Renewables Projected to Soon Be One-Fourth of US Electricity Generation


solar power

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

U.S. Renewable Energy Forecast 2024 will see wind and solar power surpass one-fourth of electricity generation, EIA projects, as coal declines, natural gas dips, and clean energy capacity, grid integration, and policy incentives expand.

 

Key Points

EIA outlook: renewables at 26% of U.S. power in 2024, led by wind and solar as coal declines and gas share dips.

✅ Wind and solar hit 18% combined, surpassing coal's 17%.

✅ Natural gas dips to 37% as demand rebounds modestly.

✅ Coal plant closures accelerate amid costs, emissions, and age.

 

Renewable energy is poised to reach a milestone, after a record 28% in April this year, as a new government report projects that wind, solar and other renewable sources will exceed one-fourth of the country’s electricity generation for the first time, in 2024.

This is one of the many takeaways from the federal government’s Short Term Energy Outlook, a monthly report whose new edition is the first to include a forecast for 2024. The report’s authors in the Energy Information Administration are expecting renewables to increase in market share, while natural gas and coal would both decrease.

From 2023 to 2024, renewables would rise from 24 percent to 26 percent of U.S. electricity generation; coal’s share would drop from 18 percent to 17 percent; gas would remain the leader but drop from 38 percent to 37 percent; and nuclear would be unchanged at 19 percent.

It was a big deal in 2020 when generation from renewables passed coal for the first time in 130 years over a full year. Coal made a comeback in 2021 and then retreated again in 2022 as renewables surpassed coal in generation. The ups and downs were largely the result of fluctuations in electricity demand during and then after the Covid-19 pandemic.

The new report indicates that coal doesn’t have another comeback in the works. This fuel, which was the country’s leading electricity source less than a decade ago, is declining as many coal-fired power plants are old and economically uncompetitive. Coal plants continue to close, and developers aren’t building new ones because of concerns about high costs and emissions, a trend underscored when renewables became the second-most prevalent source in 2020 across the U.S.

The growth in renewable energy is coming from wind and solar power, with wind responsible for about one-third of the growth and solar accounting for two-thirds, the report says, and combined output from wind and solar has already exceeded nuclear for the first time in the U.S. Other renewable sources, like hydropower and biomass, would be flat.

In fact, the growth of wind and solar is projected to be so swift that the combination of just those two sources would be 18 percent of the U.S. total by 2024, which would surpass coal’s 17 percent.

A key variable is overall electricity consumption. EIA is projecting that this will fall 1 percent in 2023 compared to 2022, due a mild summer. Then, consumption will increase 1 percent in 2024.

If demand was rising more, then natural gas power would likely gain market share because of gas power plants’ ability to vary their output as needed to respond to changes in demand.

I asked Eric Gimon, a senior fellow at the think tank Energy Innovation, what he thinks of these latest numbers.

He said wind and solar have gotten so big that it almost makes sense to track them as their own categories as opposed to lumping them into the larger category of renewables. He expects that the government will do this sometime soon.

Also, he thinks the projected increases for wind and solar, while substantial, are still smaller than those resources are likely to grow.

“My experience over the last 10 years is that the EIA tends to have flattish forecasts,” he said, meaning the federal office has underestimated the actual growth.

Some energy analysts have criticized EIA for being slow to recognize the growth of renewables. But much of the criticism is about the Annual Energy Outlook, which has numbers going out to mid-century, even as the U.S. is moving toward 30% from wind and solar by the end of the decade. The Short Term Energy Outlook, with numbers going one year into the future, has been more reliable.

Gimon said EIA is “kind of like your conservative uncle” in its forecasts, so it’s notable that the office expects to see a significant uptick in wind and solar.

Even so, he thinks the latest Short Term Energy Outlook should be read as the lower end of the range of potential increase for wind and solar.

For him to be right, the wind and solar industries will need to figure out solutions to the challenges they’ve been having in obtaining parts; they will need to make progress in dealing with local opposition to many projects and in having enough interstate power lines to deliver the electricity. And, new policies like the Inflation Reduction Act will need to have their desired effect of encouraging projects through the use of tax incentives.

It’s not much of a stretch to imagine that clean energy industries will make some progress on all of those fronts.

Related News

Manitoba has clean energy to help neighboring provinces

East-West Power Transmission Grid links provinces via hydroelectric interconnects, clean energy exports, and reliable grid infrastructure, requiring federal funding, multibillion-dollar transmission lines, and coordinated planning across Manitoba, Saskatchewan, Ontario, and Newfoundland.

 

Key Points

A proposed interprovincial grid to share hydro power, improve reliability, and cut emissions with federal funding.

✅ Hydroelectric exports from Manitoba to prairie and eastern provinces

✅ New interconnects and transmission lines require federal funding

✅ Enhances grid reliability and supports coal phase-out

 

Manitoba's energy minister is recharging the idea of building an east-west power transmission grid and says the federal government needs to help.

Cliff Cullen told the Energy Council of Canada's western conference on Tuesday that Manitoba has "a really clean resource that we're ready to share with our neighbours" as new hydro generation projects, including new turbines come online.

"This is a really important time to have that discussion about the reliability of energy and how we can work together to make that happen," said Cullen, minister of growth, enterprise and trade.

"And, clearly, an important component of that is the transmission side of it. We've been focused on transmission ... north and south, and we haven't had that dialogue about east-west."

Most hydro-producing provinces currently focus on exports to the United States, though transmission constraints can limit incremental deliveries.

Saskatchewan Energy Minister Dustin Duncan said his province, which relies heavily on coal-fired electricity plants, could be interested in getting electricity from Manitoba, even as a Manitoba Hydro warning highlights limits on serving new energy-intensive customers.

"They're big projects. They're multibillion-dollar projects," Duncan said after speaking on a panel with Cullen and Alberta Energy Minister Margaret McCuaig-Boyd.

"Even trying to do the interconnects to the transmission grid, I don't think they're as easy or as maybe low cost as we would just imagine, just hooking up some power lines across the border. It takes much more work than that."

Cullen said there's a lot of work to do on building east-west transmission lines if provinces are going to buy and sell electricity from each other. He suggested that money is a key factor.

"Each province has done their own thing in terms of transmission within their jurisdiction and we have to have that dialogue about how that interconnectivity is going to work. And these things don't happen overnight," he said.

"Hopefully the federal government will be at the table to have a look at that, because it's a fundamental expense, a capital expense, to connect our provinces."

The 2016 federal budget said significant investment in Canada's electricity sector will be needed over the next 20 years to replace aging infrastructure and meet growing demand for electricity, with Manitoba's demand potentially doubling over that period.

The budget allocated $2.5 million over two years to Natural Resources Canada for regional talks and studies to identify the most promising electricity infrastructure projects.

In April, the government told The Canadian Press that Natural Resources Canada has been talking with ministry representatives and electric utilities in the western and Atlantic provinces.

The idea of developing an east-west transmission grid has long been talked about as a way to bring energy reliability to Canadians.

At their annual meeting in 2007, Canada's premiers supported development and enhancement of transmission facilities across the country, although the premiers fell short of a firm commitment to an east-west energy grid.

Manitoba, Ontario and Newfoundland and Labrador are the most vocal proponents of east-west transmission, even as Quebec's electricity ambitions have reopened old wounds in Newfoundland and Labrador.

Manitoba and Newfoundland want the grid because of the potential to develop additional exports of hydro power, while Ontario sees the grid as an answer to its growing power needs.

 

Related News

View more

Zero-emissions electricity by 2035 is possible

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

View more

Court Sees If Church Solar Panels Break Electricity Monopoly

NC WARN Solar Case tests third-party solar rights as North Carolina Supreme Court reviews Utilities Commission fines over a Greensboro church's rooftop power deal, challenging Duke Energy's monopoly, onsite electricity sales, and potential rate impacts.

 

Key Points

A North Carolina Supreme Court test of third-party solar could weaken Duke Energy's monopoly and change utility rules.

✅ NC Supreme Court weighs Utilities Commission penalty on NC WARN

✅ Case could permit onsite third-party solar sales statewide

✅ Outcome may pressure Duke Energy's monopoly and rates

 

North Carolina's highest court is taking up a case that could force new competition on the state's electricity monopolies.

The state Supreme Court on Tuesday will consider the Utilities Commission's decision to fine clean-energy advocacy group NC WARN for putting solar panels on a Greensboro church's rooftop and then charging it below-market rates for power.

The commission told NC WARN that it was producing electricity illegally and fined the group $60,000. The group said it was acting privately and appealed to the high court.

If the group prevails, it could put new pressure on Duke Energy's monopoly, which has seen an oversubscribed solar solicitation in recent procurements. State regulators say a ruling for NC WARN would allow companies to install solar equipment and sell power on site, shaving away customers and forcing Duke Energy to raise rates on everyone else.

#google#

That's because if NC WARN's deal with Faith Community Church is allowed, the precedent could open the door for others to lure away from Duke Energy, as debates over how solar owners are paid continue, "the customers with the highest profit potential, such as commercial and industrial customers with large energy needs and ample rooftop space," attorney Robert Josey Jr. wrote in a court filing.

Losing those power sales would force the country's No. 2 electricity company to make it up by charging remaining customers more to cover the cost of all of its power plants, transmission lines and repair crews, a dynamic echoed in New England's grid upgrade debates as solar grows, wrote Josey, an attorney for the Public Staff, the state's official utilities consumer advocate.

The dispute is whether NC WARN is producing electricity "for the public," which would mean it's intruding on the territory of the publicly regulated monopoly utility, or whether the move was allowed because it was a private power deal with the church alone.

 

NC WARN installed the church's power panels in 2015 as part of what it described as a test case, amid wider debates like Nova Scotia's delayed solar charge for customers, challenging Duke Energy's monopoly position to generate and sell electricity.

North Carolina was one of nine states that as of last year explicitly disallowed residential customers from buying electricity generated by solar panels on their roof from a third party that owns the system, even as Maryland opens solar subscriptions more broadly, according to the North Carolina Clean Energy Technology Center. State law allows purchased or leased solar panels, but not payments simply for the power they generate.

NC WARN's goals included "reducing the effects of Duke Energy's monopoly control that has such negative impacts on power bills, clean air and water, and climate change," the church's pastor, Rev. Nelson Johnson, said in a statement the same day the clean-energy group asked state regulators to clear the plan.

Instead, the North Carolina Utilities Commission ruled the arrangement violated the state's system of legal electricity monopolies and hit the group with nearly $60,000 in fines, which would be suspended if the church's payments were refunded with interest and the solar equipment donated. The group has set aside the money and will donate the gear if it loses the Supreme Court case, NC WARN Executive Director Jim Warren said.

NC WARN's three-year agreement saw the group mount a rooftop solar array for which the church would pay about half the average retail electricity price, state officials said. The agreement states plainly that it is not a contract for the sale or lease of the $20,000 solar system, the church never owns the panels, and the low electricity price means its payback for the equipment would take 60 years, Josey wrote.

"Clearly, the only thing of value (the church) is obtaining for its payments under this agreement is the electricity created," he wrote.

In court filings, the group's attorneys have stuck to the argument that NC WARN isn't selling to the public because the deal involved a single customer only.

The deal "is not open to any other member of the public ... A private, bargained-for contract under which only one party receives electricity is not a sale of electricity 'to or for the public,' " attorney Matthew Quinn wrote to the court.

 

Related News

View more

DOE Announces $5 Million to Launch Lithium-Battery Workforce Initiative

DOE Battery Workforce Strategy advances lithium battery manufacturing with DOE, DOL, and AFL-CIO partnerships, pilot training programs, EV supply chain skills, and industry-labor credentials to strengthen clean energy jobs and domestic competitiveness.

 

Key Points

An initiative to fund pilot training and labor-industry partnerships to scale domestic lithium battery manufacturing.

✅ $5M for up to five pilot training programs.

✅ Builds industry-labor credentials across the battery supply chain.

✅ Targets EV manufacturing, recycling, and materials refining.

 

The U.S. Department of Energy (DOE), in coordination with the U.S. Department of Labor and the AFL-CIO, today announced the launch of a national workforce development strategy for lithium-battery manufacturing. As part of a $5 million investment, DOE will support up to five pilot training programs in energy and automotive communities and advance workforce partnerships between industry and labor for the domestic lithium battery supply chain. Lithium batteries power everything from electric vehicles, where U.S. automakers' battery strategies are rapidly evolving, to consumer electronics and are a critical component of President Biden’s whole-of-government decarbonization strategy. This workforce initiative will support the nation’s global competitiveness within battery manufacturing while strengthening the domestic economy and clean energy supply chains. 

“American leadership in the global battery supply chain, as the U.S. works with allies on EV metals to strengthen access, will be based not only on our innovative edge, but also on our skilled workforce of engineers, designers, scientists, and production workers,” said U.S. Secretary of Energy Jennifer M. Granholm, “President Biden has a vision for achieving net zero emissions while creating millions of good paying, union jobs — and DOE’s battery partnerships with labor and industry are key to making that vision a reality.” 

“President Biden has made the creation of good union jobs a cornerstone of his climate strategy,” said AFL-CIO President Liz Shuler. “We applaud DOE for being proactive in pulling labor and management together as the domestic battery industry is being established, and as Canada accelerates EV assembly nearby, we look forward to working with DOE and DOL to develop high-road training standards for the entire battery supply chain.” 

“I am glad to see the Department of Energy collaborating with our industry partners to invest in the next generation of our clean energy workforce,” said U.S. Senator Joe Manchin (D-WV), Chairman of the Senate Energy and Natural Resources Committee. “While I remain concerned about our dependence on China and other foreign countries for key parts of the lithium-ion battery supply chain, and recent lithium supply risks highlight the urgency, engaging our strong and capable workforce to manufacture batteries domestically is a critical step toward reducing our reliance on other countries and ensuring we are able to maintain our energy security. I look forward to seeing this initiative grow, and we will continue to work closely together to ensure we can onshore the rest of the battery supply chain.” 

The pilot training programs will bring together manufacturing companies, organized labor, and training providers to lay the foundation for the development of a broad national workforce strategy. The pilots will support industry-labor cooperation, as major North American projects like the B.C. battery plant advance, and will provide sites for job task analyses and documenting worker competencies. Insights gained will support the development of national industry-recognized credentials and inform the development of broader training programs to support the overall battery supply chain. 

This initiative comes as part of suite of announcements from President Biden’s Interagency Working Group (IWG) on Coal and Power Plant Communities and Economic Revitalization—a partnership among the White House and nearly a dozen federal agencies committed to pursuing near- and long-term actions to support coal, oil and gas, and power plant communities as the nation transitions to a clean energy economy. 

This announcement follows DOE’s recent release of two Notices of Intent authorized by the Bipartisan Infrastructure Law to provide $3 billion to support projects that bolster domestic battery manufacturing and battery recycling for a circular economy efforts nationwide. The funding, which will be made available in the coming months, will support battery-materials refining, which will bolster domestic refining capacity of minerals such as lithium, as well as production plants, battery cell and pack manufacturing facilities, and recycling facilities. 

It also builds on progress the Biden-Harris Administration and DOE have driven to secure a sustainable, reliable domestic supply of critical minerals and materials necessary for clean energy supply chains, including lithium, with emerging sources like Alberta's lithium-rich oil fields underscoring regional potential. This includes $44 million in funding through the DOE Mining Innovations for Negative Emissions Resource Recovery (MINER) program to fund the technology research that increases the mineral yield while decreasing the required energy, and subsequent emissions, to mine and extract critical minerals such as lithium, copper, nickel, and cobalt. 

 

Related News

View more

EV shortages, wait times amid high gasoline prices

Canada EV demand surge is driven by record gas prices, zero-emission policies, and tight dealer inventory, while microchip shortages, ZEV mandates abroad, and lithium supply concerns extend wait times for new and used models.

 

Key Points

Canada EV demand surge is rising interest in zero-emission cars due to high gas prices and limited EV supply.

✅ Gas at $2/litre spurs zero-emission interest

✅ Dealer inventory scarce; waits up to 3 years

✅ Microchip and lithium constraints limit output

 

Price shock at the pump is driving  Canadians toward buying an ev. But manufacturers are having trouble keeping up with consumer demand, even as the U.S. auto sector pivots to EVs across North America.

In parts of the country, gas prices exceeded $2 per litre last month amid strong global demand for oil combined with Russia's invasion of Ukraine. Halifax-based electric vehicle salesperson Jeremie Bernardin said he's noticed an explosion of interest in zero-emission vehicles since the price of fuel started to take off.

"I think there's a lot of people that were considering electric vehicles for a very long time, and they needed that extra little push," Bernardin, who is also the president of the Electric Vehicle Association of Atlantic Canada, where Atlantic EV demand has lagged the national average, told CTVNews.ca over the phone on Wednesday.

With so few electric vehicles on dealership lots, Canadians looking to buy a brand-new zero-emission car will have to put down a deposit and get onto a waiting list. Bernardin said the wait times can be as long as three years, depending on the manufacturer and the dealership.

Tesla, which makes Canada's best-selling electric car according to the automotive publication Motor Illustrated, says delivery times for its vehicles range between three months to one year, depending on the model. But some manufacturers like Nissan have already completely sold out of their electric vehicle inventory for the 2022 model year, though recent EV assembly deals in Canada aim to expand capacity over time.

Shortages of electric vehicles have been around long before the recent spike in gas prices. In March 2021, a report commissioned by Transport Canada found that more than half of Canadian dealerships had no electric vehicles in stock. The report also found that wait times exceeded six months at 31 per cent of dealerships that had no zero-emission cars in their inventory.

Interest in used electric vehicles has also surged amid the high gas prices. Used car marketplace AutoTrader.ca says searches for electric cars in March 2022 increased 89 per cent compared to the previous year, while the number of inquiries sent to electric vehicle sellers through its platform jumped 567 per cent.

"It's understandable that when the gas prices are expensive, consumers are looking to buy and get into electric vehicles, though upfront cost remains a major barrier for many buyers today," Baris Akyurek, AutoTrader.ca's director of marketing intelligence, told CTVNews.ca in a phone interview on Wednesday.

SUPPLY CHAIN ISSUES PERSIST
The surging interest in electric vehicles also comes at a time when pandemic-induced shortages of microchips have been affecting the automotive industry at large since late 2020. Modern automobiles can have hundreds of microchips that control everything from the air conditioning to the power steering system, and a shortage of these crucial components have resulted in fewer vehicles being manufactured.

"Electric vehicles are subject to supply chain issues, just like anything else. Right now, the COVID pandemic has disrupted global supply chains. The auto industry specifically is seeing a microchip shortage that it's been struggling with for the past year or two. So those things are at play," said Joanna Kyriazis, senior policy advisor with Simon Fraser University’s Clean Energy Canada, in a phone interview with CTVNews.ca on Tuesday.

On top of that, Kyriazis says more than 80 per cent of the world's supply of electric vehicles are shipped to consumers in China and the European Union.

China has a strict zero-emission vehicle (ZEV) mandate that requires automakers to ensure that a certain minimum percentage of their vehicles are electric or hydrogen-powered. In Europe, automakers are also forced to sell more electric vehicles there in order to meet the EU's stringent fleetwide emissions standards, and in Canada, Ottawa is preparing EV sales regulations to guide adoption in the coming years.

"We don't have the same aggressive regulations in place yet to really force automakers to prioritize the Canadian market when they're deciding where to allocate their EV inventory and where to sell EVs," said Kyriazis, though Ottawa's 2035 EV mandate remains debated by some industry observers today.

Kyriazis also said she believes it's possible that a shortage of lithium and other minerals required for battery production could be a potential issue within the next five years.

"But my understanding is that the global market is not hitting a supply crunch just yet," she said. "There could be a near-term supply issue. But we're not there yet."

In order to ensure adequate supply of minerals for battery production, the federal government in its most recent budget committed to providing up to $3.8 billion over eight years to create "Canada's first critical minerals strategy." The strategy is aimed at boosting extraction and production of Canadian nickel, lithium and other minerals used as components in electric vehicles and their batteries, and it aligns with opportunities for Canada-U.S. collaboration as companies electrify.

"Canada has a lot of natural resources and a lot of experience with natural resource extraction. We really can stand to be a leader in battery production," said Harry Constatine, president of the Vancouver Electric Vehicles Association, in an interview with CTVNews.ca over the phone on Monday.

 

 

Related News

View more

U.S. to work with allies to secure electric vehicle metals

US EV Battery Minerals Strategy prioritizes critical minerals with allies, lithium and copper sourcing, battery recycling, and domestic processing, leveraging the Development Finance Corporation to strengthen EV supply chains and reduce reliance on China.

 

Key Points

A US plan to secure critical minerals with allies, boost recycling, and expand domestic processing for EV batteries.

✅ DFC financing for allied lithium and copper projects

✅ Battery recycling to diversify critical mineral supply

✅ Domestic processing with strong environmental standards

 

The United States must work with allies to secure the minerals needed for electric vehicle batteries, addressing pressures on cobalt reserves that could influence supply, and process them domestically in light of environmental and other competing interests, the White House said on Tuesday.

The strategy, first reported by Reuters in late May, will include new funding to expand international investments in electric vehicles (EV) metal projects through the U.S. Development Finance Corporation, as well as new efforts to boost supply from EV battery recycling initiatives.

The U.S. has been working to secure minerals from allied countries, including Canada and Finland, with projects such as Alberta lithium development showing potential. The 250-page report outlining policy recommendations mentioned large lithium supplies in Chile and Australia, the world's two largest producers of the white battery metal.

President Joe Biden's administration will also launch a working group to identify where minerals used in EV batteries and other technologies can be produced and processed domestically.

Securing enough copper, lithium and other raw materials to make EV batteries, amid lithium supply concerns heightened by recent disruptions, is a major obstacle to Biden’s aggressive EV adoption plans, with domestic mines facing extensive regulatory hurdles and environmental opposition.

The White House acknowledged China's role as the world's largest processor of EV metals and said it would expand efforts, including a 100% EV tariff on certain imports, to lessen that dependency.

"The United States cannot and does not need to mine and process all critical battery inputs at home. It can and should work with allies and partners to expand global production and to ensure secure global supplies," it said in the report.

The White House also said the Department of the Interior and others agencies will work to identify gaps in mine permitting laws to ensure any new production "meets strong standards" in terms of both the environment and community input.

The report noted Native American opposition to Lithium Americas Corp's (LAC.TO) Thacker Pass lithium project in Nevada, as well as plans by automaker Tesla Inc (TSLA.O) to produce its own lithium.

The steps come after Biden, who has made fighting climate change and competing with China centerpieces of his agenda, ordered a 100-day review of gaps in supply chains in key areas, including EVs.

Democrats are pushing aggressive climate goals, as Canada EV manufacturing accelerates in parallel, to have a majority of U.S.-manufactured cars be electric by 2030 and every car on the road to be electric by 2040.

As part of the recommendations from four executive branch agencies, Biden is being advised to take steps to restore the country's strategic mineral stockpile and expand funding to map the mineral resources available domestically.

Some of those steps would require the support of Congress, where Biden's fellow Democrats have only slim majorities.

The Energy Department already has $17 billion in authority through its Advanced Technology Vehicles Manufacturing Loan program to fund some investments, and is also launching a lithium-battery workforce initiative to build critical skills.

The program’s administrators will focus on financing battery manufacturers and companies that refine, recycle and process critical minerals, the White House said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified