BC Hydro electric vehicle fast charging site operational in Lillooet


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

BC Hydro Lillooet EV fast charging launches a pull-through, DC fast charger hub for electric trucks, trailers, and cars, delivering 50-kW clean hydroelectric power, range-topups, and network expansion across B.C. with reliable public charging.

 

Key Points

A dual 50-kW pull-through DC fast charging site in Lillooet supporting EV charging for larger trucks and trailers.

✅ Dual 50-kW units add ~50 km range in 10 minutes

✅ Pull-through bays fit trucks, trailers, and long-wheelbase EVs

✅ Part of BC Hydro network expansion across B.C.

 

A new BC Hydro electric vehicle fast charging site is now operational in Lillooet with a design that accommodates larger electric trucks and trailers.

'We are working to make it easier for drivers in B.C. to go electric and take advantage of B.C.'s clean, reliable hydroelectricity,' says Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. 'Lillooet is a critical junction in BC Hydro's Electric Highway fast charging network and the unique design of this dual station will allow for efficient charging of larger vehicles.'

The Lillooet station opened in early March. It is in the parking lot at Old Mill Plaza at 155 Main Street and includes two 50-kilowatt charging units. Each unit can add 50 kilometres of driving to an average electric vehicle with BC Hydro's faster charging initiatives continuing to improve speeds, in about 10 minutes. The station is one of three in the province that can accommodate large trucks and trailers because of it's 'pull-through' design. The other two are in Powell River and Fraser Lake.

'As the primary fuel supplier for electric vehicles, we are building out more charging stations to ensure we can accommodate the volume and variety of electric vehicles that will be on B.C. roads in the coming years,' says Chris O'Riley, President and CEO of BC Hydro. 'BC Hydro will add 325 charging units to its network at 145 sites, and is piloting vehicle-to-grid technology to support grid flexibility within the next five years.'

Transportation accounts for about 40 per cent of greenhouse gas emissions in B.C. In September, BC Hydro revealed its Electrification Plan, with initiatives to encourage B.C. residents, businesses and industries to switch to hydroelectricity from fossil fuels to help reduce carbon emissions, alongside investments in clean hydrogen development to further decarbonize. The plan encourages switching from gas-powered cars to electric vehicles and is supported by provincial EV charger rebates for homes and workplaces.

BC Hydro's provincewide fast charging network currently includes, as part of B.C.'s expanding EV leadership across the province, 110 fast charging units at 76 sites in communities throughout B.C. The chargers are funded in a partnership with the Province of B.C. and Natural Resources Canada.

 

Related News

Related News

Harbour Air's electric aircraft a high-flying example of research investment

Harbour Air Electric Aircraft Project advances zero-emission aviation with CleanBC Go Electric ARC funding, converting seaplanes to battery-electric power, cutting emissions, enabling commercial passenger service, and creating skilled clean-tech jobs through R&D and electrification.

 

Key Points

Harbour Air's project electrifies seaplanes with CleanBC ARC support to enable zero-emission flights and cut emissions.

✅ $1.6M CleanBC ARC funds seaplane electrification retrofit

✅ Target: passenger-ready, zero-emission commercial service

✅ Creates 21 full-time clean-tech jobs in British Columbia

 

B.C.’s Harbour Air Seaplanes is building on its work in clean technology to decarbonize aviation, part of an aviation revolution underway, and create new jobs with support from the CleanBC Go Electric Advanced Research and Commercialization (ARC) program.

”Harbour Air is decarbonizing aviation and elevating the company to new altitudes as a clean-technology leader in B.C.'s transportation sector,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With support from our CleanBC Go Electric ARC program, Harbour Air's project not only supports our emission-reduction goals, but also creates good-paying clean-tech jobs, exemplifying the opportunities in the low-carbon economy.”

Harbour Air is receiving almost $1.6 million from the CleanBC Go Electric ARC program for its aircraft electrification project. The funding supports Harbour Air’s conversion of an existing aircraft to be fully electric-powered and builds on its successful December 2019 flight of the world’s first all-electric commercial aircraft, and subsequent first point-to-point electric flight milestones.

That flight marked the start of the third era in aviation: the electric age. Harbour Air is working on a new design of the electric motor installation and battery systems to gain efficiencies that will allow carrying commercial passengers, as it eyes first electric passenger flights in 2023. Approximately 21 full-time jobs will be created and sustained by the project.

“CleanBC is helping accelerate world-leading clean technology and innovation at Harbour Air that supports good jobs for people in our communities,” said George Heyman, Minister of Environment and Climate Change Strategy. “Once proven, the technology supports a switch from fossil fuels to advanced electric technology, and will provide a clean transportation option, such as electric ferries, that reduces pollution and shows the way forward for others in the sector.”

Harbour Air is a leader in clean-technology adoption. The company has also purchased a fully electric, zero-emission passenger shuttle bus to pick up and drop off passengers between Harbour Air’s downtown Vancouver and Richmond locations, and the Vancouver International Airport, where new EV chargers support travellers.

“It is great to see the Province stepping up to support innovation,” said Greg McDougall, Harbour Air CEO and ePlane test pilot. “This type of funding confirms the importance of encouraging companies in all sectors to focus on what they can be doing to look at more sustainable practices. We will use these resources to continue to develop and lead the transportation industry around the world in all-electric aviation.”

In total, $8.18 million is being distributed to 18 projects from the second round of CleanBC Go Electric ARC program funding. Recipients include Damon Motors and IRDI System, both based on the Lower Mainland. The 15 other successful projects will be announced this year.

The CleanBC Go Electric ARC program supports the electric vehicle (EV) sector in B.C., which leads the country in going electric, by providing reliable and targeted support for research and development, commercialization and demonstration of B.C.-based EV technologies, services and products.

“This project is a great example of the type of leading-edge innovation and tech advancements happening in our province,” said Brenda Bailey, Parliamentary Secretary for Technology and Innovation. “By further supporting the development of the first all-electric commercial aircraft, we are solidifying our position as world leaders in innovation and using technology to change what is possible.”

The CleanBC Roadmap to 2030 is B.C.’s plan to expand and accelerate climate action, including a major hydrogen project, building on the province’s natural advantages – abundant, clean electricity, high-value natural resources and a highly skilled workforce. It sets a path for increased collaboration to build a British Columbia that works for everyone.

 

Related News

View more

NREL’s Electric Vehicle Infrastructure Projection Tool Helps Utilities, Agencies, and Researchers Predict Hour-by-Hour Impact of Charging on the Grid

EVI-Pro Lite EV Load Forecasting helps utilities model EV charging infrastructure, grid load shapes, and resilient energy systems, factoring home, workplace, and public charging behavior to inform planning, capacity upgrades, and flexible demand strategies.

 

Key Points

A NREL tool projecting EV charging demand and load shapes to help utilities plan the grid and right-size infrastructure.

✅ Visualizes weekday/weekend EV load by charger type.

✅ Tests home, workplace, and public charging access scenarios.

✅ Supports utility planning, demand flexibility, and capacity upgrades.

 

As electric vehicles (EVs) continue to grow in popularity, utilities and community planners are increasingly focused on building resilient energy systems that can support the added electric load from EV charging, including a possible EV-driven demand increase across the grid.

But forecasting the best ways to adapt to increased EV charging can be a difficult task as EV adoption will challenge state power grids in diverse ways. Planners need to consider when consumers charge, how fast they charge, and where they charge, among other factors.

To support that effort, researchers at the National Renewable Energy Laboratory (NREL) have expanded the Electric Vehicle Infrastructure Projection (EVI-Pro) Lite tool with more analytic capabilities. EVI-Pro Lite is a simplified version of EVI-Pro, the more complex, original version of the tool developed by NREL and the California Energy Commission to inform detailed infrastructure requirements to support a growing EV fleet in California, where EVs bolster grid stability through coordinated planning.

EVI-Pro Lite’s estimated weekday electric load by charger type for El Paso, Texas, assuming a fleet of 10,000 plug-in electric vehicles, an average of 35 daily miles traveled, and 50% access to home charging, among other variables, as well as potential roles for vehicle-to-grid power in future scenarios. The order of the legend items matches the order of the series stacked in the chart.

Previously, the tool was limited to letting users estimate how many chargers and what kind of chargers a city, region, or state may need to support an influx of EVs. In the added online application, those same users can take it a step further to predict how that added EV charging will impact electricity demand, or load shapes, in their area at any given time and inform grid coordination for EV flexibility strategies.

“EV charging is going to look different across the country, depending on the prevalence of EVs, access to home charging, and the kind of chargers most used,” said Eric Wood, an NREL researcher who led model development. “Our expansion gives stakeholders—especially small- to medium-size electric utilities and co-ops—an easy way to analyze key factors for developing a flexible energy strategy that can respond to what’s happening on the ground.”

Tools to forecast EV loads have existed for some time, but Wood said that EVI-Pro Lite appeals to a wider audience, including planners tracking EVs' impact on utilities in many markets. The tool is a user-friendly, free online application that displays a clear graphic of daily projected electric loads from EV charging for regions across the country.

After selecting a U.S. metropolitan area and entering the number of EVs in the light-duty fleet, users can change a range of variables to see how they affect electricity demand on a typical weekday or weekend. Reducing access to home charging by half, for example, results in higher electric loads earlier in the day, although energy storage and mobile charging can help moderate peaks in some cases. That is because under such a scenario, EV owners might rely more on public or workplace charging instead of plugging in at home later in the evening or at night.

“Our goal with the lite version of EVI-Pro is to make estimating loads across thousands of scenarios fast and intuitive,” Wood said. “And if utilities or stakeholders want to take that analysis even deeper, our team at NREL can fill that gap through partnership agreements, too. The full version of EVI-Pro can be tailored to develop detailed studies for individual planners, agencies, or utilities.”

 

Related News

View more

Electric vehicles can fight climate change, but they’re not a silver bullet: U of T study

EV Adoption Limits highlight that electric vehicles alone cannot meet emissions targets; life cycle assessment, carbon budgets, clean grids, public transit, and battery materials constraints demand broader decarbonization strategies, city redesign, and active travel.

 

Key Points

EV Adoption Limits show EVs alone cannot hit climate targets; modal shift, clean grids, and travel demand are essential.

✅ 350M EVs by 2050 still miss 2 C goals without major mode shift

✅ Grid demand rises 41%, requiring clean power and smart charging

✅ Battery materials constraints need recycling, supply diversification

 

Today there are more than seven million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago. It’s a massive change – but according to a group of researchers at the University of Toronto’s Faculty of Applied Science & Engineering, it won’t be nearly enough to address the global climate crisis. 

“A lot of people think that a large-scale shift to EVs will mostly solve our climate problems in the passenger vehicle sector,” says Alexandre Milovanoff, a PhD student and lead author of a new paper published in Nature Climate Change. 

“I think a better way to look at it is this: EVs are necessary, but on their own, they are not sufficient.” 

Around the world, many governments are already going all-in on EVs. In Norway, for example, where EVs already account for half of new vehicle sales, the government has said it plans to eliminate sales of new internal combustion vehicles by 2025. The Netherlands aims to follow suit by 2030, with France and Canada's EV goals aiming to follow by 2040. Just last week, California announced plans to ban sales of new internal combustion vehicles by 2035.

Milovanoff and his supervisors in the department of civil and mineral engineering – Assistant Professor Daniel Posen and Professor Heather MacLean – are experts in life cycle assessment, which involves modelling the impacts of technological changes across a range of environmental factors. 

They decided to run a detailed analysis of what a large-scale shift to EVs would mean in terms of emissions and related impacts. As a test market, they chose the United States, which is second only to China in terms of passenger vehicle sales. 

“We picked the U.S. because they have large, heavy vehicles, as well as high vehicle ownership per capita and high rate of travel per capita,” says Milovanoff. “There is also lots of high-quality data available, so we felt it would give us the clearest answers.” 

The team built computer models to estimate how many electric vehicles would be needed to keep the increase in global average temperatures to less than 2 C above pre-industrial levels by the year 2100, a target often cited by climate researchers. 

“We came up with a novel method to convert this target into a carbon budget for U.S. passenger vehicles, and then determined how many EVs would be needed to stay within that budget,” says Posen. “It turns out to be a lot.” 

Based on the scenarios modelled by the team, the U.S. would need to have about 350 million EVs on the road by 2050 in order to meet the target emissions reductions. That works out to about 90 per cent of the total vehicles estimated to be in operation at that time. 

“To put that in perspective, right now the total proportion of EVs on the road in the U.S. is about 0.3 per cent,” says Milovanoff. 

“It’s true that sales are growing fast, but even the most optimistic projections of an electric-car revolution suggest that by 2050, the U.S. fleet will only be at about 50 per cent EVs.” 

The team says that, in addition to the barriers of consumer preferences for EV deployment, there are technological barriers such as the strain that EVs would place on the country’s electricity infrastructure, though proper grid management can ease integration. 

According to the paper, a fleet of 350 million EVs would increase annual electricity demand by 1,730 terawatt hours, or about 41 per cent of current levels. This would require massive investment in infrastructure and new power plants, some of which would almost certainly run on fossil fuels in some regions. 

The shift could also impact what’s known as the demand curve – the way that demand for electricity rises and falls at different times of day – which would make managing the national electrical grid more complex, though vehicle-to-grid strategies could help smooth peaks. Finally, there are technical challenges stemming from the supply of critical materials for batteries, including lithium, cobalt and manganese. 

The team concludes that getting to 90 per cent EV ownership by 2050 is an unrealistic scenario. Instead, what they recommend is a mix of policies, rather than relying solely on a 2035 EV sales mandate as a singular lever, including many designed to shift people out of personal passenger vehicles in favour of other modes of transportation. 

These could include massive investment in public transit – subways, commuter trains, buses – as well as the redesign of cities to allow for more trips to be taken via active modes such as bicycles or on foot. They could also include strategies such as telecommuting, a shift already spotlighted by the COVID-19 pandemic. 

“EVs really do reduce emissions, which are linked to fewer asthma-related ER visits in local studies, but they don’t get us out of having to do the things we already know we need to do,” says MacLean. “We need to rethink our behaviours, the design of our cities, and even aspects of our culture. Everybody has to take responsibility for this.” 

The research received support from the Hatch Graduate Scholarship for Sustainable Energy Research and the Natural Sciences and Engineering Research Council of Canada.

 

Related News

View more

GE to create 300 new jobs at French offshore wind blade factory

LM Wind Power Cherbourg Recruitment 2021 targets 300 new hires for offshore wind manufacturing, wind turbine blade production, Haliade-X components, and operations in France, with Center of Excellence training and second 107-meter blade mold expansion.

 

Key Points

A hiring drive to add 300 staff for offshore wind blade manufacturing in Cherbourg, with Center of Excellence training.

✅ 300 hires to scale offshore wind blade production

✅ 6-week Center of Excellence training for all recruits

✅ Second 107-meter blade mold boosts capacity

 

GE Renewable Energy plans to recruit 300 employees in 2021 at its LM Wind Power wind turbine blade factory in Cherbourg, France / Opened almost three years ago in April 2018, the factory today counts more than 450 employees / Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes / Site has produced the first offshore wind turbine blade longer than 100 meters, 107-meters long / Second 107-meter blade manufacturing mold is being installed at the plant today

GE Renewable Energy announced today its plan to recruit 300 employees at its LM Wind Power wind turbine blade manufacturing site in Cherbourg, France, in 2021. Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes supporting offshore wind energy growth in Europe. The expanded production workforce will allow LM Wind Power to meet the growing industry demand for offshore wind equipment, including emerging offshore green hydrogen applications across the sector.

The factory currently has more than 450 employees, with 34 percent being women. The facility became the first wind turbine blade manufacturing site in France when it was opened almost three years ago in April 2018, while Spanish wind factories faced temporary closures due to COVID-19 restrictions.

The facility has produced the first offshore wind turbine blade longer than 100 meters, a 107-meters long blade that will be used in GE’s Haliade-X offshore wind turbine. A second 107-meter blade manufacturing mold is currently being installed at the plant to support growing project pipelines like those planned off Massachusetts' South Coast in the U.S.

Florence Martinez Flores, the site’s Human Resources Director, said: "The arrival of the second mold within the factory marks an increased activity for LM Wind Power in Cherbourg, and we are happy to welcome a large wave of new employees, allowing us to participate in social development and create more jobs in the surrounding community, but also to bring new skills to the region."

Recent investments such as EDF Irish offshore wind stake news underscore the broader market momentum.

The Cherbourg team is mostly looking to expand its production workforce, with positions that are open to all profiles and backgrounds. Every new employee will be trained to manufacture wind turbine blades through LM Wind Power's ‘Center of Excellence' training program – a six-week theoretical and practical training course, which will develop the skills and technical expertise required to produce high-quality wind turbine blades and support wind turbine operations and maintenance across the industry. The site will also be looking for production supervisors, quality controllers and maintenance technicians.

 

Related News

View more

Solar panel sales double in the UK as homeowners look to cut soaring bills

UK Home Solar Panel Installation drives self-consumption as PV panels, hybrid inverters, and smart meters cut grid demand, enable EV charging, and prepare battery storage, even in cloudy winters, with app-based monitoring and MCS-certified installers.

 

Key Points

A residential PV setup reducing grid reliance via panels, hybrid inverters, smart meters, and battery-ready design.

✅ Cuts grid use; boosts self-consumption with PV generation

✅ Hybrid inverters enable future battery storage integration

✅ Smart meter and app monitor output, EV charging patterns

 

In a town north of London, the weather's been cloudy over the winter months. But it didn't stop this homeowner from installing solar panels in December.

On his smart metre, Kumi Thiruchelvam looks satisfied at the "0 watts" showing up under electricity. It's about 10 am, and he's not using any electricity from the grid.

Cost of installation? Between £12,000 and £13,000 (€13,500-€14,500), a fair chunk of savings, even for Thiruchelvam, who lives on a private avenue in Luton.

The investment was common sense for him following the surge in energy prices caused by the Russian invasion of Ukraine.

According to the Office of National Statistics, electricity prices in the UK had increased by 67 per cent in January 2023 compared to January 2022, while pilots show parked EVs can earn from grids in Europe, offering some relief.

Solar power installations doubled in 2022 compared to 2021, according to MCS, the standards organisation in charge of solar installations, a shift aligned with the UK grid's net-zero transition underway today.

"We've had a combination of soaring energy prices around the world, and then also we've increased our electricity consumption in the home through a number of reasons, including electric vehicles and emerging EV-solar integration trends," says Thiruchelvam.

His family owns a big house and no less than three electric vehicles, some of which can now power a home for days during outages, so their electricity consumption is higher than the normal household, about 12,000 kWh per year.

Around two-thirds should now be provided by solar panels, and EV owners can sell electricity back to the grid in some schemes as well, diversifying benefits.

"We originally sought the configuration to be rear, which is where the sun comes up, but we went for the front because it spends more time in the front throughout most of the year than in the rear. Also, there's more shade in the rear with trees," he says.

To get a quote for the installation, Thiruchelvam used Otovo, a Norwegian company which recently launched in the UK.

Using their app, he can monitor the electricity generated by his photovoltaic (PV) installation from his phone. The data comes from the inverters installed in the attic.

Their role is to change the direct current generated by the solar panels into alternating current to power appliances in the house safely.

They also communicate with the grid and monitor the electricity generated, supporting emerging vehicle-to-building charging strategies for demand management.

"We went for two hybrid inverters, allowing me to use a battery in the future or tap stored EV energy for buildings if needed," says Thiruchelvam.

"But because battery technology is still evolving, I chose not to. And also I viewed at that time that we would be consuming everything we'd be generating. So we didn't. But most likely I will upgrade the system as we approach summer with batteries."

 

Related News

View more

Manitoba has clean energy to help neighboring provinces

East-West Power Transmission Grid links provinces via hydroelectric interconnects, clean energy exports, and reliable grid infrastructure, requiring federal funding, multibillion-dollar transmission lines, and coordinated planning across Manitoba, Saskatchewan, Ontario, and Newfoundland.

 

Key Points

A proposed interprovincial grid to share hydro power, improve reliability, and cut emissions with federal funding.

✅ Hydroelectric exports from Manitoba to prairie and eastern provinces

✅ New interconnects and transmission lines require federal funding

✅ Enhances grid reliability and supports coal phase-out

 

Manitoba's energy minister is recharging the idea of building an east-west power transmission grid and says the federal government needs to help.

Cliff Cullen told the Energy Council of Canada's western conference on Tuesday that Manitoba has "a really clean resource that we're ready to share with our neighbours" as new hydro generation projects, including new turbines come online.

"This is a really important time to have that discussion about the reliability of energy and how we can work together to make that happen," said Cullen, minister of growth, enterprise and trade.

"And, clearly, an important component of that is the transmission side of it. We've been focused on transmission ... north and south, and we haven't had that dialogue about east-west."

Most hydro-producing provinces currently focus on exports to the United States, though transmission constraints can limit incremental deliveries.

Saskatchewan Energy Minister Dustin Duncan said his province, which relies heavily on coal-fired electricity plants, could be interested in getting electricity from Manitoba, even as a Manitoba Hydro warning highlights limits on serving new energy-intensive customers.

"They're big projects. They're multibillion-dollar projects," Duncan said after speaking on a panel with Cullen and Alberta Energy Minister Margaret McCuaig-Boyd.

"Even trying to do the interconnects to the transmission grid, I don't think they're as easy or as maybe low cost as we would just imagine, just hooking up some power lines across the border. It takes much more work than that."

Cullen said there's a lot of work to do on building east-west transmission lines if provinces are going to buy and sell electricity from each other. He suggested that money is a key factor.

"Each province has done their own thing in terms of transmission within their jurisdiction and we have to have that dialogue about how that interconnectivity is going to work. And these things don't happen overnight," he said.

"Hopefully the federal government will be at the table to have a look at that, because it's a fundamental expense, a capital expense, to connect our provinces."

The 2016 federal budget said significant investment in Canada's electricity sector will be needed over the next 20 years to replace aging infrastructure and meet growing demand for electricity, with Manitoba's demand potentially doubling over that period.

The budget allocated $2.5 million over two years to Natural Resources Canada for regional talks and studies to identify the most promising electricity infrastructure projects.

In April, the government told The Canadian Press that Natural Resources Canada has been talking with ministry representatives and electric utilities in the western and Atlantic provinces.

The idea of developing an east-west transmission grid has long been talked about as a way to bring energy reliability to Canadians.

At their annual meeting in 2007, Canada's premiers supported development and enhancement of transmission facilities across the country, although the premiers fell short of a firm commitment to an east-west energy grid.

Manitoba, Ontario and Newfoundland and Labrador are the most vocal proponents of east-west transmission, even as Quebec's electricity ambitions have reopened old wounds in Newfoundland and Labrador.

Manitoba and Newfoundland want the grid because of the potential to develop additional exports of hydro power, while Ontario sees the grid as an answer to its growing power needs.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified