US Army deploys its first floating solar array


US Army deploys its first floating solar array

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

Related News

America's Largest Energy Customers Set a Bold New Ambition to Achieve a 90% Carbon-free U.S. Electricity System by 2030 and Accelerate Clean Energy Globally

Clean Energy Buyers Alliance 2030 Goal targets a 90% carbon-free U.S. grid, accelerating power-sector decarbonization via corporate renewable energy procurement, market and policy reforms, and customer demand to enable net-zero electrification across industries.

 

Key Points

The Alliance's plan to reach a 90% carbon-free U.S. electricity system by 2030 via customer-driven markets and policy.

✅ Corporate buyers scale renewable PPAs and aggregation

✅ Market and policy reforms unlock clean power access

✅ Goal aligns with net-zero and widespread electrification

 

The Clean Energy Buyers Association (CEBA) and the Clean Energy Buyers Institute (CEBI), which together make up the Clean Energy Buyers Alliance, have announced a profound new aspiration for impact: a 90% carbon-free U.S. electricity system by 2030 and a global community of energy customers driving the global energy transition forward.

Alongside the two organizations’ bold new vision of the future – customer-driven clean energy for all – the Alliance will super-charge the work of its predecessor organizations, the Renewable Energy Buyers Alliance (REBA) and the REBA Institute, which represent the most iconic global companies with more than $6 trillion dollars in annual revenues and 14 million employees.

“This is the decisive decade for climate action and especially for decarbonization of the power sector,” said Miranda Ballentine, CEO of CEBA and CEBI. “To achieve a net-zero economy worldwide by 2050, the United States must lead. And the power sector must accelerate toward a 2030 timeline as electrification of other industries will be driving up power use.”

In the U.S. alone, more than 60% of electricity is consumed by the commercial and industrial sectors. Institutional energy customers have accelerated the deployment of clean energy solutions over the last 10 years to achieve increasingly ambitious greenhouse gas reduction targets, even as a federal coal plan remains under debate, and further cement the critical role of customers in decarbonizing the energy system. The Clean Energy Buyers Association Deal Tracker shows that 7.9 GW of new corporate renewable energy project announcements in the first three quarters of this year are equivalent to 40% of all new carbon free energy capacity added in the U.S. so far in 2021.

“With our new vision of customer-driven clean energy for all, we are also unveiling new organization brands,” Ballentine continued. “I’m excited to announce that REBA will become CEBA—the Clean Energy Buyers Association—and will focus on activating our community of energy customers and partners to deploy market and policy solutions for a carbon-free energy system. The REBA Institute will become the Clean Energy Buyers Institute (CEBI) and will focus on solving the toughest market and policy barriers to achieving a carbon-free energy system in collaboration with policymakers, leading philanthropies, and energy market stakeholders. Together, CEBA and CEBI will make up the new Clean Energy Buyers Alliance.”

To decarbonize the U.S. electricity system 90% by 2030, a goal aligned with California's 100% carbon-free mandate efforts, and to activate a community of customers driving clean energy around the world, the Clean Energy Buyers Alliance will drive three critical transformations to:

Unlock markets so that energy customers can use their buying power and market-influence, building on a historic U.S. climate deal this year, to accelerate electricity decarbonization.

Catalyze communities of energy customers to actively choose clean energy through Mission Innovation collaborations and to do more together than they could on their own.

Decarbonize the grid for all, since not every energy customer can or will use their buying power to choose clean energy.

“The Clean Energy Buyers Alliance is setting the bar for what energy buyers, utilities and governments should and need to be doing to achieve a carbon-free energy future,” said Michael Terrell, CEBA board chair and Director of Energy at Google. “This ambitious approach is a critical step in tackling climate change. The time for meaningful climate action is now and we must collectively be bolder and more ambitious in our actions in both the public and private sectors – starting today.”

This new vision of customer-driven clean energy for all is an unprecedented opportunity for every member of the Clean Energy Buyers Alliance community – from energy customers to providers to manufacturers – to all parties up and down the energy supply chain to lead the evolution of a new energy economy, which will require incentives to double investment in clean energy to rise to $4 trillion by 2030.

 

Related News

View more

Shanghai Electric Signs Agreement to Launch PEM Hydrogen Production Technology R&D Center, Empowering Green Hydrogen Development in China

Shanghai Electric PEM Hydrogen R&D Center advances green hydrogen via PEM electrolysis, modular megawatt electrolyzers, zero carbon production, and full-chain industrial applications, accelerating decarbonization, clean energy integration, and hydrogen economy scale-up across China.

 

Key Points

A joint R&D hub advancing PEM electrolysis, modular megawatt systems, and green hydrogen industrialization.

✅ Megawatt modular PEM electrolyzer design and system integration

✅ Zero-carbon hydrogen targeting mobility, chemicals, and power

✅ Full-chain collaboration from R&D to EPC and demonstration projects

 

Shanghai Electric has reached an agreement with the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (the "Dalian Institute") to inaugurate the Proton Exchange Membrane (PEM) Hydrogen Production Technology R&D Center on March 4. The two parties signed a project cooperation agreement on Megawatt Modular and High-Efficiency PEM Hydrogen Production Equipment and System Development, marking an important step forward for Shanghai Electric in the field of hydrogen energy.

As one of China's largest energy equipment manufacturers, Shanghai Electric is at the forefront in the development of green hydrogen as part of China's clean energy drive. During this year's Two Sessions, the 14th Five-Year Plan was actively discussed, in which green hydrogen features prominently, and Shell's 2060 electricity forecast underscores the scale of electrification. With strong government support and widespread industry interest, 2021 is emerging as Year Zero for the hydrogen energy industry.

Currently, Shanghai Electric and the Dalian Institute have reached a preliminary agreement on the industrial development path for new energy power generation and electrolyzed water hydrogen production. As part of the cooperation, both will also continue to enhance the transformational potential of PEM electrolyzed water hydrogen production, accelerate the development of competitive PEM electrolyzed hydrogen products, and promote industrial applications and scenarios, drawing on projects like Japan's large H2 energy system to inform deployment. Moreover, they will continue to carry out in-depth cooperation across the entire hydrogen energy industry chain to accelerate overall industrialization.

Hydrogen energy boasts the biggest potential of all the current forms of clean energy, and the key to its development lies in its production. At present, hydrogen production primarily stems from fossil fuels, industrial by-product hydrogen recovery and purification, and production by water electrolysis. These processes result in significant carbon emissions. The rapid development of PEM water electrolysis equipment worldwide in recent years has enabled current technologies to achieve zero carbon emissions, effectively realizing green, clean hydrogen. This breakthrough will be instrumental in helping China achieve its carbon peak and carbon-neutrality goals.

The market potential for hydrogen production from electrolyzed water is therefore massive. Forecasts indicate that, by 2050, hydrogen energy will account for approximately 10% of China's energy market, with demand reaching 60 million tons and annual output value exceeding RMB 10 trillion. The Hydrogen: Tracking Energy Integration report released by the International Energy Agency in June 2020 notes that the number of global electrolysis hydrogen production projects and installed capacity have both increased significantly, with output skyrocketing from 1 MW in 2010 to more than 25 MW in 2019. Much of the excitement comes from hydrogen's potential to join the ranks of natural gas as an energy resource that plays a pivotal role in international trade, as seen in Germany's call for hydrogen-ready power plants shaping future power systems, with the possibility of even replacing it one day. In PwC's 2020 The Dawn of Green Hydrogen report, the advisory predicts that experimental hydrogen will reach 530 million tons by mid-century.

Shanghai Electric set its focus on hydrogen energy years ago, given its major potential for growth as one of the new energy technologies of the future and, in particular, its ability to power new energy vehicles. In 2016, the Central Research Institute of Shanghai Electric began to invest in R&D for key fuel cell systems and stack technologies. In 2020, Shanghai Electric's independently-developed fuel cell engine, which boasts a power capacity of 66 kW and can start in cold temperature environments of as low as -30°C, passed the inspection test of the National Motor Vehicle Product Quality Inspection Center. It adopts Shanghai Electric's proprietary hydrogen circulation system, which delivers strong power and impressive endurance, with the potential to replace gasoline and diesel engines in commercial vehicles.

As the technology matures, hydrogen has entered a stage of accelerated industrialization, with international moves such as Egypt's hydrogen MoU with Eni signaling broader momentum. Shanghai Electric is leveraging the opportunities to propel its development and the green energy transformation. As part of these efforts, Shanghai Electric established a Hydrogen Energy Division in 2020 to further accelerate the development and bring about a new era of green, clean energy.

As one of the largest energy equipment manufacturing companies in China, Shanghai Electric, with its capability for project development, marketing, investment and financing and engineering, procurement and construction (EPC), continues to accelerate the development and innovation of new energy. The Company has a synergistic foundation and resource advantages across the industrial chain from upstream power generation, including China's nuclear energy development efforts, to downstream chemical metallurgy. The combined elements will accelerate the pace of Shanghai Electric's entry into the field of hydrogen production.

Currently, Shanghai Electric has deployed a number of leading green hydrogen integrated energy industry demonstration projects in Ningdong Base, one of China's four modern coal chemical industry demonstration zones. Among them, the Ningdong Energy Base "source-grid-load-storage-hydrogen" project integrates renewable energy generation, energy storage, hydrogen production from electrolysis, and the entire industrial chain of green chemical/metallurgy, where applications like green steel production in Germany illustrate heavy-industry decarbonization.

In December 2020, Shanghai Electric inked a cooperation agreement to develop a "source-grid-load-storage-hydrogen" energy project in Otog Front Banner, Inner Mongolia. Equipped with large-scale electrochemical energy storage and technologies such as compressed air energy storage options, the project will build a massive new energy power generation base and help the region to achieve efficient cold, heat, electricity, steam and hydrogen energy supply.

 

Related News

View more

UK Electric Vehicle Sales Surge to Record High

UK electric vehicle sales reached a record high in September, with battery and hybrid cars making up over half of new registrations. SMMT credits carmaker discounts, new models, and a £3,750 EV grant for driving strong demand across the UK market.

 

Why are UK Electric Vehicle Sales Surging to a Record High?

UK electric vehicle sales are surging to a record high because automakers are offering major discounts, more models are available than ever, and the government’s new £3,750 EV grant is making electric cars more affordable and appealing to both fleets and private buyers.

✅ BEV sales up nearly one-third in September

✅ Over half of all new cars are now electrified

✅ £3,750 EV grants boost consumer confidence

 

Electric vehicle (EV) sales in the United Kingdom reached a record high last month, marking a significant milestone in the country’s transition to cleaner transportation. According to the latest figures from the Society of Motor Manufacturers and Traders (SMMT), sales of pure battery electric vehicles (BEVs) surged by nearly one-third to 72,779 units in September, while plug-in hybrid registrations grew even faster.

The combined total of fully electric and hybrid vehicles accounted for more than half of all new car registrations, underscoring the growing appeal of electrified transport, alongside global EV market growth, among both businesses and private consumers. In total, 312,887 new vehicles were registered across the country — the strongest September performance since 2020, according to SMMT data.

SMMT chief executive Mike Hawes said the surge in electrified vehicle sales showed that “electrified vehicles are powering market growth after a sluggish summer.” He credited carmaker incentives, a wider choice of models, and government support for helping accelerate adoption, though U.S. EV market share dipped in Q1 2024 by comparison. “Industry investment in electric vehicles is paying off,” Hawes added, even as he acknowledged that “consumer demand still trails ambition.”

The UK government’s new electric car grant scheme has played a significant role in the rebound. The program offers buyers discounts of up to £3,750 on eligible EVs priced under £37,000. So far, more than 20,000 motorists have benefited, with 36 models approved for reductions of at least £1,500. Participating manufacturers include Ford, Toyota, Vauxhall, and Citroën.

Ian Plummer, chief commercial officer at Autotrader, said the grant had given a “real lift to the market,” echoing fuel-crisis EV inquiry surge in the UK. He noted that “since July, enquiries for new electric vehicles on Autotrader are up by almost 50%. For models eligible for the grant, interest has more than doubled.”

While the majority of BEVs — about 71.4% — were purchased by companies and fleets, the number of private buyers has also been increasing. Zero-emission vehicles now account for more than one in five (22.1%) new car registrations so far in 2025, similar to France’s 20% EV share record, highlighting the growing mainstream appeal of electric mobility.

The surge comes amid a challenging backdrop for the automotive sector, even as U.S. EV sales soared into 2024 across the Atlantic. The UK car industry is still reeling from the effects of US trade tariffs and recent disruptions, such as Jaguar Land Rover’s production shutdown following a cyberattack. Despite these hurdles, the strong September figures have boosted confidence in the industry’s recovery trajectory, and EU EV share grew during lockdown months offers precedent for resilience.

Among individual models, the Kia Sportage, Ford Puma, and Nissan Qashqai led overall sales, while two Chinese vehicles — the Jaecoo 7 and BYD Seal U — entered the top ten, reflecting China’s growing footprint in the UK market. Analysts say the arrival of competitively priced Chinese EVs could further intensify competition and drive prices lower for consumers.

With electrified vehicles now dominating new registrations and fresh government incentives in place, industry observers believe the UK is gaining momentum toward its long-term net-zero goals. The challenge, however, remains converting business fleet enthusiasm into sustained private-buyer confidence through affordable models, with UK consumer price concerns still a factor, reliable charging infrastructure, and continued policy support.

 

Related Articles

 

View more

More Electricity From Wind & Solar Than Nuclear For 1st Time In USA

U.S. Renewable Energy Share 2022 leads electricity generation trends, as wind and solar outpace nuclear and coal, per EIA data, with hydropower gains and grid growth highlighting rapid, sustainable capacity expansion nationwide.

 

Key Points

Renewables supplied over 25% of U.S. electricity in 2022, as wind and solar outpaced nuclear with double-digit growth.

✅ Renewables provided 25.52% of U.S. power Jan-Apr 2022.

✅ Wind and solar beat nuclear by 17.96% in April.

✅ Solar up 28.93%, wind up 24.25%; hydropower up 9.99%.

 

During the first four months of 2022, electrical generation by renewable energy sources accounted for over 25% of the nation’s electricity, projected to soon be about one-fourth as growth continues. In April alone, renewables hit a record April share of 29.3% — an all-time high.

And for the first time ever, the combination of just wind power and solar produce more electricity in April than the nation’s nuclear power plants — 17.96% more.

This is according to a SUN DAY Campaign analysis of data in EIA’s Electric Power Monthly report. The report also reveals that during the first third of this year, solar (including residential) generation climbed by 28.93%, while wind increased by 24.25%. Combined, solar and wind grew by 25.46% and accounted for more than one-sixth (16.67%) of U.S. electrical generation (wind: 12.24%, solar: 4.43%).

Hydropower also increased by 9.99% during the first four months of 2022. However, wind alone provided 70.89% more electricity than did hydropower. Together with contributions from geothermal and biomass, the mix of renewable energy sources expanded by 18.49%, and building on its second-most U.S. source in 2020 status helped underscore momentum as it provided about 25.5% of U.S. electricity during the first four months of 2022.

For the first third of the year, renewables surpassed coal and nuclear power by 26.13% and 37.80% respectively. In fact, electrical generation by coal declined by 3.94% compared to the same period in 2021 while nuclear dropped by 1.80%.

“Notwithstanding headwinds such as the COVID pandemic, grid access problems, and disruptions in global supply chains, solar and wind remain on a roll,” noted the SUN DAY Campaign’s executive director Ken Bossong. “Moreover, by surpassing nuclear power by ever greater margins, they illustrate the foolishness of trying to revive the soon-to-retire Diablo Canyon nuclear plant in California and the just-retired Palisades reactor in Michigan rather than focusing on accelerating renewables’ growth.”

 

Related News

View more

Elon Musk says cheaper, more powerful electric vehicle batteries are 3 years off

Tesla Battery Day Innovations detail larger cylindrical EV cells with higher energy density, greater power, longer range, cobalt-free chemistry, automated manufacturing, battery recycling, and lower cost per kWh to enable an affordable electric car.

 

Key Points

Tesla Battery Day innovations are new EV cells and methods to cut costs, extend range, and scale production.

✅ Larger cylindrical cells: 5x energy, 6x power, 16% more range

✅ Automation and recycling to cut battery cost per kWh

✅ Near-zero cobalt chemistry, in-house cell factories worldwide

 

Elon Musk described a new generation of electric vehicle batteries that will be more powerful, longer lasting, and half as expensive as the company’s current cells at Tesla’s “Battery Day”.

Tesla’s new larger cylindrical cells will provide five times more energy, six times more power and 16% greater driving range, Musk said, adding that full production is about three years away.

“We do not have an affordable car. That’s something we will have in the future. But we’ve got to get the cost of batteries down,” Musk said.

To help reduce cost, Musk said Tesla planned to recycle battery cells at its Nevada “gigafactory,” while reducing cobalt – one of the most expensive battery materials – to virtually zero. It also plans to manufacture its own battery cells at several highly automated factories around the world.

The automaker plans to produce the new cells via a highly automated, continuous-motion assembly process, according to Drew Baglino, Tesla senior vice-president of powertrain and energy engineering, a contrast with GM and Ford battery strategies in the broader market today.

Speaking at the event, during which Musk outlined plans to cut costs and reiterated a huge future for Tesla's energy business during the presentation, the CEO acknowledged that Tesla does not have its new battery design and manufacturing process fully complete.

The automaker’s shares slipped as Musk forecast the change could take three years. Tesla has frequently missed production targets.

Tesla expects to eventually be able to build as many as 20m electric vehicles a year, aligning with within-a-decade EV adoption outlooks cited by analysts. This year, the entire auto industry expects to deliver 80m cars globally.

At the opening of the event, which drew over 270,000 online viewers, Musk walked on stage as about 240 shareholders – each sitting in a Tesla Model 3 in the company parking lot – honked their car horns in approval.

As automakers shift from horsepower to kilowatts to comply with stricter environmental regulations amid an age of electric cars that appears ahead of schedule, investors are looking for evidence that Tesla can increase its lead in electrification technology over legacy automakers who generate most of their sales and profits from combustion-engine vehicles.

While average electric vehicle prices have decreased in recent years thanks to changes in battery composition and evidence that they are better for the planet and household budgets, they are still more expensive than conventional cars, with the battery estimated to make up a quarter to a third of an electric vehicle’s cost.

Some researchers estimate that price parity, or the point at which electric vehicles are equal in value to internal combustion cars, is reached when battery packs cost $100 per kilowatt hour (kWh), a potential inflection point for mass adoption.

Tesla’s battery packs cost $156 per kWh in 2019, according to electric vehicle consulting firm Cairn Energy Research Advisors, with some studies noting that EVs save money over time for consumers, which would put the cost of a 90-kWh pack at around $14,000.

Tesla is also building its own cell manufacturing facility at its new factory in Germany in addition to the new plant in Fremont.

 

Related News

View more

Can the UK grid cope with the extra demand from electric cars?

UK EV Grid Capacity leverages smart charging, V2G, renewable energy, and interconnectors to manage peak demand as adoption grows, with National Grid upgrades, rapid chargers, and efficiency gains enabling a reliable, scalable charging infrastructure nationwide.

 

Key Points

UK EV grid capacity is the power network's readiness to meet EV demand using smart charging, V2G, and upgrades.

✅ Smart charging shifts load to off-peak, cheaper renewable hours

✅ V2G enables EVs to supply power and balance peak demand

✅ National Grid upgrades and interconnectors expand capacity

 

The surge of electric vehicles (EVs) on our roads raises a crucial question: can the UK's electricity grid handle the additional demand? While this is a valid concern, it's important to understand the gradual nature of EV adoption, ongoing grid preparations, and innovative solutions being developed.

A Gradual Shift, Not an Overnight Leap

Firstly, let's dispel the myth of an overnight transition. EV adoption will unfold progressively, driven by factors like affordability and the growing availability of used models. The government's ZEV mandate outlines a clear trajectory, with a gradual rise from 22% EV sales in 2024 to 80% by 2030. This measured approach allows for strategic grid improvements to accommodate the increasing demand.

Preparing the Grid for the Future

Grid preparations for the EV revolution have been underway for years. Collaborations between the government, electricity providers, service stations, and charging point developers are ensuring grid coordination across the system. Renewable energy sources like offshore wind farms, combined with new nuclear power and international interconnections, are planned to meet the anticipated 120 terawatt-hour increase in demand. Additionally, improvements in energy efficiency have reduced overall electricity consumption, creating further capacity.

Addressing Peak Demand Challenges

While millions of EVs charging simultaneously might seem like they could challenge power grids, solutions are being implemented to manage peak demand:

1. Smart Charging: This technology allows EVs to charge during off-peak hours when renewable electricity is abundant and cheaper. This not only benefits the grid but also saves owners money. The UK government's EV Smart Charge Points Regulations ensure all new chargers have this functionality.

2. Vehicle-to-Grid (V2G) Technology: This futuristic concept transforms EVs into energy storage units, often described as capacity on wheels, allowing owners to sell their unused battery power back to the grid during peak times. This not only generates income for owners but also helps balance the grid and integrate more renewable energy.

3. Sufficient Grid Capacity: Despite concerns, the grid currently has ample capacity. The highest peak demand in recent years (62GW in 2002) has actually decreased by 16% due to energy efficiency improvements. Even with widespread EV adoption, the expected 10% increase in demand remains well within the grid's capabilities with proper management in place.

National Grid's Commitment:

National Grid and other electric utilities are actively involved in upgrading and expanding the grid to accommodate the clean energy transition. This includes collaborating with distribution networks, government agencies, and industry partners to ensure the necessary infrastructure (wires and connections) is in place for a decarbonized transport network.

Charging Infrastructure: Addressing Anxiety

The existing national grid infrastructure, with its proximity to roads and train networks, provides a significant advantage for EV charging point deployment. National Grid Electricity Distribution is already working on innovative projects to install required infrastructure, such as:

  • Bringing electricity networks closer to motorway service areas for faster and easier connection.
  • Leading projects like the Electric Boulevard (inductive charging) and Electric Nation (V2G charging) to showcase innovative solutions.
  • Participating in the Take Charge project, exploring new ways to facilitate rapid EV charging infrastructure growth.

Government Initiatives:

The UK government's Rapid Charging Fund aims to roll out high-powered, open-access charge points across England, while the Local EV Infrastructure Fund supports local authorities in providing charging solutions for residents without off-street parking, including mobile chargers for added flexibility.

While the rise of EVs presents new challenges, the UK is actively preparing its grid and infrastructure to ensure a smooth transition. With gradual adoption, ongoing preparations, and innovative solutions, the answer to the question Will electric vehicles crash the grid? is a resounding yes. The future of clean transportation is bright, and the grid is ready to power it forward.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.