Bimbo Canada signs agreements to offset 100 per cent of its electricity consumption for Canadian operations


bimbo canada

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Bimbo Canada VPPAs secure renewable electricity from RES wind and solar projects in Alberta, totaling 170MW, via 15-year contracts to offset consumption, advance RE100 goals, and drive decarbonization across bakeries, depots, and distribution centers.

 

Key Points

Virtual power purchase agreements sourcing wind and solar to offset Bimbo Canadas electricity and support RE100.

✅ 15-year RES contracts for Alberta wind and solar capacity

✅ Offsets electricity for bakeries, depots, and distribution centers

✅ Advances Grupo Bimbo RE100 target for 100% renewable power

 

Canada's oldest and largest bakery, Bimbo Canada, has signed two virtual power purchase agreements (VPPAs) with Renewable Energy Systems  (RES) to procure renewable electricity, similar to federal green electricity contracts advancing in Alberta, that will offset 100 per cent of the company's electricity consumption in Canada. The projects are expected to be fully operational by December, 2022.

Canada is the second market, alongside the United States, to enter into VPPAs, where companies like Amazon clean energy projects are expanding rapidly. These agreements, together with additional sustainability initiatives conducted around the world by the parent company Grupo Bimbo, will help the company offset 90 per cent of its global electricity consumption.

"Bimbo Canada is committed to nourishing a better world through productive sustainability practices," said Joe McCarthy, president of Bimbo Canada. "These agreements are the next big step in reducing our environmental footprint, as peers such as Arvato's first solar plant signal industry momentum, and becoming leaders in responsible stewardship of the environment."

The 15-year agreements with RES will support the commercial development of two renewable energy projects in southern Alberta, consisting of wind and solar projects, similar to RBC's solar PPA announced in the region, totaling 170MW of installed capacity. Under these two agreements, Bimbo Canada will procure the benefit of approximately 50MW of renewable electricity to offset electricity consumption for its 16 bakeries, 14 distribution centres and 191 depots. Commercial development for the wind and solar farms will be finalized later this year by RES Canada and the projects are expected to be fully operational by the end of next year.  

"RES is proud that its Alberta wind and solar projects, amid growth such as a $200M Alberta wind farm led by a Buffett-linked firm, are helping Bimbo Canada meet its sustainability initiatives," said Peter Clibbon, RES Senior VP of Development. "It's a win-win situation with our projects delivering competitive wind and solar electricity to Bimbo Canada, and while providing our host communities with long-term tax and landowner income."

In 2018, Grupo Bimbo joined RE100, a global initiative led by The Climate Group and in partnership with Carbon Disclosure Project (CDP) and committed to operating with 100 per cent renewable electricity by 2025. As a leading supplier of fresh-baked goods and snacks for Canadian families, these agreements support the company's targets and builds upon many successful past sustainability initiatives, as market activity by Canadian Solar project sales continues nationwide.

"The renewable electricity initiatives in our operations respond to Grupo Bimbo's deep commitment that we have had for many decades globally with the planet and with present and future generations," said Daniel Servitje, global CEO of Grupo Bimbo. "With this announcement, we have achieved another important milestone for the company on our journey towards becoming 100 per cent renewable electricity by 2025."

Last year, Bimbo Canada reduced product waste and exceeded its product waste reduction target by 18 per cent, which saved four million units of products from landfills. The company also eliminated 174 metric tonnes of plastic per year (equal to 43 adult elephants) through several packaging optimization initiatives.

Earlier this year, Bimbo Canada signed the Canada Plastics Pact (CPP) and, amid a broader push for clean energy exemplified by Edmonton rooftop solar installations, earned its first ENERGY STAR certification for its Hamilton, Ontario bakery. The company will continue to work towards other initiatives that fulfill its commitment to be a sustainable, highly productive and deeply humane company.

Related News

California's Looming Green New Car Wreck

California Gas Car Ban 2035 signals a shift to electric vehicles, raising grid reliability concerns, charging demand, and renewable energy challenges across solar, wind, and storage, amid rolling blackouts and carbon-free power mandates.

 

Key Points

An order ending new gasoline car sales by 2035 in California, accelerating EV adoption and pressuring the power grid.

✅ 25% EV fleet could add 232.5 GWh/day charging demand by 2040

✅ Solar and wind intermittency strains nighttime home charging

✅ Grid upgrades, storage, and load management become critical

 

On September 23, California Gov. Gavin Newsom issued an executive order that will ban the sale of gasoline-powered cars in the Golden State by 2035. Ignoring the hard lessons of this past summer, when California’s solar- and wind-reliant electric grid underwent rolling blackouts, Newsom now adds a huge new burden to the grid in the form of electric vehicle charging, underscoring the need for a much bigger grid to meet demand. If California officials follow through and enforce Newsom’s order, the result will be a green new car version of a train wreck.

In parallel, the state is moving on fleet transitions, allowing electric school buses only from 2035, which further adds to charging demand.

Let’s run some numbers. According to Statista, there are more than 15 million vehicles registered in California. Per the U.S. Department of Energy, there are only 256,000 electric vehicles registered in the state—just 1.7 percent of all vehicles, a share that will challenge state power grids as adoption grows.

Using the Tesla Model3 mid-range model as a baseline for an electric car, you’ll need to use about 62 kilowatt-hours (KWh) of power to charge a standard range Model 3 battery to full capacity. It will take about eight hours to fully charge it at home using the standard Tesla NEMA 14-50 charger, a routine that has prompted questions about whether EVs could crash the grid by households statewide.

Now, let’s assume that by 2040, five years after the mandate takes effect, also assuming no major increase in the number of total vehicles, California manages to increase the number of electric vehicles to 25 percent of the total vehicles in the state. If each vehicle needs an average of 62 kilowatt-hours for a full charge, then the total charging power required daily would be 3,750,000 x 62 KWh, which equals 232,500,000 KWh, or 232.5 gigawatt-hours (GWh) daily.

Utility-scale California solar electric generation according to the energy.ca.gov puts utility-scale solar generation at about 30,000 GWh per year currently. Divide that by 365 days and we get 80 GWh/day, predicted to double, to 160 GWh /day. Even if we add homeowner rooftop solar, and falling prices for solar and home batteries in the wake of blackouts, about half the utility-scale, at 40 GWh/day we come up to 200 GW/h per day, still 32 GWh short of the charging demand for a 25% electric car fleet in California. Even if rooftop solar doubles by 2040, we are at break-even, with 240GWh of production during the day.

Bottom-line, under the most optimistic best-case scenario, where solar operates at 100% of rated capacity (it seldom does), it would take every single bit of the 2040 utility-scale solar and rooftop capacity just to charge the cars during the day. That leaves nothing left for air conditioning, appliances, lighting, etc. It would all go to charging the cars, and that’s during the day when solar production peaks.

But there’s a much bigger problem. Even a grade-schooler can figure out that solar energy doesn’t work at night, when most electric vehicles will be charging at homes, even as some officials look to EVs for grid stability through vehicle-to-grid strategies. So, where does Newsom think all this extra electric power is going to come from?

The wind? Wind power lags even further behind solar power. According to energy.gov, as of 2019, California had installed just 5.9 gigawatts of wind power generating capacity. This is because you need large amounts of land for wind farms, and not every place is suitable for high-return wind power.

In 2040, to keep the lights on with 25 percent of all vehicles in California being electric, while maintaining the state mandate requiring all the state’s electricity to come from carbon-free resources by 2045, California would have to blanket the entire state with solar and wind farms. It’s an impossible scenario. And the problem of intermittent power and rolling blackouts would become much worse.

And it isn’t just me saying this. The U.S. Environmental Protection Agency (EPA) agrees. In a letter sent by EPA Administrator Andrew Wheeler to Gavin Newsom on September 28, Wheeler wrote:

“[It] begs the question of how you expect to run an electric car fleet that will come with significant increases in electricity demand, when you can’t even keep the lights on today.

“The truth is that if the state were driving 100 percent electric vehicles today, the state would be dealing with even worse power shortages than the ones that have already caused a series of otherwise preventable environmental and public health consequences.”


California’s green new car wreck looms large on the horizon. Worse, can you imagine electric car owners’ nightmares when California power companies shut off the power for safety reasons during fire season? Try evacuating in your electric car when it has a dead battery.

Gavin Newsom’s “no more gasoline cars sold by 2035” edict isn’t practical, sustainable, or sensible, much like the 2035 EV mandate in Canada has been criticized by some observers. But isn’t that what we’ve come to expect with any and all of these Green New Deal-lite schemes?

 

Related News

View more

The U.S. passed a historic climate deal this year - Recap

Inflation Reduction Act climate provisions accelerate clean energy, EV tax credits, methane fee, hydrogen incentives, and a green bank, cutting carbon emissions, boosting manufacturing, and advancing environmental justice and net-zero goals through 2030.

 

Key Points

They are U.S. policies funding clean energy, EV credits, a methane fee, hydrogen, and justice programs to cut emissions.

✅ Up to $7,500 new and $4,000 used EV tax credits with income limits

✅ First federal methane fee to curb oil and gas emissions

✅ $60B for clean energy manufacturing and environmental justice

 

The Biden administration this year signed a historic climate and tax deal that will funnel billions of dollars into programs designed to speed the country’s clean energy transition, with ways to tap new funding available to households and businesses, and battle climate change.

As the U.S. this year grappled with climate-related disasters from Hurricane Ian in Florida to the Mosquito Fire in California, the Inflation Reduction Act, which contains $369 billion in climate provisions, was a monumental development to mitigate the effects of climate change across the country, with investment incentives viewed as essential to accelerating clean electricity this decade. 

The bill, which President Joe Biden signed into law in August, is the most aggressive climate investment ever taken by Congress and is expected to slash the country’s planet-warming carbon emissions by about 40% this decade and move the country toward a net-zero economy by 2050, aligning with a path to net-zero electricity many analyses lay out.

The IRA’s provisions have major implications for clean energy and manufacturing businesses, climate startups and consumers in the coming years. As 2022 comes to a close, here’s a look back at the key elements in the legislation that climate and clean energy advocates will be monitoring in 2023.


Incentives for electric vehicles
The deal offers a federal tax credit worth up to $7,500 to households that buy new electric vehicles, as well as a used EV credit worth up to $4,000 for vehicles that are at least two years old. Starting Jan. 1, people making $150,000 a year or less, or $300,000 for joint filers, are eligible for the new car credit, while people making $75,000 or less, or $150,000 for joint filers, are eligible for the used car credit.

Despite a rise in EV sales in recent years, the transportation sector is still the country’s largest source of greenhouse gas emissions, with the lack of convenient charging stations being one of the barriers to expansion. The Biden administration has set a goal of 50% electric vehicle sales by 2030, as Canada pursues EV sales regulations alongside broader oil and gas emissions limits.

The IRA limits EV tax credits to vehicles assembled in North America and is intended to wean the U.S. off battery materials from China, which accounts for 70% of the global supply of battery cells for the vehicles. An additional $1 billion in the deal will provide funding for zero-emissions school buses, heavy-duty trucks and public transit buses.

Stephanie Searle, a program director at the nonprofit International Council on Clean Transportation, said the combination of the IRA tax credits and state policies like New York's Green New Deal will bolster EV sales. The agency projects that roughly 50% or more of passenger cars, SUVs and pickups sold in 2030 will be electric. For electric trucks and buses, the number will be 40% or higher, the group said.

In the upcoming year, Searle said the agency is monitoring the Environmental Protection Agency’s plans to propose new greenhouse gas emissions standards for heavy-duty vehicles starting in the 2027 model year.

“With the IRA already promoting electric vehicles, EPA can and should be bold in setting ambitious standards for cars and trucks,” Searle said. “This is one of the Biden administration’s last chances for strong climate action within this term and they should make good use of it.”


Taking aim at methane gas emissions
The package imposes a tax on energy producers that exceed a certain level of methane gas emissions. Polluters pay a penalty of $900 per metric ton of methane emissions emitted in 2024 that surpass federal limits, increasing to $1,500 per metric ton in 2026.

It’s the first time the federal government has imposed a fee on the emission of any greenhouse gas. Global methane emissions are the second-biggest contributor to climate change after carbon dioxide and come primarily from oil and gas extraction, landfills and wastewater and livestock farming.

Methane is a key component of natural gas and is 84 times more potent than carbon dioxide, but doesn’t last as long in the atmosphere. Scientists have contended that limiting methane is needed to avoid the worst consequences of climate change. 

Robert Kleinberg, a researcher at Columbia University’s Center on Global Energy Policy, said the methane emitted by the oil and gas industry each year would be worth about $2 billion if it was instead used to generate electricity or heat homes.

“Reducing methane emissions is the fastest way to moderate climate change. Congress recognized this in passing the IRA,” Kleinberg said. “The methane fee is a draconian tax on methane emitted by the oil and gas industry in 2024 and beyond.”

In addition to the IRA provision on methane, the Biden Interior Department this year proposed rules to curb methane leaks from drilling, which it said will generate $39.8 million a year in royalties for the U.S. and prevent billions of cubic feet of gas from being wasted through venting, flaring and leaks. 


Boosting clean energy manufacturing
The bill provides $60 billion for clean energy manufacturing, including $30 billion for production tax credits to accelerate domestic manufacturing of solar panels, wind turbines, batteries and critical minerals processing, and a $10 billion investment tax credit to manufacturing facilities that are building EVs and clean energy technology, reinforcing the view that decarbonization is irreversible among policymakers.

There’s also $27 billion going toward a green bank called the Greenhouse Gas Reduction Fund, which will provide funding to deploy clean energy across the country, particularly in overburdened communities, and guide utility carbon-free electricity investments at scale. And the bill has a hydrogen production tax credit, which provides hydrogen producers with a credit based on the climate attributes of their production methods.

Emily Kent, the U.S. director of zero-carbon fuels at the Clean Air Task Force, a global climate nonprofit, said the bill’s support for low-emissions hydrogen is particularly notable since it could address sectors like heavy transportation and heavy industry, which are hard to decarbonize.

“U.S. climate policy has taken a major step forward on zero-carbon fuels in the U.S. and globally this year,” Kent said. “We look forward to seeing the impacts of these policies realized as the hydrogen tax credit, along with the hydrogen hubs program, accelerate progress toward creating a global market for zero-carbon fuels.”

The clean energy manufacturing provisions in the IRA will also have major implications for startups in the climate space and the big venture capital firms that back them. Carmichael Roberts, head of investment at Breakthrough Energy Ventures, has said the climate initiatives under the IRA will give private investors more confidence in the climate space and could even lead to the creation of up to 1,000 companies.

“Everybody wants to be part of this,” Roberts told CNBC following the passage of the bill in August. Even before the measure passed, “there was already a big groundswell around climate,” he said.


Investing in communities burdened by pollution
The legislation invests more than $60 billion to address the unequal effects of pollution and climate change on low-income communities and communities of color. The funding includes grants for zero-emissions technology and vehicles, and will help clean up Superfund sites, improve air quality monitoring capacity, and provide money to community-led initiatives through Environmental and Climate Justice block grants.

Research published in the journal Environmental Science and Technology Letters found that communities of color are systematically exposed to higher levels of air pollution than white communities due to redlining, a federal housing discrimination practice. Black Americans are also 75% more likely than white Americans to live near hazardous waste facilities and are three times more likely to die from exposure to pollutants, according to the Clean Air Task Force.

Biden signed an executive order after taking office aimed to prioritize environmental justice and help mitigate pollution in marginalized communities. The administration established the Justice40 Initiative to deliver 40% of the benefits from federal investments in climate change and clean energy to disadvantaged communities. 

More recently, the EPA in September launched an office focused on supporting and delivering grant money from the IRA to these communities.


Cutting ag emissions
The deal includes $20 billion for programs to slash emissions from the agriculture sector, which accounts for more than 10% of U.S. emissions, according to EPA estimates.

The president has pledged to reduce emissions from the agriculture industry in half by 2030. The IRA funds grants for agricultural conservation practices that directly improve soil carbon, as well as projects that help protect forests prone to wildfires.

Separately, this year the U.S. Department of Agriculture announced it will spend $1 billion on projects for farmers, ranchers and forest landowners to use practices that curb emissions or capture and store carbon. That program is focusing on projects for conservation practices including no-till, cover crops and rotational grazing.

Research suggests that removing carbon already in the atmosphere and replenishing soil worldwide could result in a 10% carbon drawdown.

 

Related News

View more

Tesla prepares to bring its electric cars to South America

Tesla Chile Market Entry signals EV expansion into South America, with a Santiago country manager, service technicians, and advisors, leveraging lithium supply, competing with BYD, and preparing sales, service, and charging infrastructure.

 

Key Points

Tesla will enter Chile to launch EV sales, service, and charging from Santiago, opening its South America expansion.

✅ Country manager role based in Santiago to lead market launch

✅ Focus on EV sales, service centers, and charging infrastructure

✅ Leverages Chile's lithium ecosystem; competes with BYD

 

Tesla is preparing to bring its electric cars to South America, according to a new job posting in Chile.

It has been just over a decade since Tesla launched the Model S and significantly accelerated EV inflection point in the deployment of electric vehicles around the world.

The automaker has expanded its efforts across North America, where the U.S. EV tipping point has been reached, and most countries in Europe, and it is still gradually expanding in Asia.

But there’s one continent that Tesla hasn’t touched yet: South America, even as global EV adoption raced to two million in five years.

It sounds like it is about to change.

Tesla has started to promote a job posting on LinkedIn for a country manager in Chile, aligning with international moves like UK expansion plans it has signaled.

The country manager is generally the first person hired when Tesla expands in a new market.

The job is going to be based in Santiago, the capital of Chile, where the company is also looking for some Tesla advisors and service technicians.

Chile is an interesting choice for a first entry into the South American market. The Chilean auto market consists of only about 234,000 vehicles sold year-to-date and that’s down 29% versus the previous year.

That’s roughly the number of vehicles sold in Brazil every month.

While the size of the auto market in the country is small, there’s a strong interest for electric vehicles as the EV era arrives ahead of schedule there, which might explain Tesla’s foray.

The country is rich in lithium, a critical material for EV batteries, where lithium supply concerns have also emerged, which has helped create interest for electric vehicles in the country. The government also announced an initiative to allow for only new sales of electric vehicles in the country starting in 2035.

Tesla’s Chinese competitor BYD has set its sight on the South American market by bringing its cheaper China-made EVs to the market, part of a broader Chinese EV push in Europe as well, but now it looks like Tesla is willing to test the market on the higher-end.

 

Related News

View more

Invenergy and GE Renewable Energy complete largest wind project constructed in North America

North Central Energy Facilities deliver 1,484 MW of renewable power in Oklahoma, uniting Invenergy, GE Renewable Energy, and AEP with the Traverse, Maverick, and Sundance wind farms, 531 turbines, grid-scale clean energy, and regional decarbonization.

 

Key Points

A 1,484 MW trio of Oklahoma wind farms by Invenergy with GE turbines, owned by AEP to supply regional customers.

✅ 1,484 MW capacity from 531 GE 2 MW platform turbines

✅ Largest single-phase wind farm: 998 MW Traverse

✅ Owned by AEP subsidiaries SWEPCO and PSO

 

Invenergy, the largest privately held global developer, owner and operator of sustainable energy solutions and GE Renewable Energy, today announced commercial operations for the 998-megawatt Traverse Wind Energy Center, the largest wind farm constructed in a single phase in North America, reflecting broader growth such as Enel's 450 MW project announced recently.

Located in north central Oklahoma, Traverse joins the operational 199-megawatt Sundance Wind Energy Center and the 287-megawatt Maverick Wind Energy Center, as the last of three projects developed by Invenergy for American Electric Power (AEP) to reach commercial operation, amid investor activity like WEC Energy's Illinois stake in wind assets this year. These projects make up the North Central Energy Facilities and have 531 GE turbines with a combined capacity of 1,484 megawatts, making them collectively among the largest wind energy facilities globally, even as new capacity comes online such as TransAlta's 119 MW addition in the US.

"This is a moment that Invenergy and our valued partners at AEP, GE Renewable Energy, and the gracious members of our home communities in Oklahoma have been looking forward to," said Jim Shield, Senior Executive Vice President and Development Business Leader at Invenergy, reflecting broader momentum as projects like Building Energy project begin operations nationwide. "With the completion of Traverse and with it the North Central Energy Facilities, we're proud to further our commitment to responsible, clean energy development and to advance our mission to build a sustainable world."

The North Central Energy Facilities represent a $2 billion capital investment in north central Oklahoma, mirroring Iowa wind investments that spur growth, directly investing in the local economy through new tax revenues and lease payments to participating landowners and will generate enough electricity to power 440,000 American homes.

"GE was honored to work with Invenergy on this milestone wind project, continuing our long-standing partnership," said Steve Swift, Global Commercial Leader for GE's Onshore Wind business, a view reinforced by projects like North Carolina's first wind farm coming online. "Wind power is a key element of driving decarbonization, and a dependable and affordable energy option here in the US and around the world. GE's 2 MW platform turbines are ideally suited to bring reliable and sustainable renewable energy to the region for many years to come."

AEP's subsidiaries Southwestern Electric Power Company (SWEPCO) and Public Service Company of Oklahoma (PSO) assumed ownership of the three wind farms upon start of commercial operations, alongside emerging interstate delivery efforts like Wyoming-to-California wind plans, to serve their customers in Arkansas, Louisiana and Oklahoma.

 

Related News

View more

GM, Ford Need Electric-Car Batteries, but Take Different Paths to Get Them

EV battery supply strategies weigh in-house cell manufacturing against supplier contracts, optimizing costs, scale, and supply-chain resilience for electric vehicles. Automakers like Tesla, GM-LG Chem, VW-Northvolt, and Ford balance gigafactories, joint ventures, and procurement risks.

 

Key Points

How automakers secure EV battery cells by balancing cost, scale, tech risk, and supply-chain control to meet demand.

✅ In-source cells via gigafactories, JVs, and proprietary chemistries

✅ Contract with LG Chem, Panasonic, CATL, SKI to diversify supply

✅ Manage costs, logistics, IP, and technology obsolescence risks

 

Auto makers, pumping billions of dollars into developing electric cars, are now facing a critical inflection point as they decide whether to get more involved with manufacturing the core batteries or buy them from others.

Batteries are one of an electric vehicle’s most expensive components, accounting for between a quarter and a third of the car’s value. Driving down their cost is key to profitability, executives say.

But whereas the internal combustion engine traditionally has been engineered and built by auto makers themselves, battery production for electric cars is dominated by Asian electronics and chemical firms, such as LG Chem Ltd. and Panasonic Corp. , and newcomers like China’s Contemporary Amperex Technology Co.

California, the U.S.’s largest car market, said last month it would end the sale of new gasoline- and diesel-powered passenger cars by 2035, putting pressure on the auto industry to accelerate its shift to electric vehicles in the coming years.

The race to lock in supplies for electric cars has auto makers taking varied paths, with growing Canada-U.S. collaboration across supply chains.

While most make the battery pack, a large metal enclosure often lining the bottom of the car, they also need the cells that are bundled together to form the core electricity storage.

Tesla several years ago opened its Gigafactory in Nevada to make batteries with Panasonic, which in the shared space would produce cells for the packs. The electric-car maker wanted to secure production specifically for its own models and lower manufacturing and logistics costs.

Now it is looking to in-source more of that production.

While Tesla will continue to buy cells from Panasonic and other suppliers, it is also working on its own cell technology and production capabilities, aiming for cheaper, more powerful batteries to ensure it can keep up with demand for its cars, said Chief Executive Elon Musk last month.

Following Tesla’s lead, General Motors Co. and South Korea’s LG Chem are putting $2.3 billion into a nearly 3-million-square-foot factory in Lordstown, Ohio, highlighting opportunities for Canada to capitalize on the U.S. EV pivot as supply chains evolve, which GM says will eventually produce enough battery cells to outfit hundreds of thousands of cars each year.

In Europe, Volkswagen AG is taking a similar path, investing about $1 billion in Swedish battery startup Northvolt AB, including some funding to build a cell-manufacturing plant in Salzgitter, Germany, as part of a joint venture, and in North America, EV assembly deals in Canada are putting it in the race as well.

Others like Ford Motor Co. and Daimler AG are steering clear of manufacturing their own cells, with executives saying they prefer contracting with specialized battery makers.

Supply-chain disruptions, including lithium shortages, have already challenged some new model launches and put projects at risk, auto makers say.

For instance, Ford and VW have agreements in place with SK Innovation to supply battery cells for future electric-vehicle models. The South Korean company is building a factory in Georgia to help meet this demand, but a fight over trade secrets has put the plant’s future in jeopardy and could disrupt new model launches, both auto makers have said in legal filings.

GM executives say the risk of relying on suppliers has pushed them to produce their own battery cells, albeit with LG Chem.

“We’ve got to be able to control our own destiny,” said Ken Morris, GM’s vice president of electric vehicles.

Bringing the manufacturing in house will give the company more control over the raw materials it purchases and the battery-cell chemistry, Mr. Morris said.

But establishing production, even in a joint venture, is a costly proposition, and it won’t necessarily ensure a timely supply of cells. There are also risks with making big investments on one battery technology because a breakthrough could make it obsolete.

Ford cites those factors in deciding against a similar investment for now.

The company sees the industry’s conventional model of contracting with independent suppliers to build parts as better suited to its battery-cell needs, Ford executive Hau Thai-Tang told analysts in August.

“We have the competitive tension with dealing with multiple suppliers, which allows us to drive the cost down,” Mr. Thai-Tang said, adding that the company expects to pay prices for cells in line with GM and Tesla.


Meanwhile, Ford can leave the capital-intensive task of conducting the research and setting up manufacturing facilities to the battery companies, Mr. Thai-Tang said.

Germany’s Daimler has tried both strategies.

The car company made its own lithium-ion cells through a subsidiary until 2015. But the capital required to scale up was better spent elsewhere, said Ola Källenius, Daimler’s chief executive officer.

The auto maker instead signed long-term supply agreements with Asian companies like Chinese battery-maker CATL and Farasis Energy (Ganzhou) Co., which Daimler invested in last year.

The company has said it is spending roughly $23.6 billion on purchase agreements but keeping its battery research in-house.

“Let’s rather put that capital into what we do best, cars,” Mr. Källenius said.

 

Related News

View more

Biden's interior dept. acts quickly on Vineyard Wind

Vineyard Wind I advances as BOEM issues a final environmental impact statement for the 800 MW offshore wind farm south of Martha's Vineyard, delivering clean energy, jobs, and carbon reductions to Massachusetts toward net-zero.

 

Key Points

An 800 MW offshore wind project near Martha's Vineyard supplying clean power to Massachusetts.

✅ 800 MW capacity; power for 400,000+ homes and businesses

✅ BOEM final EIS; record of decision pending within 30+ days

✅ 1.68M metric tons CO2 avoided annually; jobs and lower rates

 

Federal environmental officials have completed their review of the Vineyard Wind I offshore wind farm, moving the project that is expected to deliver clean renewable energy to Massachusetts by the end of 2023 closer to becoming a reality.

The U.S. Department of the Interior said Monday morning that its Bureau of Ocean Energy Management completed the analysis it resumed about a month ago, published the project's final environmental impact statement, and said it will officially publish notice of the impact statement in the Federal Register later this week.

"More than three years of federal review and public comment is nearing its conclusion and 2021 is poised to be a momentous year for our project and the broader offshore wind industry," Vineyard Wind CEO Lars Pedersen said. "Offshore wind is a historic opportunity to build a new industry that will lead to the creation of thousands of jobs, reduce electricity rates for consumers and contribute significantly to limiting the impacts of climate change. We look forward to reaching the final step in the federal permitting process and being able to launch an industry that has such tremendous potential for economic development in communities up and down the Eastern seaboard."

The 800-megawatt wind farm planned for 15 miles south of Martha's Vineyard was the first offshore wind project selected by Massachusetts utility companies with input from the Baker administration to fulfill part of a 2016 clean energy law. It is projected to generate cleaner electricity for more than 400,000 homes and businesses in Massachusetts, produce at least 3,600 jobs, reduce costs for Massachusetts ratepayers by an estimated $1.4 billion, and eliminate 1.68 million metric tons of carbon dioxide emissions annually.

Offshore wind power, informed by the U.S. offshore wind outlook, is expected to become an increasingly significant part of Massachusetts' energy mix. The governor and Legislature agree on a goal of net-zero carbon emissions by 2050, but getting there is projected to require having about 25 gigawatts of offshore wind power. That means Massachusetts will need to hit a pace in the 2030s where it has about 1 GW of new offshore wind power on the grid coming online each year.

"I think that's why today's announcement is so historic, because it does represent that culmination of work to understand how to permit and build a cost-effective and environmentally-responsible wind farm that can deliver clean energy to Massachusetts ratepayers, but also just how to do this from start to finish," said Energy and Environmental Affairs Secretary Kathleen Theoharides. "As we move towards our goal of probably [25 GW] of offshore wind by 2050 to hit our net-zero target, this does give us confidence that we have a much clearer path in terms of permitting."

She added, "There's a huge pipeline, so getting this project out really should open the door to the many additional projects up and down the East Coast, such as Long Island proposals, that will come after it."

According to the American Wind Energy Association, there are expected to be 14 offshore projects totaling 9,112 MW of capacity in operation by 2026.

Susannah Hatch, the clean energy coalition director for the Environmental League of Massachusetts and a leader of the broad-based New England for Offshore Wind Regional group, called offshore wind farms like Vineyard Wind "the linchpin of our decarbonization efforts in New England." She said the Biden administration's quick action on Vineyard Wind is a positive sign for the burgeoning sector.

"Moving swiftly on responsibly developed offshore wind is critical to our efforts to mitigate climate change, and offshore wind also provides an enormous opportunity to grow the economy, create thousands of jobs, and drive equitable economic benefits through increased minority economic participation in New England," Hatch said.

With the final environmental impact statement published, Vineyard Wind still must secure a record of decision from BOEM, which processes wind lease requests, an air permit from the Environmental Protection Agency and sign-offs from the U.S. Army Corps of Engineers and the National Marine Fisheries Service to officially clear the way for the project that is on track to be the nation's first utility-scale offshore wind farm. BOEM must wait at least 30 days from the publication of the final environmental impact statement to issue a record of decision.

Project officials have said they expect the final impact statement and then a record of decision "sometime in the first half of 2021." That would allow the project to hit its financial close milestone in the second half of this year, begin on-shore work quickly thereafter, start offshore construction in 2022, begin installing turbines in 2023 and begin exporting power to the grid, marking Vineyard Wind first power, by late 2023, Pedersen said in January.

"Offshore energy development provides an opportunity for us to work with Tribal nations, communities, and other ocean users to ensure all decisions are transparent and utilize the best available science," BOEM Director Amanda Lefton said.

The commercial fishing industry has been among the most vocal opponents of aspects of the Vineyard Wind project and the Responsible Offshore Development Alliance (RODA) has repeatedly urged the new administration to ensure the voices of the industry are heard throughout the licensing and permitting process.

In comments submitted earlier this month in response to a BOEM review of an offshore wind project that is expected to deliver power to New York, including the recent New York offshore wind approval, RODA said the present is "a time of significant confusion and change in the U.S. approach to offshore wind energy (OSW) planning" and detailed mitigation measures it wants to see incorporated into all projects.

"To be clear, none of these requests are new -- nor hardly radical. They have simply been ignored again, and again, and again in a political push/pull between multinational energy companies and the U.S. government, leaving world-famous seafood, and the communities founded around its harvest, off the table," the group said in a press release last week. Some of RODA's suggestions were analyzed as part of BOEM's Vineyard Wind review.

Vineyard Wind has certainly taken a circuitous path to get to this point. The timeline for the project was upended in August 2019 when the Trump administration decided to conduct a much broader assessment of potential offshore wind projects up and down the East Coast, which delayed the project by almost a year.

When the Trump administration delayed its action on a final environmental impact statement last year, Vineyard Wind on Dec. 1 announced that it was pulling its project out of the federal review pipeline in order to complete an internal study on whether the decision to use a certain type of turbine would warrant changes to construction and operations plan. The Trump administration declared the federal review of the project "terminated."

Within two weeks of President Joe Biden being inaugurated, Vineyard Wind said its review determined no changes were necessary and the company resubmitted its plans for review. BOEM agreed to pick up where the Trump administration had left off despite the agency previously declaring its review terminated.

"It would appear that fishing communities are the only ones screaming into a void while public resources are sold to the highest bidder, as BOEM has reversed its decision to terminate a project after receiving a single letter from Vineyard Wind," RODA said.

The final environmental impact statement that BOEM published Monday showed that the federal regulators believe the Vineyard Wind I development as proposed will have "moderate" impacts on commercial fisheries and for-hire recreational fishing outfits, and that the project combined with other factors not related to wind energy development will have "major" impacts on commercial and recreational fishing ventures.

Vineyard Wind pointed Monday to the fishery mitigation agreements it has entered into with Massachusetts and Rhode Island, a fishery science collaboration with the University of Massachusetts Dartmouth's School of Marine Science and Technology, and an agreement with leading environmental organizations around the protection of the endangered right whale.

Responding to concerns about safe navigation among RODA and others in the fishing sector, Vineyard Wind and the four other developers holding leases for offshore wind sites off New England agreed to orient their turbines in fixed east-to-west rows and north-to-south columns spaced one nautical mile apart. Last year, the U.S. Coast Guard concluded that the grid layout was the best way to maintain maritime safety and ease of navigation in the offshore wind development areas south of Martha's Vineyard and Nantucket.

Since a 2016 clean energy law kicked off the state's foray into the offshore wind world, Massachusetts utilities have contracted for a total of about 1,600 MW between two projects, Vineyard Wind I and Mayflower Wind.

A joint venture of Shell and Ocean Winds North America, Mayflower Wind was picked unanimously in 2019 by utility executives to build and operate a wind farm approximately 26 nautical miles south of Martha's Vineyard and 20 nautical miles south of Nantucket, with South Coast construction activity expected as the project progresses. The 804-megawatt project is expected to be operational by December 2025.

Massachusetts and its utilities are expected to go out to bid for up to another 1,600 MW of offshore wind generation capacity later this year using authorization granted by the Legislature in 2018.

The climate policy bill that Gov. Charlie Baker returned to the Legislature with amendments more than a month ago would require that the executive branch direct Massachusetts utilities to buy an additional 2,400 MW of offshore wind power.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified