US Army deploys its first floating solar array


US Army deploys its first floating solar array

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

Related News

Space-based solar power, once for science fiction, is gaining interest.

Space-Based Solar Power enables wireless energy transfer from orbital solar arrays, using microwave beaming to rectennas on Earth, delivering clean baseload power beyond weather and night limits, as demonstrated by Caltech and NASA.

 

Key Points

Space-based solar power beams microwaves from arrays to rectennas, delivering clean electricity beyond weather and night.

✅ Caltech demo proved wireless power transfer in space.

✅ Microwaves beam to rectennas for grid-scale clean energy.

✅ Operates above clouds, enabling continuous baseload supply.

 

Ali Hajimiri thinks there’s a better way to power the planet — one that’s not getting the attention it deserves. The Caltech professor of electrical engineering envisages thousands of solar panels floating in space, unobstructed by clouds and unhindered by day-night cycles, effectively generating electricity from the night sky for continuous delivery, wirelessly transmitting massive amounts of energy to receivers on Earth.

This year, that vision moved closer to reality when Mr. Hajimiri, together with a team of Caltech researchers, proved that wireless power transfer in space was possible: Solar panels they had attached to a Caltech prototype in space successfully converted electricity into microwaves and beamed those microwaves to receivers, as a demonstration of beaming power from space to devices about a foot away, lighting up two LEDs.

The prototype also beamed a tiny but detectable amount of energy to a receiver on top of their lab’s building in Pasadena, Calif. The demonstration marks a first step in the wireless transfer of usable power from space to Earth, and advances in low-cost solar batteries could help store and smooth that power flow — a power source that Mr. Hajimiri believes will be safer than direct sun rays. “The beam intensity is to be kept less than solar intensity on earth,” he said.

Finding alternative energy sources is one of the topics that will be discussed by leaders in business, science and public policy, including wave energy, during The New York Times Climate Forward event on Thursday. The Caltech demonstration was a significant moment in the quest to realize space-based solar power, amid policy moves such as a proposed tenfold increase in U.S. solar that would remake the U.S. electricity system — a clean energy technology that has long been overshadowed by other long-shot clean energy ideas, such as nuclear fusion and low-cost clean hydrogen.

If space-based solar can be made to work on a commercial scale, said Nikolai Joseph, a NASA Goddard Space Flight Center senior technology analyst, and integrate with peer-to-peer energy sharing networks, such stations could contribute as much as 10 percent of global power by 2050.

The idea of space-based solar energy has been around since at least 1941, when the science-fiction writer Isaac Asimov set one of his short stories, “Reason,” on a solar station that beamed energy by microwaves to Earth and other planets.

In the 1970s, when a fivefold increase in oil prices sparked interest in alternative energy, NASA and the Department of Energy conducted the first significant study on the topic. In 1995, under the direction of the physicist John C. Mankins, NASA took another look and concluded that investments in space-launch technology were needed to lower the cost and move closer to cheap abundant electricity before space-based solar power could be realized.

“There was never any doubt about it being technically feasible,” said Mr. Mankins, now president of Artemis Innovation Management Solutions, a technology consulting group. “The cost was too prohibitive.”

 

Related News

View more

EV owners can access more rebates for home, workplace charging

CleanBC Go Electric EV Charger Rebate empowers British Columbia condos, apartments, and workplaces with Level 2 charging infrastructure, ZEV adoption support, and stackable rebates aligned with the CleanBC Roadmap 2030 and municipal top-up incentives.

 

Key Points

A provincial program funding up to 50% of EV charger costs for condos, apartments, and workplaces across B.C.

✅ Up to 50% back, max $2,000 per eligible Level 2 charger

✅ EV Ready plans fund building upgrades for future charging

✅ Free advisor support: up to 5 hours for condos and workplaces

 

British Columbians wanting to charge their electric vehicles (EVs) at their condominium building or their place of work can access further funding through EV charger rebates to help buy and install EV chargers through CleanBC’s Go Electric EV Charger Rebate program.

“To better support British Columbians living in condominiums and apartments, we’re offering rebates to make more buildings EV ready,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With the highest uptake rates of EV adoption in North America, we want to make sure that more people supporting our transition to a low-carbon economy have easy access to charging infrastructure.”

The Province’s CleanBC Go Electric EV Charger Rebate program is receiving $10 million as part of Budget 2021 to help with the upfront costs that come with EVs. Condominiums, apartments and workplaces that purchase and install eligible EV chargers can receive a rebate up to 50% of costs to a maximum of $2,000 per charger. Customers who take advantage of the EV Charger Rebate may have access to top up rebates through participating municipalities and local governments.

“People in British Columbia are switching to electric vehicles in record numbers as part of the transition to a cleaner, better transportation system,” said George Heyman, Minister of Environment and Climate Change Strategy. “We are building on that progress and accelerating positive change through the CleanBC Roadmap. We’re making it more affordable to own an electric vehicle and charging station, with incentives for zero-emission vehicles, so people can improve their driving experience with no air and climate pollution, and lower fuel and maintenance costs overall.”

The strata council for a condo building in Vancouver’s Olympic Village neighbourhood made use of the EV Ready program, as well as new legislation easing strata EV installs and federal support to upgrade their building’s electrical infrastructure. The strata council worked together to first determine, through a load review, if there was enough incoming power to support a level 2 charger for every owner. Once this was determined, the strata’s chosen electrical contractor went to work with the base installation, as well as individual chargers for owners who ordered them. The strata council also ensured a charger was installed in the guest parking.

“The majority of owners in our building came together and gave our strata council approval to make the necessary updates to the building’s infrastructure to support electric vehicle charging where we live,” said Jim Bayles, vice-president of strata council. “While upgrading the electrical and installing the EV chargers was something we were going ahead with anyway, we were pleased to receive quick support from the Province through their CleanBC program as well as from the federal government.”

CleanBC’s EV Ready option supports the adoption of EV infrastructure at apartment and condominium buildings. EV Ready provides rebates for the development of EV Ready plans, a strategy for buildings supported by professionals to retrofit a condo with chargers and make at least one parking space per unit EV ready, and the installation of electrical modifications and upgrades needed to support widespread future access to EV charging for residents.

Up to five hours of free support services from an EV charging station adviser are available through the EV Charger Rebate program for condominiums, apartments and workplaces that need help moving from idea to installation.

Single-family homes, including duplexes and townhouses, can get a rebate of up to 50% of purchase and installation costs of an eligible EV charger to a maximum of $350 through the EV Charger Rebate program.

The Province is providing a range of rebates through its CleanBC Go Electric programs and building out the fast-charging network to ensure the increasing demand for EVs is supported. B.C. has one of the largest public-charging networks in Canada, including the BC's Electric Highway initiative, with more than 2,500 public charging stations throughout the province.

The CleanBC Go Electric EV Charger Rebate program aligns with the recently released CleanBC Roadmap to 2030. Announced on Oct. 25, 2021, the CleanBC Roadmap to 2030 details a range of expanded actions to expand EV charging and accelerate the transition to a net-zero future and achieve B.C.’s legislated greenhouse gas emissions targets.

CleanBC is a pathway to a more prosperous, balanced and sustainable future. It supports government’s commitment to climate action to meet B.C.’s emission targets and build a cleaner, stronger economy for everyone.

Quick Facts:

  • The CleanBC Go Electric EV Charger Rebate program provides a convenient single point of service for provincial and any local government rebates.
  • EV adviser services for multi-unit residential buildings and workplaces are available through Plug In BC.
  • British Columbia is leading the country in transitioning to EVs, even as a B.C. Hydro 'bottleneck' forecast highlights infrastructure needs, with more than 60,000 light-duty EVs on the road.
  • British Columbia was the first place in the world to have a 100% ZEV law and is leading North America in uptake rates of EVs at nearly 10% of new sales in 2020 – five years ahead of the original target.
  • The CleanBC Roadmap to 2030 commits B.C. to adjusting its ZEV Act to require automakers to meet an escalating annual percentage of new light-duty ZEV sales and leases, reaching 26% of light-duty vehicle sales by 2026, 90% by 2030 and 100% by 2035.

 

Learn More:

To learn more about home and workplace EV charging station rebates, eligibility and application processes, including the EV Ready program, visit: https://goelectricbc.gov.bc.ca/

To learn more about EV advisor services, visit: https://pluginbc.ca/ev-advisor-service/

To learn more about the suite of CleanBC Go Electric programming, visit: www.gov.bc.ca/zeroemissionvehicles

To learn more about the CleanBC Roadmap to 2030, visit: https://cleanbc.gov.bc.ca/

 

Related News

View more

Whooping cranes steer clear of wind turbines when selecting stopover sites

Whooping crane migration near wind turbines shows strong avoidance of stopover habitat within 5 km, reshaping Great Plains siting decisions, reducing collision risk, and altering routes across croplands, grasslands, and wetlands.

 

Key Points

It examines cranes avoiding stopovers within 5 km of turbines, reshaping habitat use and routing across the Great Plains.

✅ Cranes 20x likelier to rest >5 km from turbines.

✅ About 5% of high-quality stopover habitat is impacted.

✅ Findings guide wind farm siting across Great Plains wetlands.

 

As gatherings to observe whooping cranes join the ranks of online-only events this year, a new study offers insight into how the endangered bird is faring on a landscape increasingly dotted with wind turbines across regions. The paper, published this week in Ecological Applications, reports that whooping cranes migrating through the U.S. Great Plains avoid “rest stop” sites that are within 5 km of wind-energy infrastructure.

Avoidance of wind turbines can decrease collision mortality for birds, but can also make it more difficult and time-consuming for migrating flocks to find safe and suitable rest and refueling locations. The study’s insights into migratory behavior could improve future siting decisions as wind energy infrastructure continues to expand, despite pandemic-related investment risks for developers.

“In the past, federal agencies had thought of impacts related to wind energy primarily associated with collision risks,” said Aaron Pearse, the paper’s first author and a research wildlife biologist for the U.S. Geological Survey’s Northern Prairie Wildlife Research Center in Jamestown, N.D. “I think this research changes that paradigm to a greater focus on potential impacts to important migration habitats.”

Some policymakers have also rejected false health claims about wind turbines and cancer in public debate, underscoring the need for evidence-based decisions.

The study tracked whooping cranes migrating across the Great Plains, a region that encompasses a mosaic of croplands, grasslands and wetlands. The region has seen a rapid proliferation of wind energy infrastructure in recent years: in 2010, there were 2,215 wind towers within the whooping crane migration corridor that the study focused on; by 2016, when the study ended, there were 7,622 wind towers within the same area.

Pearse and his colleagues found that whooping cranes migrating across the study area in 2010 and 2016 were 20 times more likely to select “rest stop” locations at least 5 km away from wind turbines than those closer to turbines, a pattern with implications for developers as solar incentive changes reshape wind market dynamics according to industry analyses.

The authors estimated that 5% of high-quality stopover habitat in the study area was affected by presence of wind towers. Siting wind infrastructure outside of whooping cranes’ migration corridor would reduce the risk of further habitat loss not only for whooping cranes, but also for millions of other birds that use the same land for breeding, migration, and wintering habitat, and real-world siting controversies, such as an Alberta wind farm cancellation, illustrate how local factors shape outcomes for wildlife.

 

Related News

View more

Cost is the main reason stopping Canadians from buying an electric car: Survey

Canada EV Incentives drive adoption toward the 2035 zero-emission target, with rebates, federal and provincial programs boosting affordability amid concerns over charging infrastructure, range anxiety, and battery life, according to a BNN Bloomberg-Leger survey.

 

Key Points

Canada EV incentives are rebates and tax credits reducing EV costs to accelerate zero-emission vehicle adoption nationwide.

✅ Federal and provincial rebates reduce EV purchase prices

✅ Incentives offset range, battery, and charging concerns

✅ Larger incentives correlate with higher adoption rates

 

If the federal government wants to meet its ambitious EV goals of having all cars and passenger trucks sold in Canada be zero emissions by 2035, it’s going to have to do something about the cost of these vehicles.

A new survey from BNN Bloomberg and RATESDOTCA has found that cost is the number one reason stopping Canadians from buying an electric car.

The survey, which was conducted by Leger Marketing earlier this month, asked 1,511 Canadians if they were planning to purchase a new electric vehicle in the near future. It found that just over one in four, or 26 per cent of Canadians, are planning to do so, with Atlantic Canada lagging other regions. On the other hand, 19 per cent of Canadians are planning to buy a gas/diesel/hybrid card for their next purchase. 

Those who aren’t planning on buying an EV were asked what the biggest reason for their decision was. By far, it was the price of these vehicles: 31 per cent of this group cited cost as the main reason for not electrifying their ride. Another 59 per cent of respondents cited it as a concern, but not the main one. Other reasons for not wanting to buy an electric vehicle included lack of infrastructure (18 per cent), range concerns (16 per cent), and battery life and replacement (13 per cent), and some report EV shortages and wait times too.

What’s interesting is that it’s clear that government incentives for EVs are the most powerful tool right now to drive adoption, though some argue subsidies are a bad idea for Canada. When asked if further government incentives would convince them to buy an electric vehicle, 78 per cent of those surveyed said yes.

That’s right. If more governments increased the incentives offered for buying electric vehicles, reaching the goal of only selling zero emission vehicles in Canada by 2035 would no longer be a pipe dream, despite 2035 mandate skepticism from some.

At the moment, only Quebec and B.C. offer government incentives to buy an electric vehicle, even as B.C. charging bottlenecks are predicted. The federal government offers up to a $5,000 incentive, with restrictions including a limit on the total price of the vehicle, and has signaled EV sales regulations are forthcoming. Ontario previously offered a rebate of up to $14,000, however, the popular program was cancelled when the Progress Conservative government was elected in 2018.

The cancellation led to a plunge in new electric vehicle sales in Ontario, falling more than 55 per cent in the first six months of 2019 when compared to the same time period in the previous year, according to Electric Mobility Canada.

It’s no surprise that the larger the incentive, the more Canadians will be swayed to buy an electric car. Perhaps what’s surprising is that the incentive doesn’t even have to be as large as the previous Ontario rebate was. The survey found that seven per cent of Canadians would buy an electric vehicle if they got an incentive ranging anywhere from $5,001-$7,250. A full 35 per cent said a $12,500 or higher incentive would convince them.

The majority of Canadians surveyed said they use their vehicles for leisure or commuting to work. Leisure uses include running errands and seeing friends and family, of which 43 per cent of respondents said was the primary way they used their vehicle. Meanwhile, 36 per cent said they primarily used their car to commute to work.

The survey also found that incentives were more effective at convincing younger people to buy an electric vehicle. Eighty-three per cent of those under the age of 55 could be swayed by new incentives. But for those over 55, only 66 per cent said they would change their mind. 

 

Related News

View more

AZ goes EV: Rate of electric car ownership relatively high in Arizona

Arizona Electric Vehicle Ownership is surging, led by EV adoption, charging stations growth, state incentives, and local manufacturers; yet rural infrastructure gaps and limited fast-charging plugs remain key barriers to convenient, statewide electrification.

 

Key Points

Arizona Electric Vehicle Ownership shows rising EV adoption and incentives, but rural fast-charging access still lags.

✅ 28,770 EVs registered; sixth per 1,000 residents statewide

✅ 385 fast chargers; 1,448 Level 2 plugs; many not 24/7

✅ Incentives: lower registration, HOV access, utility rebates

 

For a mostly red state, Arizona has a lot of blue-state company when it comes to states ranked by electric vehicle ownership, according to recent government data.

Arizona had 28,770 registered electric vehicles as of June, according to the U.S. Department of Energy's Alternative Fuels Data Center, the seventh-highest number among states. When ownership is measured per 1,000 residents, Arizona inches up a notch to sixth place, with just over four electric vehicles per 1,000 people.

That rate put Arizona just behind Oregon and Colorado and just ahead of Nevada and Vermont. California was in the lead by far, with California's EV and charging lead reflected in 425,300 registered electric vehicles, or one for every 10.7 residents.

Arizona EV enthusiasts welcomed the ranking, which they said they have seen reflected in steady increases in group membership, but said the state can do better, even amid soaring U.S. EV sales this year.

"Arizona is growing by leaps and bounds in major areas, but still struggling out there in the hinterlands," said Jerry Asher, vice president of the Tucson Electric Vehicle Association.

He and others said the biggest challenge in Arizona, as in much of the country, is the lack of readily available charging stations for electric vehicles.

Currently, there are 385 public fast-charging plugs and 1,448 non-fast-charging plugs in the state, where charging networks compete to expand access, said Diane Brown, executive director with the Arizona Public Interest Research Group Education Fund. And many of those "are not available 24 hours a day, often making EV charging less convenient to the public," she said.

And in order for the state to hit 10% EV ownership by 2030, one scenario outlined by Arizona PIRG, the number of charging stations would need to grow significantly.

"According to the Arizona PIRG Education Fund, to support a future in which 10% of Arizona's vehicles are EVs – a conservative target for 2030 – Arizona will need more than 1,098 fast-charging plugs and 14,888 Level 2 plugs," Brown said.

This will require local, state and federal policies, as EVs challenge state power grids, to make "EV charging accessible, affordable, and easy," she said.

But advocates said there are several things working in their favor, even as an EV boom tests charging capacity across the country today. Jim Stack, president of the Phoenix Electric Auto Association, said many of the current plug-ins charging stations are at stores and libraries, places "where you would stop anyway."

"We have a good charging infrastructure and it keeps getting better," Stack said.

One way Asher said Arizona could be more EV-friendly would be to add charging stations at hotels, RV parks and shopping centers. In Tucson, he said, the Culinary Dropout and Jersey Mike's restaurants have already begun offering free electric vehicle charging to customers, Asher said.

While they push for more charging infrastructure, advocates said improving technology and lower vehicle expenses are on their side, as post-2021 electricity trends reshape costs, helping to sway more Arizonans to purchase an electric vehicle in recent years.

"The batteries are getting better and lower in cost as well as longer-lasting," Stack said. He said an EV uses about 50 cents of electricity to cover the same number of miles a gas-burning car gets from a gallon of gas – currently selling for $3.12 a gallon in Arizona, according to AAA.

In addition, the state is offering incentives to electric vehicle buyers.

"In AZ we get reduced registration on electric vehicles," Stack said. "It's about $15 a year compared to $300-700 a year for gas and diesel cars."

Electric vehicle owners also "get 24/7 access to HOV lanes, even with one person," he said. And utilities like Tucson Electric Power offer rebates and incentives for home charging stations, according to a report by the National Conference of State Legislatures, and neighboring New Mexico's EV benefits underscore potential economic gains for the region.

Stack also noted that Arizona is now home to three eclectic vehicle manufacturers: Lucid, which makes cars in Casa Grande, Nikola, which makes trucks in Phoenix and Coolidge, and Electra Meccanica, which plans to build the three-wheeled SOLO commuter in Mesa.

"We get clear skies. No oil changes, no muffler work, no transmission, faster acceleration. No smog or smog tests," Stack said. "It's priceless."

 

Related News

View more

US: In 2021, Plug-Ins Traveled 19 Billion Miles On Electricity

US Plug-in EV Miles 2021 highlight BEV and PHEV growth, DOE and Argonne data, 19.1 billion electric miles, 6.1 TWh consumed, gasoline savings, rising market share, and battery capacity deployed across the US light-duty fleet.

 

Key Points

They represent 19.1 billion electric miles by US BEVs and PHEVs in 2021, consuming 6.1 TWh of electricity.

✅ 700 million gallons gasoline avoided in 2021

✅ $1.3 billion fuel cost savings estimated

✅ Cumulative 68 billion EV miles since 2010

 

Plug-in electric cars are gradually increasing their market share in the US (reaching about 4% in 2021), which starts to make an impact even as the U.S. EV market share saw a brief dip in Q1 2024.

The Department of Energy (DOE)’s Vehicle Technologies Office highlights in its latest weekly report that in 2021, plug-ins traveled some 19.1 billion miles (31 billion km) on electricity - all miles traveled in BEVs and the EV mode portion of miles traveled in PHEVs, underscoring grid impacts that could challenge state power grids as adoption grows.

This estimated distance of 19 billion miles is noticeably higher than in 2020 (nearly 13 billion miles), which indicates how quickly the electrification of driving progresses, with U.S. EV sales continuing to soar into 2024. BEVs noted a 57% year-over-year increase in EV miles, while PHEVs by 24% last year (mostly proportionally to sales increase).

According to Argonne National Laboratory's Assessment of Light-Duty Plug-in Electric Vehicles in the United States, 2010–2021, the cumulative distance covered by plug-in electric cars in the US (through December 2021) amounted to 68 billion miles (109 billion miles).

U.S. Department of Transportation, Federal Highway Administration, December 2021 Traffic Volume Trends, 2022.

The report estimates that over 2.1 million plug-in electric cars have been sold in the US through December 2021 (about 1.3 million all-electric and 0.8 million plug-in hybrids), equipped with a total of more than 110 GWh of batteries, even as EV sales remain behind gas cars in overall market share.

It's also estimated that 19.1 billion electric miles traveled in 2021 reduced the national gasoline consumption by 700 million gallons of gasoline or 0.54%.

On the other hand, plug-ins consumed some 6.1 terawatt-hours of electricity (6.1 TWh is 6,100 GWh), which sounds like almost 320 Wh/mile (200 Wh/km), aligning with projections that EVs could drive a rise in U.S. electricity demand over time.

The difference between the fuel cost and energy cost in 2021 is estimated at $1.3 billion, with Consumer Reports findings further supporting the total cost advantages.

Cumulatively, 68 billion electric miles since 2010 is worth about 2.5 billion gallons of gasoline. So, the cumulative savings already is several billion dollars.

Those are pretty amazing numbers and let's just imagine that electric cars are just starting to sell in high volume, a trend that mirrors global market growth seen over the past decade. Every year those numbers will be improving, thus tremendously changing the world that we know today.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified