US Army deploys its first floating solar array


US Army deploys its first floating solar array

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

Related News

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

Building Energy Celebrates the Beginning of Operations and Electricity Generation

Building Energy Iowa Wind Farm delivers 30 MW of renewable energy near Des Moines, generating 110 GWh annually with wind turbines, a long-term PPA, CO2 reduction, and community benefits like jobs and clean power.

 

Key Points

Building Energy Iowa Wind Farm is a 30 MW project generating 110 GWh a year, cutting CO2 and supporting local jobs.

✅ 30 MW capacity, 10 onshore turbines (3 MW each)

✅ ~110 GWh per year; power for 11,000 households

✅ Long-term PPA; jobs and emissions reductions in Iowa

 

With 110 GWh generated per year, the plant will be beneficial to Iowa's environment, reflecting broader Iowa wind power investment trends, contributing to the reduction of 100,000 tons of CO2 emissions, as well as providing economic benefits to host local communities.

Building Energy SpA, multinational company operating as a global integrated IPP in the Renewable Energy Industry, amid milestones such as Enel's 450 MW U.S. wind project, through its subsidiary Building Energy Wind Iowa LLC, announces the inauguration of its first wind farm in Iowa, which adds up to 30 MW of wind distribution generation capacity. The project, located north of Des Moines, in Story, Boone, Hardin and Poweshiek counties, will generate approximately 110 GWh per year. The beginning of operations has been celebrated on the occasion of the Wind of Life event in Ames, Iowa, in the presence of Andrea Braccialarghe, MD America of Building Energy, Alessandro Bragantini, Chief Operating Officer of Building Energy and Giuseppe Finocchiaro, Italian Consul General.

The overall investment in the construction of the Iowa distribution generation wind farms amounted to $58 million and it sells its energy and related renewable credits under a bundled, long-term power purchase agreement with a local utility, reflecting broader utility investment trends such as WEC Energy's Illinois wind stake in the region.

The wind facility, developed, financed, owned and operated by Building Energy, consists of ten 3.0 MW geared onshore wind turbines, each with a rotor diameter of 125 meters mounted on an 87.5 meter steel tower. The energy generated will satisfy the energy needs of 11,000 U.S. households every year, similar in community impact to North Carolina's first wind farm, while avoiding the emission of about 70,000 tons of CO2 emissions every year, according to US Environmental Protection Agency methodology, which is equivalent to taking 15,000 cars off the road each year.

Besides the environmental benefits, the wind farm also has advantages for the local community, providing it with clean energy and creating jobs for local Iowans. The project involved more than a hundred of local skilled workers during the construction phase. Some of those jobs will be also permanent as necessary for the operation and maintenance activities as well as for additional services such as delivery, transportation, spare parts management, landscape mitigation, and further environmental monitoring studies.

The Company is present in many US states since 2013 with more than 500 MW of projects under development, spread across different renewable energy technologies, and aligning with federal initiatives like DOE wind energy awards that support innovation.

 

Related News

View more

BC Hydro electric vehicle fast charging site operational in Lillooet

BC Hydro Lillooet EV fast charging launches a pull-through, DC fast charger hub for electric trucks, trailers, and cars, delivering 50-kW clean hydroelectric power, range-topups, and network expansion across B.C. with reliable public charging.

 

Key Points

A dual 50-kW pull-through DC fast charging site in Lillooet supporting EV charging for larger trucks and trailers.

✅ Dual 50-kW units add ~50 km range in 10 minutes

✅ Pull-through bays fit trucks, trailers, and long-wheelbase EVs

✅ Part of BC Hydro network expansion across B.C.

 

A new BC Hydro electric vehicle fast charging site is now operational in Lillooet with a design that accommodates larger electric trucks and trailers.

'We are working to make it easier for drivers in B.C. to go electric and take advantage of B.C.'s clean, reliable hydroelectricity,' says Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. 'Lillooet is a critical junction in BC Hydro's Electric Highway fast charging network and the unique design of this dual station will allow for efficient charging of larger vehicles.'

The Lillooet station opened in early March. It is in the parking lot at Old Mill Plaza at 155 Main Street and includes two 50-kilowatt charging units. Each unit can add 50 kilometres of driving to an average electric vehicle with BC Hydro's faster charging initiatives continuing to improve speeds, in about 10 minutes. The station is one of three in the province that can accommodate large trucks and trailers because of it's 'pull-through' design. The other two are in Powell River and Fraser Lake.

'As the primary fuel supplier for electric vehicles, we are building out more charging stations to ensure we can accommodate the volume and variety of electric vehicles that will be on B.C. roads in the coming years,' says Chris O'Riley, President and CEO of BC Hydro. 'BC Hydro will add 325 charging units to its network at 145 sites, and is piloting vehicle-to-grid technology to support grid flexibility within the next five years.'

Transportation accounts for about 40 per cent of greenhouse gas emissions in B.C. In September, BC Hydro revealed its Electrification Plan, with initiatives to encourage B.C. residents, businesses and industries to switch to hydroelectricity from fossil fuels to help reduce carbon emissions, alongside investments in clean hydrogen development to further decarbonize. The plan encourages switching from gas-powered cars to electric vehicles and is supported by provincial EV charger rebates for homes and workplaces.

BC Hydro's provincewide fast charging network currently includes, as part of B.C.'s expanding EV leadership across the province, 110 fast charging units at 76 sites in communities throughout B.C. The chargers are funded in a partnership with the Province of B.C. and Natural Resources Canada.

 

Related News

View more

Solar and wind power curtailments are rising in California

CAISO Renewable Curtailments reflect grid balancing under transmission congestion and oversupply, reducing solar and wind output while leveraging WEIM trading, battery storage, and transmission expansion to integrate renewables and stabilize demand-supply.

 

Key Points

CAISO renewable curtailments are reductions in wind and solar output to balance grid amid congestion or oversupply.

✅ Driven mainly by transmission congestion, less by oversupply.

✅ Peaks in spring when demand is low and solar output is high.

✅ Mitigated by WEIM trades, new lines, and battery storage growth.

 

The California Independent System Operator (CAISO), the grid operator for most of the state, is increasingly curtailing solar- and wind-powered electricity generation, as reported in rising curtailments, as it balances supply and demand during the rapid growth of wind and solar power in California.

Grid operators must balance supply and demand to maintain a stable electric system as advances in solar and wind continue to scale. The output of wind and solar generators are reduced either through price signals or rarely, through an order to reduce output, during periods of:

Congestion, when power lines don’t have enough capacity to deliver available energy
Oversupply, when generation exceeds customer electricity demand

In CAISO, curtailment is largely a result of congestion. Congestion-related curtailments have increased significantly since 2019 because California's solar boom has been outpacing upgrades in transmission capacity.

In 2022, CAISO curtailed 2.4 million megawatthours (MWh) of utility-scale wind and solar output, a 63% increase from the amount of electricity curtailed in 2021. As of September, CAISO has curtailed more than 2.3 million MWh of wind and solar output so far this year, even as the US project pipeline is dominated by wind, solar, and batteries.

Solar accounts for almost all of the energy curtailed in CAISO—95% in 2022 and 94% in the first seven months of 2023. CAISO tends to curtail the most solar in the spring when electricity demand is relatively low (because moderate spring temperatures mean less demand for space heating or air conditioning) and solar output is relatively high, although wildfire smoke impacts can reduce available generation during fire season as well.

CAISO has increasingly curtailed renewable generation as renewable capacity has grown in California, and the state has even experienced a near-100% renewables moment on the grid in recent years. In 2014, a combined 9.0 gigawatts (GW) of wind and solar capacity had been built in California. As of July 2023, that number had grown to 17.6 GW. Developers plan to add another 3.0 GW by the end of 2024.

CAISO is exploring and implementing various solutions to its increasing curtailment of renewables, including:

The Western Energy Imbalance Market (WEIM) is a real-time market that allows participants outside of CAISO to buy and sell energy to balance demand and supply. In 2022, more than 10% of total possible curtailments were avoided by trading within the WEIM. A day ahead market is expected to be operational in Spring 2025.

CAISO is expanding transmission capacity to reduce congestion. CAISO’s 2022–23 Transmission Planning Process includes 45 transmission projects to accommodate load growth and a larger share of generation from renewable energy sources.

CAISO is promoting the development of flexible resources that can quickly respond to sudden increases and decreases in demand such as battery storage technologies that are rapidly becoming more affordable. California has 4.9 GW of battery storage, and developers plan to add another 7.6 GW by the end of 2024, according to our survey of recent and planned capacity changes. Renewable generators can charge these batteries with electricity that would otherwise have been curtailed.

 

Related News

View more

The government's 2035 electric vehicle mandate is delusional

Canada 2035 Zero-Emission Vehicle Mandate sets EV sales targets, raising concerns over affordability, battery materials like lithium and copper, charging infrastructure, grid capacity, renewable energy mix, and policy impacts across provinces.

 

Key Points

Mandate makes all new light-duty vehicles zero-emission by 2035, affecting costs, charging, and electric grid planning.

✅ 100% ZEV sales target for cars, SUVs, light trucks by 2035

✅ Cost pressures from lithium, copper, nickel; EVs remain pricey

✅ Grid, charging build-out needed; impacts vary by provincial mix

 

Whether or not you want one, can afford one or think they will do essentially nothing to stop global warming, electric vehicles are coming to Canada en masse. This week, the Canadian government set 2035 as the “mandatory target” for the sale of zero-emission SUVs and light-duty trucks as part of ambitious EV goals announced by Ottawa.

That means the sale of gasoline and diesel cars has to stop by then. Transport Minister Omar Alghabra called the target “a must.” The previous target was 2040.

It is a highly aspirational plan that verges on the delusional according to skeptics of an EV revolution who argue its scale is overstated, even if it earns Canada – a perennial laggard on the emission-reduction front – a few points at climate conferences. Herewith, a few reasons why the plan may be unworkable, unfair or less green than advertised.

Liberals say by 2035 all new cars, light-duty trucks sold in Canada will be electric, as Ottawa develops EV sales regulations to implement the mandate.

Parkland to roll out electric-vehicle charging network in B.C. and Alberta

Sticker shock: There is a reason why EVs remain niche products in almost every market in the world (the notable exception is in wealthy Norway): They are bloody expensive and often in short supply in many markets. Unless EV prices drop dramatically in the next decade, Ottawa’s announcement will price the poor out of the car market. Transportation costs are a big issue with the unrich. The 2018 gilets jaunes mass protests in France were triggered by rising fuel costs.

While some EVs are getting cheaper, even the least expensive ones are about double the price of a comparable product with an internal combustion engine. Most EVs are luxury items. The market leader in Canada and the United States is Tesla. In Canada the cheapest Tesla, the Model 3 (“standard range plus” version), costs $49,000 before adding options and subtracting any government purchase incentives. A high-end Model S can set you back $170,000.

To be sure, prices will come down as production volumes increase. But the price decline might be slow for the simple reason that the cost of all the materials needed to make an EV – copper, cobalt, lithium, nickel among them – is climbing sharply and may keep climbing as production increases, straining supply lines.

Lithium prices have doubled since November. Copper has almost doubled in the past year. An EV contains five times more copper than a regular car. Glencore, one of the biggest mining companies, estimated that copper production needs to increase by a million tonnes a year until 2050 to meet the rising demand for EVs and wind turbines, a daunting task given the dearth of new mining projects.

Will EVs be as cheap as gas cars in a decade or so? Impossible to say, but given the recent price trends for raw materials, probably not.

Not so green: There is no such thing as a zero-emission vehicle, even if that’s the label used by governments to describe battery-powered cars. So think twice if you are buying an EV purely to paint yourself green, as research finds they are not a silver bullet for climate change.

In regions in Canada and elsewhere in the world that produce a lot of electricity from fossil-fuel plants, driving an EV merely shifts the output of greenhouse gases and pollutants from the vehicle itself to the generating plant (according to recent estimates, about 18% of Canada’s electricity comes from coal, natural gas and oil; in the United States, 60 per cent).

An EV might make sense in Quebec, where almost all the electricity comes from renewable sources and policymakers push EV dominance across the market. An EV makes little sense in Saskatchewan, where only 17 per cent comes from renewables – the rest from fossil fuels. In Alberta, only 8 per cent comes from renewables.

The EV supply chain is also energy-intensive. And speaking of the environment, recycling or disposing of millions of toxic car batteries is bound to be a grubby process.

Where’s the juice?: Since the roofs of most homes in Canada and other parts of the world are not covered in solar panels, plugging in an EV to recharge the battery means plugging into the electrical grid. What if millions of cars get plugged in at once on a hot day, when everyone is running air conditioners?

The next few decades could emerge as an epic energy battle between power-hungry air conditioners, whose demand is rising as summer temperatures rise, and EVs. The strain of millions of AC units running at once in the summer of 2020 during California’s run of record-high temperatures pushed the state into rolling blackouts. A few days ago, Alberta’s electricity system operator asked Albertans not to plug in their EVs because air conditioner use was straining the electricity supply.

According to the MIT Technology Review, rising incomes, populations and temperatures will triple the number of air conditioners used worldwide, to six billion, by mid-century. How will any warm country have enough power to recharge EVs and run air conditioners at the same time? The Canadian government didn’t say in its news release on the 2035 EV mandate. Will it fund the construction of new fleets of power stations?

The wrong government policy: The government’s announcement made it clear that widespread EV use – more cars – is central to its climate policy. Why not fewer cars and more public transportation? Cities don’t need more cars, no matter the propulsion system. They need electrified buses, subways and trains powered by renewable energy. But the idea of making cities more livable while reducing emissions is apparently an alien concept to this government.

 

Related News

View more

Is residential solar worth it?

Home Solar Cost vs Utility Bills compares electricity rates, ROI, incentives, and battery storage, explaining payback, financing, and grid fees while highlighting long-term savings, rate volatility, and backup power resilience for homeowners.

 

Key Points

Compares home solar pricing and financing to utility rates, outlining savings, incentives, ROI, and backup power value.

✅ Average retail rates rose 59% in 20 years; volatility persists

✅ Typical 7.15 kW system costs $18,950 before incentives

✅ Federal ITC and state rebates improve ROI and payback

 

When shopping for a home solar system, sometimes the quoted price can leave you wondering why someone would move forward with something that seems so expensive. 

When compared with the status quo, electricity delivered from the utility, the price may not seem so high after all. First, pv magazine will examine the status quo, and how much you can expect to pay for power if you don’t get solar panels. Then, we will examine the average cost of solar arrays today and introduce incentives that boost home solar value.

The cost of doing nothing

Generally, early adopters have financially benefited from going solar by securing price certainty and stemming the impact of steadily increasing utility-bill costs, particularly for energy-insecure households who pay more for electricity.

End-use residential electric customers pay an average of $0.138/kWh in the United States, according to the Energy Information Administration (EIA). In California, that rate is $0.256/kWh, it averages $0.246/kWh across New England, $0.126/kWh in the South Atlantic region, and $0.124/kWh in the Mountain West region.

EIA reports that the average home uses 893 kWh per month, so based on the average retail rate of $0.138/kWh, that’s an electric bill of about $123 monthly, or $229 monthly in California.

Over the last 20 years, EIA data show that retail electricity prices have increased 59% across the United States, with evidence indicating that renewables are not making electricity more expensive, suggesting other factors have driven costs higher, or 2.95% each year.

This means based on historical rates, the average US homeowner can expect to pay $39,460 over the next 20 years on electricity bills. On average, Californians could pay $73,465 over 20 years.

Recent global events show just how unstable prices can be for commodities, and energy is no exception here, with solar panel sales doubling in the UK as homeowners look to cut soaring bills. What will your utility bill cost in 20 years?

These estimated bills also assume that energy use in the home is constant over 20 years, but as the United States electrifies its homes, adds more devices, and adopts electric vehicles, it is fair to expect that many homeowners will use more electricity going forward.

Another factor that may exacerbate rate raising is the upgrade of the national transmission grid. The infrastructure that delivers power to our homes is aging and in need of critical upgrades, and it is estimated that a staggering $500 billion will be spent on transmission buildout by 2035. This half-trillion-dollar cost gets passed down to homeowners in the form of raised utility bill rates.

The benefit of backup power may increase as time goes on as well. Power outages are on the rise across the United States, and recent assessments of the risk of power outages underscore that outages related to severe weather events have doubled in the last 20 years. Climate change-fueled storms are expected to continue to rise, so the role of battery backup in providing reliable energy may increase significantly.

The truth is, we don’t know how much power will cost in 20 years. Though it has increased 59% across the nation in the last 20 years, there is no way to be certain what it will cost going forward. That is where solar has a benefit over the status quo. By purchasing solar, you are securing price certainty going forward, making it easier to budget and plan for the future.

So how do these costs compare to going solar?

Cost of solar

As a general trend, prices for solar have fallen. In 2010, it cost about $40,000 to install a residential solar system, and since then, prices have fallen by as much as 70%, and about 37% in the last five years. However, prices have increased slightly in 2022 due to shipping costs, materials costs, and possible tariffs being placed on imported solar goods, and these pressures aren’t expected to be alleviated in the near-term.

When comparing quotes, the best metric for an apples-to-apples comparison is the cost per watt. Price benchmarking by the National Renewable Energy Laboratory shows the average cost per watt for the nation was $2.65/W DC in 2021, and the average system size was 7.15 kW. So, an average system would cost about $18,950. With 12.5 kWh of battery energy storage, the average cost was $4.26/W, representing an average price tag of $30,460 with batteries included.

The prices above do not include any incentives. Currently, the federal government applies a 26% investment tax credit to the system, bringing down system costs for those who qualify to $14,023 without batteries, and $22,540 with batteries. Compared to the potential $39,460 in utility bills, buying a solar system outright in cash appears to show a clear financial benefit.

Many homeowners will need financing to buy a solar system. Shorter terms can achieve rates as low as 2.99% or less, but financing for a 20-year solar loan typically lands between 5% to 8% or more. Based on 20-year, 7% annual percentage rate terms, a $14,000 system would total about $26,000 in loan payments over 20 years, and the system with batteries included would total about $42,000 in loan payments.

Often when you adopt solar, the utility will still charge you a grid access fee even if your system produces 100% of your needs. These vary from utility to utility but are often around $10 a month. Over 20 years, that equates to about $2,400 that you’ll still need to pay to the utility, plus any costs for energy you use beyond what your system provides.

Based on these average figures, a homeowner could expect to see as much as $12,000 in savings with a 20-year financed system. Homeowners in regions whose retail energy price exceeds the national average could see savings in multiples of that figure.

Though in this example batteries appear to be marginally more expensive than the status quo over a 20-year term, they improve the home by adding the crucial service of backup power, and as battery costs continue to fall they are increasingly being approved to participate in grid services, potentially unlocking additional revenue streams for homeowners.

Another thing to note is most solar systems are warranted for 25 years rather than the 20 used in the status quo example. A panel can last a good 35 years, and though it will begin to produce less in old age, any power produced by a panel you own is money back in your pocket.

Incentives and home value

Many states have additional incentives to boost the value of solar, too, and federal proposals to increase solar generation tenfold could remake the U.S. electricity system. Checking the Database of State Incentives for Renewables (DSIRE) will show the incentives available in your state, and a solar representative should be able to walk you through these benefits when you receive a quote. State incentives change frequently and vary widely, and in some cases are quite rich, offering thousands of dollars in additional benefits.

Another factor to consider is home value. A study by Zillow found that solar arrays increase a home value by 4.1% on average. For a $375,000 home, that’s an increase of $15,375 in value. In most states home solar is exempt from property taxes, making it a great way to boost value without paying taxes for it.

Bottom line

We’ve shared a lot of data on national averages and the potential cost of power going forward, but is solar for you? In the past, early adopters have been rewarded for going solar, and celebrate when they see $0 electric bills paid to the utility company.

Each home is different, each utility is different, and each homeowner has different needs, so evaluating whether solar is right for your home will take a little time and analysis. Representatives from solar companies will walk you through this analysis, and it’s generally a good rule of thumb to get at least three quotes for comparison.

A great resource for starting your research is the Solar Calculator developed by informational site SolarReviews. The calculator offers a quote and savings estimate based on local rates and incentives available to your area. The website also features reviews of installers, equipment, and more.

Some people will save tens of thousands of dollars in the long run with solar, while others may witness more modest savings. Solar will also provide the home clean, local energy, and U.S. solar generation is projected to reach 20% by 2050 as capacity expands, making an impact both on mitigating climate change and in supporting local jobs.

One indisputable benefit of solar is that it will offer greater clarity into what your electricity bills will cost over the next couple of decades, rather than leaving you exposed to whatever rates the utility company decides to charge in the future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.