The underwater 'kites' generating electricity as they move


underwater kites

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Faroe Islands Tidal Kites harness predictable ocean energy with underwater turbines by Minesto, flying figure-eight paths in fjords to amplify tidal power and deliver renewable electricity to SEV's grid near Vestmanna at megawatt scale.

 

Key Points

Subsea turbines that fly figure-eight paths to harvest tidal currents, delivering reliable renewable power to the grid.

✅ Figure-eight control amplifies speed vs. ambient current

✅ Predictable baseload complementing wind and hydro

✅ 1.2 MW Dragon-class units planned for Faroese fjords

 

Known as "sea dragons" or "tidal kites", they look like aircraft, but these are in fact high-tech tidal turbines, part of broader ocean and river power efforts generating electricity from the power of the ocean.

The two kites - with a five-metre (16ft) wingspan - move underwater in a figure-of-eight pattern, absorbing energy from the running tide. They are tethered to the fjord seabed by 40-metre metal cables.

Their movement is generated by the lift exerted by the water flow - just as a plane flies by the force of air flowing over its wings.

Other forms of tidal power use technology similar to terrestrial wind turbines, and emerging kite-based wind power shows the concept's versatility, but the kites are something different.

The moving "flight path" allows the kite to sweep a larger area at a speed several times greater than that of the underwater current. This, in turn, enables the machines to amplify the amount of energy generated by the water alone.

An on-board computer steers the kite into the prevailing current, then idles it at slack tide, maintaining a constant depth in the water column. If there were several kites working at once, the machines would be spaced far enough apart to avoid collisions.

The electricity is sent via the tethering cables to others on the seabed, and then to an onshore control station near the coastal town of Vestmanna.

The technology has been developed by Swedish engineering firm Minesto, founded back in 2007 as a spin-off from the country's plane manufacturer, Saab.

The two kites in the Faroe Islands have been contributing energy to Faroe's electricity company SEV, and the islands' national grid, on an experimental basis over the past year.

Each kite can produce enough electricity to power approximately 50 to 70 homes.

But according to Minesto chief executive, Martin Edlund, larger-scale beasts will enter the fjord in 2022.

"The new kites will have a 12-metre wingspan, and can each generate 1.2 megawatts of power [a megawatt is 1,000 kilowatts]," he says. "We believe an array of these Dragon-class kites will produce enough electricity to power half of the households in the Faroes."

The 17 inhabited Faroe islands are an autonomous territory of Denmark. Located halfway between Shetland and Iceland, in a region where U.K. wind lessons resonate, they are home to just over 50,000 people.

Known for their high winds, persistent rainfall and rough seas, the islands have never been an easy place to live. Fishing is the primary industry, accounting for more than 90% of all exports.

The hope for the underwater kites is that they will help the Faroe Islands achieve its target of net-zero emission energy generation by 2030, with advances in wave energy complementing tidal resources along the way.

While hydro-electric power currently contributes around 40% of the islands' energy needs, wind power contributes around 12% and fossil fuels - in the form of diesel imported by sea - still account for almost half.

Mr Edlund says that the kites will be a particularly useful back-up when the weather is calm. "We had an unusual summer in 2021 in Faroes, with about two months with virtually no wind," he says.

"In an island location there is no possibility of bringing in power connections from another country, and tidal energy for remote communities can help, when supplies run low. The tidal motion is almost perpetual, and we see it as a crucial addition to the net zero goals of the next decade."

Minesto has also been testing its kites in Northern Ireland and Wales, where offshore wind in the UK is powering rapid growth, and it plans to install a farm off the coast of Anglesey, plus projects in Taiwan and Florida.

The Faroe Islands' drive towards more environmental sustainability extends to its wider business community, with surging offshore wind investment providing global momentum. The locals have formed a new umbrella organisation - Burðardygt Vinnulív (Faroese Business Sustainability Initiative).

It currently has 12 high-profile members - key players in local business sectors such as hotels, energy, salmon farming, banking and shipping.

The initiative's chief executive - Ana Holden-Peters - believes the strong tradition of working collaboratively in the islands has spurred on the process. "These businesses have committed to sustainability goals which will be independently assessed," she says.

"Our members are asking how they can make a positive contribution to the national effort. When people here take on a new idea, the small scale of our society means it can progress very rapidly."

One of the islands' main salmon exporters - Hiddenfjord - is also doing its bit, by ceasing the air freighting of its fresh fish. Thought to be a global first for the Atlantic salmon industry, it is now exporting solely via sea cargo instead.

