US Army deploys its first floating solar array


US Army deploys its first floating solar array

NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

Related News

Is residential solar worth it?

Home Solar Cost vs Utility Bills compares electricity rates, ROI, incentives, and battery storage, explaining payback, financing, and grid fees while highlighting long-term savings, rate volatility, and backup power resilience for homeowners.

 

Key Points

Compares home solar pricing and financing to utility rates, outlining savings, incentives, ROI, and backup power value.

✅ Average retail rates rose 59% in 20 years; volatility persists

✅ Typical 7.15 kW system costs $18,950 before incentives

✅ Federal ITC and state rebates improve ROI and payback

 

When shopping for a home solar system, sometimes the quoted price can leave you wondering why someone would move forward with something that seems so expensive. 

When compared with the status quo, electricity delivered from the utility, the price may not seem so high after all. First, pv magazine will examine the status quo, and how much you can expect to pay for power if you don’t get solar panels. Then, we will examine the average cost of solar arrays today and introduce incentives that boost home solar value.

The cost of doing nothing

Generally, early adopters have financially benefited from going solar by securing price certainty and stemming the impact of steadily increasing utility-bill costs, particularly for energy-insecure households who pay more for electricity.

End-use residential electric customers pay an average of $0.138/kWh in the United States, according to the Energy Information Administration (EIA). In California, that rate is $0.256/kWh, it averages $0.246/kWh across New England, $0.126/kWh in the South Atlantic region, and $0.124/kWh in the Mountain West region.

EIA reports that the average home uses 893 kWh per month, so based on the average retail rate of $0.138/kWh, that’s an electric bill of about $123 monthly, or $229 monthly in California.

Over the last 20 years, EIA data show that retail electricity prices have increased 59% across the United States, with evidence indicating that renewables are not making electricity more expensive, suggesting other factors have driven costs higher, or 2.95% each year.

This means based on historical rates, the average US homeowner can expect to pay $39,460 over the next 20 years on electricity bills. On average, Californians could pay $73,465 over 20 years.

Recent global events show just how unstable prices can be for commodities, and energy is no exception here, with solar panel sales doubling in the UK as homeowners look to cut soaring bills. What will your utility bill cost in 20 years?

These estimated bills also assume that energy use in the home is constant over 20 years, but as the United States electrifies its homes, adds more devices, and adopts electric vehicles, it is fair to expect that many homeowners will use more electricity going forward.

Another factor that may exacerbate rate raising is the upgrade of the national transmission grid. The infrastructure that delivers power to our homes is aging and in need of critical upgrades, and it is estimated that a staggering $500 billion will be spent on transmission buildout by 2035. This half-trillion-dollar cost gets passed down to homeowners in the form of raised utility bill rates.

The benefit of backup power may increase as time goes on as well. Power outages are on the rise across the United States, and recent assessments of the risk of power outages underscore that outages related to severe weather events have doubled in the last 20 years. Climate change-fueled storms are expected to continue to rise, so the role of battery backup in providing reliable energy may increase significantly.

The truth is, we don’t know how much power will cost in 20 years. Though it has increased 59% across the nation in the last 20 years, there is no way to be certain what it will cost going forward. That is where solar has a benefit over the status quo. By purchasing solar, you are securing price certainty going forward, making it easier to budget and plan for the future.

So how do these costs compare to going solar?

Cost of solar

As a general trend, prices for solar have fallen. In 2010, it cost about $40,000 to install a residential solar system, and since then, prices have fallen by as much as 70%, and about 37% in the last five years. However, prices have increased slightly in 2022 due to shipping costs, materials costs, and possible tariffs being placed on imported solar goods, and these pressures aren’t expected to be alleviated in the near-term.

When comparing quotes, the best metric for an apples-to-apples comparison is the cost per watt. Price benchmarking by the National Renewable Energy Laboratory shows the average cost per watt for the nation was $2.65/W DC in 2021, and the average system size was 7.15 kW. So, an average system would cost about $18,950. With 12.5 kWh of battery energy storage, the average cost was $4.26/W, representing an average price tag of $30,460 with batteries included.

The prices above do not include any incentives. Currently, the federal government applies a 26% investment tax credit to the system, bringing down system costs for those who qualify to $14,023 without batteries, and $22,540 with batteries. Compared to the potential $39,460 in utility bills, buying a solar system outright in cash appears to show a clear financial benefit.

Many homeowners will need financing to buy a solar system. Shorter terms can achieve rates as low as 2.99% or less, but financing for a 20-year solar loan typically lands between 5% to 8% or more. Based on 20-year, 7% annual percentage rate terms, a $14,000 system would total about $26,000 in loan payments over 20 years, and the system with batteries included would total about $42,000 in loan payments.

Often when you adopt solar, the utility will still charge you a grid access fee even if your system produces 100% of your needs. These vary from utility to utility but are often around $10 a month. Over 20 years, that equates to about $2,400 that you’ll still need to pay to the utility, plus any costs for energy you use beyond what your system provides.

Based on these average figures, a homeowner could expect to see as much as $12,000 in savings with a 20-year financed system. Homeowners in regions whose retail energy price exceeds the national average could see savings in multiples of that figure.

Though in this example batteries appear to be marginally more expensive than the status quo over a 20-year term, they improve the home by adding the crucial service of backup power, and as battery costs continue to fall they are increasingly being approved to participate in grid services, potentially unlocking additional revenue streams for homeowners.

Another thing to note is most solar systems are warranted for 25 years rather than the 20 used in the status quo example. A panel can last a good 35 years, and though it will begin to produce less in old age, any power produced by a panel you own is money back in your pocket.

Incentives and home value

Many states have additional incentives to boost the value of solar, too, and federal proposals to increase solar generation tenfold could remake the U.S. electricity system. Checking the Database of State Incentives for Renewables (DSIRE) will show the incentives available in your state, and a solar representative should be able to walk you through these benefits when you receive a quote. State incentives change frequently and vary widely, and in some cases are quite rich, offering thousands of dollars in additional benefits.

Another factor to consider is home value. A study by Zillow found that solar arrays increase a home value by 4.1% on average. For a $375,000 home, that’s an increase of $15,375 in value. In most states home solar is exempt from property taxes, making it a great way to boost value without paying taxes for it.

Bottom line

We’ve shared a lot of data on national averages and the potential cost of power going forward, but is solar for you? In the past, early adopters have been rewarded for going solar, and celebrate when they see $0 electric bills paid to the utility company.

Each home is different, each utility is different, and each homeowner has different needs, so evaluating whether solar is right for your home will take a little time and analysis. Representatives from solar companies will walk you through this analysis, and it’s generally a good rule of thumb to get at least three quotes for comparison.

A great resource for starting your research is the Solar Calculator developed by informational site SolarReviews. The calculator offers a quote and savings estimate based on local rates and incentives available to your area. The website also features reviews of installers, equipment, and more.

Some people will save tens of thousands of dollars in the long run with solar, while others may witness more modest savings. Solar will also provide the home clean, local energy, and U.S. solar generation is projected to reach 20% by 2050 as capacity expands, making an impact both on mitigating climate change and in supporting local jobs.

One indisputable benefit of solar is that it will offer greater clarity into what your electricity bills will cost over the next couple of decades, rather than leaving you exposed to whatever rates the utility company decides to charge in the future.

 

Related News

View more

EV shortages, wait times amid high gasoline prices

Canada EV demand surge is driven by record gas prices, zero-emission policies, and tight dealer inventory, while microchip shortages, ZEV mandates abroad, and lithium supply concerns extend wait times for new and used models.

 

Key Points

Canada EV demand surge is rising interest in zero-emission cars due to high gas prices and limited EV supply.

✅ Gas at $2/litre spurs zero-emission interest

✅ Dealer inventory scarce; waits up to 3 years

✅ Microchip and lithium constraints limit output

 

Price shock at the pump is driving  Canadians toward buying an ev. But manufacturers are having trouble keeping up with consumer demand, even as the U.S. auto sector pivots to EVs across North America.

In parts of the country, gas prices exceeded $2 per litre last month amid strong global demand for oil combined with Russia's invasion of Ukraine. Halifax-based electric vehicle salesperson Jeremie Bernardin said he's noticed an explosion of interest in zero-emission vehicles since the price of fuel started to take off.

"I think there's a lot of people that were considering electric vehicles for a very long time, and they needed that extra little push," Bernardin, who is also the president of the Electric Vehicle Association of Atlantic Canada, where Atlantic EV demand has lagged the national average, told CTVNews.ca over the phone on Wednesday.

With so few electric vehicles on dealership lots, Canadians looking to buy a brand-new zero-emission car will have to put down a deposit and get onto a waiting list. Bernardin said the wait times can be as long as three years, depending on the manufacturer and the dealership.

Tesla, which makes Canada's best-selling electric car according to the automotive publication Motor Illustrated, says delivery times for its vehicles range between three months to one year, depending on the model. But some manufacturers like Nissan have already completely sold out of their electric vehicle inventory for the 2022 model year, though recent EV assembly deals in Canada aim to expand capacity over time.

Shortages of electric vehicles have been around long before the recent spike in gas prices. In March 2021, a report commissioned by Transport Canada found that more than half of Canadian dealerships had no electric vehicles in stock. The report also found that wait times exceeded six months at 31 per cent of dealerships that had no zero-emission cars in their inventory.

Interest in used electric vehicles has also surged amid the high gas prices. Used car marketplace AutoTrader.ca says searches for electric cars in March 2022 increased 89 per cent compared to the previous year, while the number of inquiries sent to electric vehicle sellers through its platform jumped 567 per cent.

"It's understandable that when the gas prices are expensive, consumers are looking to buy and get into electric vehicles, though upfront cost remains a major barrier for many buyers today," Baris Akyurek, AutoTrader.ca's director of marketing intelligence, told CTVNews.ca in a phone interview on Wednesday.

SUPPLY CHAIN ISSUES PERSIST
The surging interest in electric vehicles also comes at a time when pandemic-induced shortages of microchips have been affecting the automotive industry at large since late 2020. Modern automobiles can have hundreds of microchips that control everything from the air conditioning to the power steering system, and a shortage of these crucial components have resulted in fewer vehicles being manufactured.

"Electric vehicles are subject to supply chain issues, just like anything else. Right now, the COVID pandemic has disrupted global supply chains. The auto industry specifically is seeing a microchip shortage that it's been struggling with for the past year or two. So those things are at play," said Joanna Kyriazis, senior policy advisor with Simon Fraser University’s Clean Energy Canada, in a phone interview with CTVNews.ca on Tuesday.

On top of that, Kyriazis says more than 80 per cent of the world's supply of electric vehicles are shipped to consumers in China and the European Union.

China has a strict zero-emission vehicle (ZEV) mandate that requires automakers to ensure that a certain minimum percentage of their vehicles are electric or hydrogen-powered. In Europe, automakers are also forced to sell more electric vehicles there in order to meet the EU's stringent fleetwide emissions standards, and in Canada, Ottawa is preparing EV sales regulations to guide adoption in the coming years.

"We don't have the same aggressive regulations in place yet to really force automakers to prioritize the Canadian market when they're deciding where to allocate their EV inventory and where to sell EVs," said Kyriazis, though Ottawa's 2035 EV mandate remains debated by some industry observers today.

Kyriazis also said she believes it's possible that a shortage of lithium and other minerals required for battery production could be a potential issue within the next five years.

"But my understanding is that the global market is not hitting a supply crunch just yet," she said. "There could be a near-term supply issue. But we're not there yet."

In order to ensure adequate supply of minerals for battery production, the federal government in its most recent budget committed to providing up to $3.8 billion over eight years to create "Canada's first critical minerals strategy." The strategy is aimed at boosting extraction and production of Canadian nickel, lithium and other minerals used as components in electric vehicles and their batteries, and it aligns with opportunities for Canada-U.S. collaboration as companies electrify.

"Canada has a lot of natural resources and a lot of experience with natural resource extraction. We really can stand to be a leader in battery production," said Harry Constatine, president of the Vancouver Electric Vehicles Association, in an interview with CTVNews.ca over the phone on Monday.

 

 

Related News

View more

B.C. expands EV charging, leads country in going electric

BC EV Charging Network Funding accelerates CleanBC goals with new public fast-charging stations, supporting ZEV adoption, the Electric Highway, and rebates, lowering fuel costs and emissions across British Columbia under the Clean Transportation Action Plan.

 

Key Points

Funding to expand fast-charging stations, grow ZEV adoption, and advance CleanBC and the Electric Highway.

✅ $26M funds ~250 public fast-charging stations.

✅ Supports Electric Highway and remote access.

✅ Drives ZEV sales under CleanBC targets.

 

As British Columbians are embracing zero-emission vehicles faster than any other jurisdiction in Canada, the Province is helping them go electric with new incentives and $26 million in new funding for public charging stations.

“British Columbians are switching to clean energy and cleaner transportation in record numbers as part of our CleanBC plan and leading Canada in the transition to zero emission vehicles,” said Josie Osborne, Minister of Energy, Mines and Low Carbon Innovation, on Tuesday. “The new funding we are announcing today to expand B.C.’s public charging network will help get more EVs on the road, reduce our reliance on fossil fuels, and lower fuel costs for people.”

The Province’s newly released annual report about zero-emission vehicles (ZEV) shows they represented 18.1% of new light-duty passenger vehicles sold in 2022 – the highest percentage for any province or territory. To support British Columbians’ transition to electric vehicles and to help industry lower its emissions, year-end funding of $26 million will go toward the CleanBC Public Charging Program for light-duty vehicle charging.

The new funding will support approximately 250 more public light-duty fast-charging stations, including stations to complete the B.C. Electric Highway, a CleanBC Roadmap to 2030 commitment that will make recharging easier in every corner of the province.

The 2022 ZEV Update report highlights CleanBC Go Electric rebates and programs that have helped drive growth in the number of electric vehicles in B.C. The number of registered light-duty EVs rose from 5,000 in 2016 to more than 100,000 today – a 1,900% increase in the past six years. Last year, 30,004 zero-emission vehicles were bought in B.C., beating the previous record of 24,263 in 2021.

In addition, the report outlines progress in the installation of public charging stations across British Columbia, supported by B.C. Hydro expansion, which now has one of the largest public charging networks in Canada, with more than 3,800 charging stations at the end of 2022. That compares to just 781 charging stations in 2016.

The CleanBC Roadmap to 2030, released in 2021, details a range of expanded actions to accelerate the switch to cleaner transportation, including strengthening the Zero-Emission Vehicles Act to require 26% of light-duty vehicle sales to be ZEV by 2026, 90% by 2030 and 100% by 2035 – five years ahead of the original target, and implementing the Clean Transportation Action Plan.

George Heyman, Minister of Environment and Climate Change Strategy, said: “Transportation accounts for about 40% of emissions in B.C., which is why we are committed to accelerating requirements for ZEVs and setting new standards for medium- and heavy-duty vehicles. To support this uptake, we continue to expand B.C.’s electric vehicle charging network, including faster EV charging options, with a target of having 10,000 public EV charging stations by 2030.”

Blair Qualey, President and CEO, New Car Dealers Association of BC, said: “B.C.’s new car dealers are proud to be involved in a true partnership that has been so instrumental in B.C. establishing and maintaining a leadership position in zero-emission vehicle adoption. Ongoing investments that continue to support the CleanBC Go Electric rebate program, including home and workplace charging rebates, and the availability of adequate charging infrastructure for consumers and businesses will be critical to the Province meeting its ZEV mandate targets, while also creating the promise of a greener and stronger economic future for British Columbians.”

Harry Constantine, President, Vancouver Electric Vehicle Association, said: “Expanding the buildout of the Electric Highway and establishing a network of charging stations are critical steps for moving the adoption of electric vehicles forward as demand ramps up across B.C. This stands to benefit all British Columbians, including remote communities. We are very pleased to see the Province investing in these measures.”

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

Stalled spending on electrical grids slows rollout of renewable energy

IEA Grid Expansion Warning highlights stalled investment in power lines and transmission infrastructure, risking renewable energy rollout for solar, wind, EVs, and heat pumps, and jeopardizing climate targets under the Paris Agreement amid connection bottlenecks.

 

Key Points

IEA alert urging grid investment to expand transmission, connect renewables, and keep 1.5 C climate goals on track.

✅ 80 million km of lines needed by 2040, per IEA

✅ Investment must double to $600B annually by 2030

✅ Permitting delays stall major cross-border projects

 

Stalled spending on electrical grids worldwide is slowing the rollout of renewable energy and could put efforts to limit climate change at risk if millions of miles of power lines are not added or refurbished in the next few years, the International Energy Agency said.

The Paris-based organization said in the report Tuesday that the capacity to connect to and transmit electricity is not keeping pace with the rapid growth of clean energy technologies such as solar and wind power, electric cars and heat pumps being deployed to move away from fossil fuels, a gap reflected in why the U.S. grid isn't 100% renewable today.

IEA Executive Director Fatih Birol told The Associated Press in an interview that there is a long line of renewable projects waiting for the green light to connect to the grid, including UK renewable backlog worth billions. The stalled projects could generate 1,500 gigawatts of power, or five times the amount of solar and wind capacity that was added worldwide last year, he said.

“It’s like you are manufacturing a very efficient, very speedy, very handsome car — but you forget to build the roads for it,” Birol said.

If spending on grids stayed at current levels, the chance of holding the global increase in average temperature to 1.5 degrees Celsius above pre-industrial levels — the goal set by the 2015 Paris climate accords — “is going to be diminished substantially,” he said.

The IEA assessment of electricity grids around the globe found that achieving the climate goals set by the world’s governments would require adding or refurbishing 80 million kilometers (50 million miles) of power lines by 2040 — an amount equal to the existing global grid in less than two decades.

Annual investment has been stagnant but needs to double to more than $600 billion a year by 2030, the agency said, with U.S. grid overhaul efforts aiming to accelerate upgrades.

It’s not uncommon for a single high-voltage overhead power line to take five to 13 years to get approved through bureaucracy in advanced economies, while lead times are significantly shorter in China and India, according to the IEA, though a new federal rule seeks to boost transmission planning.

The report cited the South Link transmission project to carry wind power from northern to southern Germany. First planned in 2014, it was delayed after political opposition to an overhead line meant it was buried instead, while more pylons in Scotland are being urged to keep the lights on, industry says. Completion is expected in 2028 instead of 2022.

Other important projects that have been held up: the 400-kilometer (250-mile) Bay of Biscay connector between Spain and France, now expected for 2028 instead of 2025, and the SunZia high-voltage line to bring wind power from New Mexico to Arizona and California, while Pacific Northwest goals are hindered by grid limits. Construction started only last month after years of delays.

On the East Coast, the Avangrid line to bring hydropower from Canada to New England was interrupted in 2021 following a referendum in Maine, as New England's solar growth is also creating tension over who pays for grid upgrades. A court overturned the statewide vote rejecting the project in April.

 

Related News

View more

Bimbo Canada signs agreements to offset 100 per cent of its electricity consumption for Canadian operations

Bimbo Canada VPPAs secure renewable electricity from RES wind and solar projects in Alberta, totaling 170MW, via 15-year contracts to offset consumption, advance RE100 goals, and drive decarbonization across bakeries, depots, and distribution centers.

 

Key Points

Virtual power purchase agreements sourcing wind and solar to offset Bimbo Canadas electricity and support RE100.

✅ 15-year RES contracts for Alberta wind and solar capacity

✅ Offsets electricity for bakeries, depots, and distribution centers

✅ Advances Grupo Bimbo RE100 target for 100% renewable power

 

Canada's oldest and largest bakery, Bimbo Canada, has signed two virtual power purchase agreements (VPPAs) with Renewable Energy Systems  (RES) to procure renewable electricity, similar to federal green electricity contracts advancing in Alberta, that will offset 100 per cent of the company's electricity consumption in Canada. The projects are expected to be fully operational by December, 2022.

Canada is the second market, alongside the United States, to enter into VPPAs, where companies like Amazon clean energy projects are expanding rapidly. These agreements, together with additional sustainability initiatives conducted around the world by the parent company Grupo Bimbo, will help the company offset 90 per cent of its global electricity consumption.

"Bimbo Canada is committed to nourishing a better world through productive sustainability practices," said Joe McCarthy, president of Bimbo Canada. "These agreements are the next big step in reducing our environmental footprint, as peers such as Arvato's first solar plant signal industry momentum, and becoming leaders in responsible stewardship of the environment."

The 15-year agreements with RES will support the commercial development of two renewable energy projects in southern Alberta, consisting of wind and solar projects, similar to RBC's solar PPA announced in the region, totaling 170MW of installed capacity. Under these two agreements, Bimbo Canada will procure the benefit of approximately 50MW of renewable electricity to offset electricity consumption for its 16 bakeries, 14 distribution centres and 191 depots. Commercial development for the wind and solar farms will be finalized later this year by RES Canada and the projects are expected to be fully operational by the end of next year.  

"RES is proud that its Alberta wind and solar projects, amid growth such as a $200M Alberta wind farm led by a Buffett-linked firm, are helping Bimbo Canada meet its sustainability initiatives," said Peter Clibbon, RES Senior VP of Development. "It's a win-win situation with our projects delivering competitive wind and solar electricity to Bimbo Canada, and while providing our host communities with long-term tax and landowner income."

In 2018, Grupo Bimbo joined RE100, a global initiative led by The Climate Group and in partnership with Carbon Disclosure Project (CDP) and committed to operating with 100 per cent renewable electricity by 2025. As a leading supplier of fresh-baked goods and snacks for Canadian families, these agreements support the company's targets and builds upon many successful past sustainability initiatives, as market activity by Canadian Solar project sales continues nationwide.

"The renewable electricity initiatives in our operations respond to Grupo Bimbo's deep commitment that we have had for many decades globally with the planet and with present and future generations," said Daniel Servitje, global CEO of Grupo Bimbo. "With this announcement, we have achieved another important milestone for the company on our journey towards becoming 100 per cent renewable electricity by 2025."

Last year, Bimbo Canada reduced product waste and exceeded its product waste reduction target by 18 per cent, which saved four million units of products from landfills. The company also eliminated 174 metric tonnes of plastic per year (equal to 43 adult elephants) through several packaging optimization initiatives.

Earlier this year, Bimbo Canada signed the Canada Plastics Pact (CPP) and, amid a broader push for clean energy exemplified by Edmonton rooftop solar installations, earned its first ENERGY STAR certification for its Hamilton, Ontario bakery. The company will continue to work towards other initiatives that fulfill its commitment to be a sustainable, highly productive and deeply humane company.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.