production shutdown following a cyberattack. Despite these hurdles, the strong September figures have boosted confidence in the industry’s recovery trajectory, and EU EV share grew during lockdown months offers precedent for resilience.

Among individual models, the Kia Sportage, Ford Puma, and Nissan Qashqai led overall sales, while two Chinese vehicles — the Jaecoo 7 and BYD Seal U — entered the top ten, reflecting China’s growing footprint in the UK market. Analysts say the arrival of competitively priced Chinese EVs could further intensify competition and drive prices lower for consumers.

With electrified vehicles now dominating new registrations and fresh government incentives in place, industry observers believe the UK is gaining momentum toward its long-term net-zero goals. The challenge, however, remains converting business fleet enthusiasm into sustained private-buyer confidence through affordable models, with UK consumer price concerns still a factor, reliable charging infrastructure, and continued policy support.

 

Related Articles

 

View more

Factory Set to Elevate the United States in the Clean Energy Race

Maxeon IBC Solar Factory USA will scale clean energy with high-efficiency interdigitated back contact panels, DOE-backed manufacturing in Albuquerque, utility-scale supply, domestic production, 3 GW capacity, reduced imports, carbon-free electricity leadership.

 

Key Points

DOE-backed Albuquerque plant making high-efficiency IBC panels, 3 GW yearly, for utility-scale, domestic solar supply.

✅ 3 GW annual capacity; up to 8 million panels produced

✅ IBC cell efficiency up to 24.7% for utility-scale projects

✅ Reduces U.S. reliance on imported panels via domestic manufacturing

 

Solar energy stands as a formidable source of carbon-free electricity, with the No. 3 renewable source in the U.S. offering a clean alternative to traditional power generation methods reliant on polluting fuels. Advancements in solar technology continue to emerge, with a U.S.-based company poised to spearhead progress from a cutting-edge factory in New Mexico.

Maxeon, initially hailing from Silicon Valley in the 1980s, recently ventured into independence after separating from its parent company, SunPower, in 2020. Over the past few years, Maxeon has been manufacturing solar panels in Mexico, Malaysia, and the Philippines, as record U.S. panel shipments underscored rising demand.

Now, with backing from the U.S. Department of Energy's Loans Programs Office, Maxeon is preparing to commence construction on a new facility in Albuquerque in 2024, amid unprecedented growth in solar and storage nationwide. This state-of-the-art factory aims to produce up to 8 million panels annually, featuring the company's interdigitated back contact (IBC) technology, which has the capacity to generate three gigawatts of power each year. Notably, the entire U.S. solar industry completed five gigawatts of panels in 2022, making Maxeon's endeavor particularly ambitious and aligned with Biden's proposed tenfold increase in solar power goals.

Maxeon's presence in the United States holds the potential to reduce the country's reliance on imported panels, particularly from China. The primary focus will be on providing this advanced technology for utility departments, where pairing with increasingly affordable batteries can enhance grid reliability while shifting away from residential and commercial rooftops.

Maxeon has achieved a remarkable milestone in solar efficiency, with its latest IBC technology boasting an efficiency rating of 24.7%, as reported by PV Magazine.

This strategic move to the United States could be a game-changer, not only for Maxeon's success but also for clean power generation in a nation that has traditionally depended on external sources for its supply of solar panels, as energy-hungry Europe turns to U.S. solar equipment makers for solutions. Matt Dawson, Maxeon's Chief Technology Officer, emphasized the importance of achieving the lowest levelized cost of electricity with the lowest overall capital, a feat that China has accomplished in recent years due to the strength of its supply chain. As energy independence becomes a global concern, solar manufacturing is poised to expand beyond China, with Southeast Asia already showing signs of growth, and now the United States and possibly Europe, including Germany's solar boost during the energy crisis, following suit.

 

Related News

View more

Biden's proposed tenfold increase in solar power would remake the U.S. electricity system

US Solar Power 2050 Target projects 45% electricity from solar, advancing decarbonization with clean energy, wind, nuclear, hydropower, hydrogen, and scalable energy storage, while modernizing the grid and transmission to cut emissions and create jobs.

 

Key Points

A goal for solar to supply ~45% of US electricity by 2050, backed by energy storage and other low-carbon generation.

✅ Requires 1,050-1,570 GW solar and matching storage capacity

✅ Utility-scale buildout uses ~10M acres; rooftop 10-20% of capacity

✅ Complemented by wind, nuclear, hydropower, hydrogen, and flexible turbines

 

President Joe Biden has called for major clean energy investments as a way to curb climate change and generate jobs. On Sept. 8, 2021, the White House released a report produced by the U.S. Department of Energy that found that solar power could generate up to 45% of the U.S. electricity supply by 2050, compared to less than 4% today, with about 3% in 2020 noted by industry observers. The Conversation asked Joshua D. Rhodes, an energy technology and policy researcher at the University of Texas at Austin, what it would take to meet this target.

Why such a heavy focus on solar power? Doesn’t a low-carbon future require many types of clean energy, even though wind and solar could meet about 80% of demand according to some research?
The Energy Department’s Solar Futures Study lays out three future pathways for the U.S. grid: business as usual; decarbonization, meaning a massive shift to low-carbon and carbon-free energy sources; and decarbonization with economy-wide electrification of activities that are powered now by fossil fuels.

It concludes that the latter two scenarios would require approximately 1,050-1,570 gigawatts of solar power, which would meet about 44%-45% of expected electricity demand in 2050, even as renewables approach one-fourth of U.S. generation in the near term. For perspective, one gigawatt of generating capacity is equivalent to about 3.1 million solar panels or 364 large-scale wind turbines.

The rest would come mostly from a mix of other low- or zero-carbon sources, including wind, nuclear, hydropower, biopower, geothermal and combustion turbines run on zero-carbon synthetic fuels such as hydrogen. Energy storage capacity – systems such as large installations of high-capacity batteries – would also expand at roughly the same rate as solar, with record growth in solar and storage anticipated by industry in coming years.

One advantage solar power has over many other low-carbon technologies is that most of the U.S. has lots of sunshine. Wind, hydropower and geothermal resources aren’t so evenly distributed: There are large zones where these resources are poor or nonexistent.

Relying more heavily on region-specific technologies would mean developing them extremely densely where they are most abundant. It also would require building more high-voltage transmission lines to move that energy over long distances, which could increase costs and draw opposition from landowners – a key reason the grid isn't yet 100% renewable according to experts – in many regions.

Is generating 45% of U.S. electricity from solar power by 2050 feasible?
I think it would be technically possible but not easy. It would require an accelerated and sustained deployment far larger than what the U.S. has achieved so far, even as the cost of solar panels has fallen dramatically, and wind, solar and batteries are 82% of the utility-scale pipeline across the country. Some regions have attained this rate of growth, albeit from low starting points and usually not for long periods.

The Solar Futures Study estimates that producing 45% of the nation’s electricity from solar power by 2050 would require deploying about 1,600 gigawatts of solar generation. That’s a 1,450% increase from the 103 gigawatts that are installed in the U.S. today, even as wind and solar trend toward 30% of U.S. electricity in some outlooks. For perspective, there are currently about 1,200 gigawatts of electricity generation capacity of all types on the U.S. power grid.

The report assumes that 10%-20% of this new solar capacity would be deployed on homes and businesses. The rest would be large utility-scale deployments, mostly solar panels, plus some large-scale solar thermal systems that use mirrors to reflect the sun to a central tower.

Assuming that utility-scale solar power requires roughly 8 acres per megawatt, this expansion would require approximately 10.2 million to 11.5 million acres. That’s an area roughly as big as Massachusetts and New Jersey combined, although it’s less than 0.5% of total U.S. land mass.

I think goals like these are worth setting, but are good to reevaluate over time to make sure they represent the most prudent path.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.