According to the firm's managing director Atli Gregersen this will reduce its transportation CO2 emissions by more than 90%. However it is a bold move commercially as it means that its salmon now takes much longer to get to key markets.

For example, using air freight, it could get its salmon to New York City within two days, but it now takes more than a week by sea.

What has made this possible is better chilling technology that keeps the fresh fish constantly very cold, but without the damaging impact of deep freezing it. So the fish is kept at -3C, rather than the -18C or below of typical commercial frozen food transportation.

"It's taken years to perfect a system that maintains premium quality salmon transported for sea freight rather than plane," says Mr Gregersen. "And that includes stress-free harvesting, as well as an unbroken cold-chain that is closely monitored for longer shelf life.

"We hope, having shown it can be done, that other producers will follow our lead - and accept the idea that salmon were never meant to fly."

Back in the Faroe Island's fjords, a firm called Ocean Rainforest is farming seaweed.

The crop is already used for human food, added to cosmetics, and vitamin supplements, but the firm's managing director Olavur Gregersen is especially keen on the potential of fermented seaweed being used as an additive to cattle feed.

He points to research which appears to show that if cows are given seaweed to eat it reduces the amount of methane gas that they exhale.

"A single cow will burp between 200 and 500 litres of methane every day, as it digests," says Mr Gregersen. "For a dairy cow that's three tonnes per animal per year.

"But we have scientific evidence to show that the antioxidants and tannins in seaweed can significantly reduce the development of methane in the animal's stomach. A seaweed farm covering just 10% of the largest planned North Sea wind farm could reduce the methane emissions from Danish dairy cattle by 50%."

The technology that Ocean Rainforest uses to farm its four different species of seaweed is relatively simple. Tiny algal seedlings are affixed to a rope which dangles in the water, and they grow rapidly. The line is lifted using a winch and the seaweed strands simply cut off with a knife. The line goes back into the water, and the seaweed starts growing again.

Currently, Ocean Rainforest is harvesting around 200 tonnes of seaweed per annum in the Faroe Islands, but plans to scale this up to 8,000 tonnes by 2025. Production may also be expanded to other areas in Europe and North America.

 

Related News

Related News

Unprecedented Growth in Solar and Storage Anticipated with Record Installations and Investments

U.S. Clean Energy Transition accelerates with IRA and BIL, boosting renewable energy, solar PV, battery storage, EV adoption, manufacturing, grid resilience, and jobs while targeting carbon-free electricity by 2035 and net-zero emissions by 2050.

 

Key Points

U.S. shift to renewables under IRA and BIL scales solar, storage, and EVs toward carbon-free power by 2035.

✅ Renewables reached ~22% of U.S. electricity generation in 2022.

✅ Nearly $13b in PV manufacturing; 94 plants; 25k jobs announced.

✅ Battery storage grew from 3% in 2017 to 36% by H1 2023.

 

In recent years, the United States has made remarkable strides in embracing renewable energy, with notable solar and wind growth helping to position itself for a more sustainable future. This transition has been driven by a combination of factors, including environmental concerns, economic opportunities, and technological advancements.

With the introduction of the Inflation Reduction Act (IRA) and the Bipartisan Infrastructure Law (BIL), the United States is rapidly advancing its journey towards clean energy solutions.

To underscore the extent of this progress, consider the following vital statistics: In 2022, renewable energy sources (including hydroelectric power) accounted for approximately 22% of the nation's electricity generation, and renewables surpassed coal in the mix that year, while the share of renewables in total electricity generation capacity had risen to around 30% and the nation is moving toward 30% electricity from wind and solar as well.

Notably, in the transportation sector, consumers are increasingly embracing zero-emission fuels, such as electric vehicles. In 2022, battery electric vehicles (BEVs) represented 5.6% of new vehicle registrations, surging to 7.1% by the first half of 2023, according to estimates from EUPD Research.

The United States has set ambitious targets, including achieving 100% carbon pollution-free electricity by 2035 and aiming for economy-wide net-zero greenhouse gas emissions by no later than 2050, and policy proposals such as Biden's solar plan reinforce these goals for the power sector. These targets are poised to provide a significant boost to the clean energy sector in the country, reaffirming its commitment to a sustainable and environmentally responsible future.

 

IRA and BIL: Catalysts for Growth

The IRA and BIL represent a transformative shift in the landscape of clean energy policy, heralding a new era for the solar and energy storage sectors in the United States. The IRA allocates substantial resources to address the climate crisis, fortify domestic clean energy production, and solidify the U.S. as a global leader in clean energy manufacturing.

According to the U.S. Department of Energy (DOE), an impressive investment exceeding $120 billion has been announced for the U.S. battery manufacturing and supply chain sector since the introduction of IRA and BIL. Additionally, plans have been unveiled for over 200 new or expanded facilities dedicated to minerals, materials processing, and manufacturing. This move is expected to create more than 75,000 potential job opportunities, strengthening the nation's workforce.

Following the introduction of IRA and BIL, solar photovoltaic (PV) manufacturing in the U.S. has also witnessed a substantial surge in planned investments, totaling nearly $13 billion, as reported by the DOE. Furthermore, a total of 94 new and expanded PV manufacturing plants have been announced, potentially generating over 25,000 jobs in the country.

 

Booming Solar Sector

In recent years, the U.S. solar sector has outpaced other energy sources, including a surging wind sector and natural gas, in terms of capacity growth. EUPD Research estimates reveal a notable upward trend in the contribution of solar capacity to annual power capacity additions, as 82% of the 2023 pipeline consists of wind, solar, and batteries across utility-scale projects. This trajectory has risen from 37% in 2019 to 38% in 2020, further increasing to 44% in 2021 and an impressive 45% in 2022.

Although the country experienced a temporary setback in 2022 due to pandemic-related delays, trade law enforcement, supply chain disruptions, and rising costs, it is now on track to make a historic addition to its PV capacity in 2023. According to EUPD Research's 2023 forecast, the U.S. is poised to achieve its largest-ever expansion in PV capacity, estimated at 32 to 35 GWdc, assuming the installation of all planned utility-scale capacity, and solar generation rose 25% in 2022 as a supportive indicator. Additionally, from 2023 to 2028, the U.S. is projected to add approximately 233 GWdc of PV capacity.

In terms of cumulative installed PV capacity (including utility-scale, commercial and industrial, and residential) on a state-by-state basis, California holds the top position, followed by Texas, Florida, North Carolina, and Arizona. Remarkably, Texas is rapidly expanding its utility-scale PV capacity and may potentially surpass California in the next two years.

 

Rapid Growth in Battery Storage

Battery energy storage has emerged as the dominant and rapidly expanding source of energy storage in the U.S. in recent years. The proportion of battery storage in the country's energy storage capacity has surged dramatically, increasing from a mere 3% in 2017 to a substantial 36% in the first half of 2023.

 

Related News

View more

World Bank helps developing countries wind spurt

World Bank Offshore Wind Investment drives renewables and clean energy in developing countries, funding floating turbines and shallow-water foundations to replace fossil fuels, expand grids, and scale climate finance across Latin America, Africa, and Asia.

 

Key Points

A World Bank program funding offshore wind to speed clean power, cut fossil fuels, and expand grids in emerging markets.

✅ US$80bn to 565 onshore wind projects since 1995

✅ Pilot funds offshore wind in Asia, Africa, Latin America

✅ Floating turbines and shallow-water foundations enable deep resources

 

Europe and the United States now accept onshore wind power as the cheapest way to generate electricity, and U.S. lessons from the U.K. are informing policy discussions. But this novel technology still needs subsidising before some developing countries will embrace it. Enter the World Bank.

A total of US$80 billion in subsidies from the Bank has gone over 25 years to 565 developing world onshore wind projects, to persuade governments to invest in renewables rather than rely on fossil fuels.

Central and Latin American countries have received the lions share of this investment, but the Asia Pacific region and Eastern Europe have also seen dozens of Bank-funded developments. Now the fastest-growing market is in Africa and the Middle East, where West African hydropower support can complement variable wind resources.

But while continuing to campaign for more onshore wind farms, the World Bank in 2019 started encouraging target countries to embrace offshore wind as well. This uses two approaches: turbines in shallow water, which are fixed to the seabed, and also a newer technology, involving floating turbines anchored by cables at greater depth.

The extraordinary potential for offshore wind, which is being commercially developed very fast in Europe, including the UK's offshore expansion, China and the U.S. offshore wind sector today as well, is now seen by the Bank as important for countries like Vietnam which could harness enough offshore wind power to provide all its electricity needs.

Other countries it has identified with enormous potential for offshore wind include Brazil, Indonesia, India, the Philippines, South Africa and Sri Lanka, all of them countries that need to keep building more power stations to connect every citizen to the national grid.

The Bank began investing in wind power in 1995, with its spending reaching billions of dollars annually in 2011. The biggest single recipient has been Brazil, receiving US$24.2 bn up to the end of 2018, 30 per cent of the total the Bank has invested worldwide.

Many private companies have partnered with the Bank to build the wind farms. The biggest single beneficiary is Enel, the Italian energy giant, which has received US$6.1 bn to complete projects in Brazil, Mexico, South Africa, Romania, Morocco, Bulgaria, Peru, and Russia.

Among the countries now benefitting from the Banks continuing onshore wind programme are Egypt, Morocco, Senegal, Jordan, Vietnam, Thailand, Indonesia and the Philippines.

Offshore wind now costs less than nuclear power, and global costs have fallen enough to compete in most countries with fossil fuels. Currently the fastest-growing industry in the world, it continued to grow despite Covid-19 across most markets.

Persistent coal demand

Particularly in Asia, some countries are continuing to burn large quantities of coal and are considering investing in yet more fossil fuel generation unless they can be persuaded that renewables are a better option, with an offshore wind $1 trillion outlook underscoring the scale.

Last year the World Bank began a pilot scheme to explore funding investment in offshore wind in these countries. Launching the scheme Riccardo Puliti, a senior director at the Bank, said: Offshore wind is a clean, reliable and secure source of energy with massive potential to transform the energy mix in countries that have great wind resources.

We have seen it work in Europe we can now make use of global experience to scale up offshore wind projects in emerging markets.

Using data from the Global Wind Atlas, the Bank calculated that developing countries with shallow waters like India, Turkey and Sri Lanka had huge potential with fixed turbines, while others the Philippines and South Africa, for example would need floating foundations to reach greater depths, up to 1,000 metres.

For countries like Vietnam, with a mix of shallow and deep water, wind power could solve their entire electricity needs. In theory offshore wind power could produce ten times the amount of electricity that the country currently gets from all its current power stations, the Bank says.

 

Related News

View more

EV owners can access more rebates for home, workplace charging

CleanBC Go Electric EV Charger Rebate empowers British Columbia condos, apartments, and workplaces with Level 2 charging infrastructure, ZEV adoption support, and stackable rebates aligned with the CleanBC Roadmap 2030 and municipal top-up incentives.

 

Key Points

A provincial program funding up to 50% of EV charger costs for condos, apartments, and workplaces across B.C.

✅ Up to 50% back, max $2,000 per eligible Level 2 charger

✅ EV Ready plans fund building upgrades for future charging

✅ Free advisor support: up to 5 hours for condos and workplaces

 

British Columbians wanting to charge their electric vehicles (EVs) at their condominium building or their place of work can access further funding through EV charger rebates to help buy and install EV chargers through CleanBC’s Go Electric EV Charger Rebate program.

“To better support British Columbians living in condominiums and apartments, we’re offering rebates to make more buildings EV ready,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With the highest uptake rates of EV adoption in North America, we want to make sure that more people supporting our transition to a low-carbon economy have easy access to charging infrastructure.”

The Province’s CleanBC Go Electric EV Charger Rebate program is receiving $10 million as part of Budget 2021 to help with the upfront costs that come with EVs. Condominiums, apartments and workplaces that purchase and install eligible EV chargers can receive a rebate up to 50% of costs to a maximum of $2,000 per charger. Customers who take advantage of the EV Charger Rebate may have access to top up rebates through participating municipalities and local governments.

“People in British Columbia are switching to electric vehicles in record numbers as part of the transition to a cleaner, better transportation system,” said George Heyman, Minister of Environment and Climate Change Strategy. “We are building on that progress and accelerating positive change through the CleanBC Roadmap. We’re making it more affordable to own an electric vehicle and charging station, with incentives for zero-emission vehicles, so people can improve their driving experience with no air and climate pollution, and lower fuel and maintenance costs overall.”

The strata council for a condo building in Vancouver’s Olympic Village neighbourhood made use of the EV Ready program, as well as new legislation easing strata EV installs and federal support to upgrade their building’s electrical infrastructure. The strata council worked together to first determine, through a load review, if there was enough incoming power to support a level 2 charger for every owner. Once this was determined, the strata’s chosen electrical contractor went to work with the base installation, as well as individual chargers for owners who ordered them. The strata council also ensured a charger was installed in the guest parking.

“The majority of owners in our building came together and gave our strata council approval to make the necessary updates to the building’s infrastructure to support electric vehicle charging where we live,” said Jim Bayles, vice-president of strata council. “While upgrading the electrical and installing the EV chargers was something we were going ahead with anyway, we were pleased to receive quick support from the Province through their CleanBC program as well as from the federal government.”

CleanBC’s EV Ready option supports the adoption of EV infrastructure at apartment and condominium buildings. EV Ready provides rebates for the development of EV Ready plans, a strategy for buildings supported by professionals to retrofit a condo with chargers and make at least one parking space per unit EV ready, and the installation of electrical modifications and upgrades needed to support widespread future access to EV charging for residents.

Up to five hours of free support services from an EV charging station adviser are available through the EV Charger Rebate program for condominiums, apartments and workplaces that need help moving from idea to installation.

Single-family homes, including duplexes and townhouses, can get a rebate of up to 50% of purchase and installation costs of an eligible EV charger to a maximum of $350 through the EV Charger Rebate program.

The Province is providing a range of rebates through its CleanBC Go Electric programs and building out the fast-charging network to ensure the increasing demand for EVs is supported. B.C. has one of the largest public-charging networks in Canada, including the BC's Electric Highway initiative, with more than 2,500 public charging stations throughout the province.

The CleanBC Go Electric EV Charger Rebate program aligns with the recently released CleanBC Roadmap to 2030. Announced on Oct. 25, 2021, the CleanBC Roadmap to 2030 details a range of expanded actions to expand EV charging and accelerate the transition to a net-zero future and achieve B.C.’s legislated greenhouse gas emissions targets.

CleanBC is a pathway to a more prosperous, balanced and sustainable future. It supports government’s commitment to climate action to meet B.C.’s emission targets and build a cleaner, stronger economy for everyone.

Quick Facts:

  • The CleanBC Go Electric EV Charger Rebate program provides a convenient single point of service for provincial and any local government rebates.
  • EV adviser services for multi-unit residential buildings and workplaces are available through Plug In BC.
  • British Columbia is leading the country in transitioning to EVs, even as a B.C. Hydro 'bottleneck' forecast highlights infrastructure needs, with more than 60,000 light-duty EVs on the road.
  • British Columbia was the first place in the world to have a 100% ZEV law and is leading North America in uptake rates of EVs at nearly 10% of new sales in 2020 – five years ahead of the original target.
  • The CleanBC Roadmap to 2030 commits B.C. to adjusting its ZEV Act to require automakers to meet an escalating annual percentage of new light-duty ZEV sales and leases, reaching 26% of light-duty vehicle sales by 2026, 90% by 2030 and 100% by 2035.

 

Learn More:

To learn more about home and workplace EV charging station rebates, eligibility and application processes, including the EV Ready program, visit: https://goelectricbc.gov.bc.ca/

To learn more about EV advisor services, visit: https://pluginbc.ca/ev-advisor-service/

To learn more about the suite of CleanBC Go Electric programming, visit: www.gov.bc.ca/zeroemissionvehicles

To learn more about the CleanBC Roadmap to 2030, visit: https://cleanbc.gov.bc.ca/

 

Related News

View more

EV charging to solar panels: How connected tech is changing the homes we live in

Connected Home Energy Technologies integrate solar panels, smart meters, EV charging, battery storage, and IoT energy management to cut costs, optimize demand response, and monitor usage in real time for safer, lower-carbon homes.

 

Key Points

Devices and systems managing home energy: solar PV, smart meters, EV chargers, and storage to cut costs and emissions.

✅ Real-time visibility via apps, smart meters, and IoT sensors

✅ Integrates solar PV, batteries, and EV charging with the grid

✅ Enables demand response, lower bills, and lower carbon

 

Driven by advances in tech and the advent of high-speed internet connections, many of us now have easy access to a raft of information about the buildings we live in.

Thanks to the proliferation of hardware and software within the home, this trend shows no sign of letting up and comes in many different forms, from indoor air quality monitors to “smart” doorbells which provide us with visual, real-time notifications when someone is attempting to access our property.

Residential renewable electricity generation is also starting to gain traction, with a growing number of people installing solar panels in the hope of reducing bills and their environmental footprint.

In the U.S. alone, the residential solar market installed 738 megawatts of capacity in the third quarter of 2020, a 14% jump compared to the second quarter, according to a recent report from the Solar Energy Industries Association and Wood Mackenzie.

Earlier this month, California-headquartered SunPower — which specializes in the design, production and delivery of solar panels and systems — announced it was rolling out an app which will enable homeowners to assess and manage their energy generation, usage and battery storage settings with their mobile, as California looks to EVs for grid stability amid broader electrification.

The service will be available to customers using its SunPower Eqiunox system and represents yet another instance of how connected technologies can provide us with valuable information about how buildings operate.

Similar offerings in this increasingly crowded marketplace include so-called “smart” meters, which allow consumers to see how much energy they are using and money they are spending in real time.

Elsewhere products such as Hive, from Centrica, enable users to install a range of connected kit — from plugs and lighting to thermostats and indoor cameras — that can be controlled via an app on their cellphone and, in some cases, their voice. 

Connected car charging
Solar panels represent one way that sustainable tech can be integrated into homes. Other examples include the installation of charging points for electric vehicles, as EV growth challenges state grids in many markets.

With governments around the world looking to phase-out the sale of diesel and gasoline vehicles and encourage consumers to buy electric, and Model 3's utility impact underscoring likely shifts in demand, residential charging systems could become an integral part of the built environment in the years ahead.

Firms offering home-based, connected, charging include Pod Point and BP Pulse. Both of these services include apps which provide data such as how much energy has been used, the cost of charging and charge history.  

Another firm, Wallbox, recently announced it was launching its first electric vehicle charger for North American homes.

The company, which is based in Spain, said the system was compatible with all types of electric vehicles, would allow customers to schedule charges, and could be voice-controlled through Google Assistant and Amazon Alexa, while mobile energy storage promises added flexibility for strained grids.

Away from the private sector, governments are also making efforts to encourage the development of home charging infrastructure.

Over the weekend, U.K. authorities said the Electric Vehicle Homecharge Scheme — which gives drivers as much as £350 (around $487) toward a charging system — would be extended and expanded, targeting those who live in leasehold and rented properties, even as UK grid capacity for EVs remains under scrutiny.

Mike Hawes, chief executive of the Society of Motor Manufacturers and Traders, described the government’s announcement as “welcome and a step in the right direction.”

“As we race towards the phase out of sales of new petrol and diesel cars and vans by 2030, we need to accelerate the expansion of the electric vehicle charging network, and proper grid management can ensure EVs are accommodated at scale,” he added.

“An electric vehicle revolution will need the home and workplace installations this announcement will encourage, but also a massive increase in on-street public charging and rapid charge points on our strategic road network.”

Change afoot, but challenges ahead
As attempts to decarbonize buildings and society ramp up, the way our homes look and function could be on the cusp of quite a big shift.

“Grid-connected home generation technologies such as solar electric panels will be important in the shift to a 100% renewable electricity grid, but decarbonising the electricity supply is only one part of the transition,” Peter Tyldesley, chief executive of the Centre for Alternative Technology, told CNBC via email.

With reference to Britain, Tyldesley went on to explain how his organization envisaged “just under 10% of electricity in a future zero carbon society coming from solar PV, utilising 15-20% of … U.K. roof area.” This, he said, compared to over 75% of electricity coming from wind power. 

Heating, Tyldesley went on to state, represented “the bigger challenge.”

“To decarbonise the U.K.’s housing stock at the scale and speed needed to get to zero carbon, we’ll need to refurbish possibly a million houses every year for the next few decades to improve their insulation and airtightness and to install heat pumps or other non-fossil fuel heating,” he said.

“To do this, we urgently need a co-ordinated national programme with a commitment to multi-year government investment,” he added.

On the subject of buildings becoming increasingly connected, providing us with a huge amount of data about how they function, Tyldesley sought to highlight some of the opportunities this could create. 

“Studies of the roll out of smart metering technology have shown that consumers use less energy when they are able to monitor their consumption in real time, so this kind of technology can be a useful part of behaviour change programmes when combined with other forms of support for home efficiency improvements,” he said.

“The roll out of smart appliances can go one step further — responding to signals from the grid and, through vehicle-to-grid power, helping to shift consumption away from peak times towards periods when more renewable energy is available,” he added.

 

Related News

View more

AZ goes EV: Rate of electric car ownership relatively high in Arizona

Arizona Electric Vehicle Ownership is surging, led by EV adoption, charging stations growth, state incentives, and local manufacturers; yet rural infrastructure gaps and limited fast-charging plugs remain key barriers to convenient, statewide electrification.

 

Key Points

Arizona Electric Vehicle Ownership shows rising EV adoption and incentives, but rural fast-charging access still lags.

✅ 28,770 EVs registered; sixth per 1,000 residents statewide

✅ 385 fast chargers; 1,448 Level 2 plugs; many not 24/7

✅ Incentives: lower registration, HOV access, utility rebates

 

For a mostly red state, Arizona has a lot of blue-state company when it comes to states ranked by electric vehicle ownership, according to recent government data.

Arizona had 28,770 registered electric vehicles as of June, according to the U.S. Department of Energy's Alternative Fuels Data Center, the seventh-highest number among states. When ownership is measured per 1,000 residents, Arizona inches up a notch to sixth place, with just over four electric vehicles per 1,000 people.

That rate put Arizona just behind Oregon and Colorado and just ahead of Nevada and Vermont. California was in the lead by far, with California's EV and charging lead reflected in 425,300 registered electric vehicles, or one for every 10.7 residents.

Arizona EV enthusiasts welcomed the ranking, which they said they have seen reflected in steady increases in group membership, but said the state can do better, even amid soaring U.S. EV sales this year.

"Arizona is growing by leaps and bounds in major areas, but still struggling out there in the hinterlands," said Jerry Asher, vice president of the Tucson Electric Vehicle Association.

He and others said the biggest challenge in Arizona, as in much of the country, is the lack of readily available charging stations for electric vehicles.

Currently, there are 385 public fast-charging plugs and 1,448 non-fast-charging plugs in the state, where charging networks compete to expand access, said Diane Brown, executive director with the Arizona Public Interest Research Group Education Fund. And many of those "are not available 24 hours a day, often making EV charging less convenient to the public," she said.

And in order for the state to hit 10% EV ownership by 2030, one scenario outlined by Arizona PIRG, the number of charging stations would need to grow significantly.

"According to the Arizona PIRG Education Fund, to support a future in which 10% of Arizona's vehicles are EVs – a conservative target for 2030 – Arizona will need more than 1,098 fast-charging plugs and 14,888 Level 2 plugs," Brown said.

This will require local, state and federal policies, as EVs challenge state power grids, to make "EV charging accessible, affordable, and easy," she said.

But advocates said there are several things working in their favor, even as an EV boom tests charging capacity across the country today. Jim Stack, president of the Phoenix Electric Auto Association, said many of the current plug-ins charging stations are at stores and libraries, places "where you would stop anyway."

"We have a good charging infrastructure and it keeps getting better," Stack said.

One way Asher said Arizona could be more EV-friendly would be to add charging stations at hotels, RV parks and shopping centers. In Tucson, he said, the Culinary Dropout and Jersey Mike's restaurants have already begun offering free electric vehicle charging to customers, Asher said.

While they push for more charging infrastructure, advocates said improving technology and lower vehicle expenses are on their side, as post-2021 electricity trends reshape costs, helping to sway more Arizonans to purchase an electric vehicle in recent years.

"The batteries are getting better and lower in cost as well as longer-lasting," Stack said. He said an EV uses about 50 cents of electricity to cover the same number of miles a gas-burning car gets from a gallon of gas – currently selling for $3.12 a gallon in Arizona, according to AAA.

In addition, the state is offering incentives to electric vehicle buyers.

"In AZ we get reduced registration on electric vehicles," Stack said. "It's about $15 a year compared to $300-700 a year for gas and diesel cars."

Electric vehicle owners also "get 24/7 access to HOV lanes, even with one person," he said. And utilities like Tucson Electric Power offer rebates and incentives for home charging stations, according to a report by the National Conference of State Legislatures, and neighboring New Mexico's EV benefits underscore potential economic gains for the region.

Stack also noted that Arizona is now home to three eclectic vehicle manufacturers: Lucid, which makes cars in Casa Grande, Nikola, which makes trucks in Phoenix and Coolidge, and Electra Meccanica, which plans to build the three-wheeled SOLO commuter in Mesa.

"We get clear skies. No oil changes, no muffler work, no transmission, faster acceleration. No smog or smog tests," Stack said. "It's priceless."

 

Related News

View more

California Wants Cars to Run on Electricity. It’s Going to Need a Much Bigger Grid

California EV mandate will phase out new gas cars, raising power demand and requiring renewable energy, grid upgrades, fast chargers, time-of-use rates, and vehicle-to-grid to stabilize loads and reduce emissions statewide.

 

Key Points

California's order ends new gas-car sales by 2035, driving grid upgrades, charging infrastructure, and cleaner transport.

✅ 25% higher power demand requires new generation and storage

✅ Time-of-use pricing and midday charging reduce grid stress

✅ Vehicle-to-grid and falling battery costs enable reliability

 

Leaning on the hood of a shiny red electric Ford Mustang, California Gov. Gavin Newsom signed an executive order Wednesday to end the sale of new gas-burning cars in his state in 15 years, a move with looming challenges for regulators and industry.

Now comes the hard part.

Energy consultants and academics say converting all passenger cars and trucks to run on electricity in California could raise power demand by as much as 25%. That poses a major challenge to state power grids as California is already facing periodic rolling blackouts as it rapidly transitions to renewable energy.

California will need to boost power generation, scale up its network of fast charging stations, enhance its electric grid to handle the added load and hope that battery technology continues to improve enough that millions in America’s most populous state can handle long freeway commutes to schools and offices without problems.

“We’ve got 15 years to do the work,” said Pedro Pizarro, chief executive of Edison International, owner of Southern California Edison, a utility serving 15 million people in the state. “Frankly the state agencies are going to have to do their part. We’ve got to get to the permitting processes, the approvals; all of that work is going to have to get accelerated to meet [Wednesday’s] target.”

Switching from petroleum fuels to electricity to phase out the internal combustion engine won’t happen all at once—Mr. Newsom’s order applies to sales of new vehicles, so older gas-powered cars will be on the road in California for many years to come. But the mandate means the state will face a growing demand for megawatts.

California is already facing a shortfall of power supplies over the next couple of years. The problem was highlighted last month when a heat wave blanketed the western U.S. and the state’s grid operator instituted rolling blackouts on two occasions.

“It is too early to tell what kind of impact the order will have on our power grid, and we don’t have any specific analysis or projections,” said Anne Gonzalez, a spokeswoman for the California Independent System Operator, which runs the grid.

Currently, California faces a crunchtime in the early evening as solar power falls off and demand to power air conditioners remains relatively high. Car charging presents a new potential issue: what happens if surging demand threatens to crash the grid during peak hours?

Caroline Winn, the chief executive of San Diego Gas & Electric, a utility owned by Sempra Energy that serves 3.6 million people, said there will need to be rules and rates that encourage people to charge their cars at certain times of the day, amid broader control over charging debates.

“We need to get the rules right and the markets right, informed by lessons from 2021, in order to resolve this issue because certainly California is moving that way,” she said.

The grid will need to be upgraded to prepare for millions of new electric vehicles. The majority of people who own them usually charge them at home, which would mean changes to substations and distribution circuits to accommodate multiple homes in a neighborhood drawing power to fill up batteries. The state’s three main investor-owned utilities are spending billions of dollars to harden the grid to prevent power equipment from sparking catastrophic wildfires.


“We have a hell of a lot of work to do nationally. California is ahead of everybody and they have a hell of a lot of work to do,” said Chris Nelder, who studies EV-grid integration at the Rocky Mountain Institute, an energy and environment-policy organization that promotes clean-energy solutions.

Mr. Nelder believes the investment will be worth it, because internal combustion engines generate so much waste heat and emissions of uncombusted hydrocarbons that escape out of tailpipes. Improving energy efficiency by upgrading the electrical system could result in lower bills for customers. “We will eliminate a vast amount of waste from the energy system and make it way more efficient,” he said.

Some see the growth of electric vehicles as an opportunity more than a challenge. In the afternoon, when electricity demand is high but the sun is setting and solar power drops off quickly, batteries in passenger cars, buses and other vehicles could release power back into the electric grid to help grid stability across the system, said Matt Petersen, chairman of the Transportation Electrification Partnership, a public-private effort in Los Angeles to accelerate the deployment of electric vehicles.

The idea is known as “vehicle-to-grid” and has been discussed in a number of countries expanding EV use, including the U.K. and Denmark.

“We end up with rolling batteries that can discharge power when needed,” Mr. Petersen said, adding, “The more electric vehicles we add to the grid, the more renewable energy we can add to the grid.”

One big hurdle for the widespread deployment of electric cars is driving down the cost of batteries to make the cars more affordable. This week, Tesla Inc. Chief Executive Elon Musk said he expected to have a $25,000 model ready by about 2023, signaling a broader EV boom in the U.S.

Shirley Meng, director of the Sustainable Power and Energy Center at the University of California, San Diego, said she believed batteries would continue to provide better performance at a lower cost.

“I am confident the battery technology is ready,” she said. Costs are expected to fall as new kinds of materials and metals can be used in the underlying battery chemistry, dropping prices. “Batteries are good now, and they will be better in the next 10 years.”

John Eichberger, executive director of the Fuels Institute, a nonprofit research group launched by the National Association of Convenience Stores, said he hoped that the California Air Resources Board, which is tasked with developing new rules to implement Mr. Newsom’s order, will slow the timeline if the market and electric build-out is running behind.

“We need to think about these critical infrastructure issues because transportation is not optional,” he said. “How do we develop a system that can guarantee consumers that they can get the energy when they need it?”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified