Manitoba has clean energy to help neighboring provinces


Manitoba has clean energy

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

East-West Power Transmission Grid links provinces via hydroelectric interconnects, clean energy exports, and reliable grid infrastructure, requiring federal funding, multibillion-dollar transmission lines, and coordinated planning across Manitoba, Saskatchewan, Ontario, and Newfoundland.

 

Key Points

A proposed interprovincial grid to share hydro power, improve reliability, and cut emissions with federal funding.

✅ Hydroelectric exports from Manitoba to prairie and eastern provinces

✅ New interconnects and transmission lines require federal funding

✅ Enhances grid reliability and supports coal phase-out

 

Manitoba's energy minister is recharging the idea of building an east-west power transmission grid and says the federal government needs to help.

Cliff Cullen told the Energy Council of Canada's western conference on Tuesday that Manitoba has "a really clean resource that we're ready to share with our neighbours" as new hydro generation projects, including new turbines come online.

"This is a really important time to have that discussion about the reliability of energy and how we can work together to make that happen," said Cullen, minister of growth, enterprise and trade.

"And, clearly, an important component of that is the transmission side of it. We've been focused on transmission ... north and south, and we haven't had that dialogue about east-west."

Most hydro-producing provinces currently focus on exports to the United States, though transmission constraints can limit incremental deliveries.

Saskatchewan Energy Minister Dustin Duncan said his province, which relies heavily on coal-fired electricity plants, could be interested in getting electricity from Manitoba, even as a Manitoba Hydro warning highlights limits on serving new energy-intensive customers.

"They're big projects. They're multibillion-dollar projects," Duncan said after speaking on a panel with Cullen and Alberta Energy Minister Margaret McCuaig-Boyd.

"Even trying to do the interconnects to the transmission grid, I don't think they're as easy or as maybe low cost as we would just imagine, just hooking up some power lines across the border. It takes much more work than that."

Cullen said there's a lot of work to do on building east-west transmission lines if provinces are going to buy and sell electricity from each other. He suggested that money is a key factor.

"Each province has done their own thing in terms of transmission within their jurisdiction and we have to have that dialogue about how that interconnectivity is going to work. And these things don't happen overnight," he said.

"Hopefully the federal government will be at the table to have a look at that, because it's a fundamental expense, a capital expense, to connect our provinces."

The 2016 federal budget said significant investment in Canada's electricity sector will be needed over the next 20 years to replace aging infrastructure and meet growing demand for electricity, with Manitoba's demand potentially doubling over that period.

The budget allocated $2.5 million over two years to Natural Resources Canada for regional talks and studies to identify the most promising electricity infrastructure projects.

In April, the government told The Canadian Press that Natural Resources Canada has been talking with ministry representatives and electric utilities in the western and Atlantic provinces.

The idea of developing an east-west transmission grid has long been talked about as a way to bring energy reliability to Canadians.

At their annual meeting in 2007, Canada's premiers supported development and enhancement of transmission facilities across the country, although the premiers fell short of a firm commitment to an east-west energy grid.

Manitoba, Ontario and Newfoundland and Labrador are the most vocal proponents of east-west transmission, even as Quebec's electricity ambitions have reopened old wounds in Newfoundland and Labrador.

Manitoba and Newfoundland want the grid because of the potential to develop additional exports of hydro power, while Ontario sees the grid as an answer to its growing power needs.

 

Related News

Related News

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

What to know about DOE's hydrogen hubs

U.S. Clean Hydrogen Hubs aim to scale production, storage, transport, and use as DOE and the Biden administration fund regional projects under the infrastructure law, blending green and blue hydrogen, carbon capture, renewables, and pipelines.

 

Key Points

Federally funded regional projects to make, move, and use low-carbon hydrogen via green, blue, and pink routes.

✅ $7B DOE funding via infrastructure law

✅ Mix of green, blue, pink hydrogen pathways

✅ Targets 10M metric tons annually by 2030

 

New details are emerging about the Biden administration’s landmark plans to build out a U.S. clean hydrogen industry.

On Friday, the Department of Energy named the seven winners of $7 billion in federal funds to establish regional hydrogen hubs. The hubs — funded through the infrastructure law — are part of the administration’s efforts to jump-start an industry it sees as key to achieving climate goals like the goal of 100 percent clean electricity by 2035 set by the administration. The aim is to demonstrate everything from the production and storage of hydrogen to its transport and consumption.

“All across the country, from coast to coast, in the heartland, we’re building a clean energy future here in America, not somewhere else,” President Joe Biden said while announcing the hubs in Philadelphia.

From 79 initial proposals, DOE chose the following: the Mid-Atlantic Hydrogen Hub, Appalachian Hydrogen Hub, California Hydrogen Hub, Gulf Coast Hydrogen Hub, Heartland Hydrogen Hub, Midwest Hydrogen Hub and Pacific Northwest Hydrogen Hub.

Many of the winning proposals are backed by state government leaders and industry partners, and by Southeast cities that have ramped up clean energy purchases in recent years as well. The Midwest hub, for example, is a coalition of Illinois, Indiana and Michigan — supported by politicians like Illinois Gov. J.B. Pritzker (D), as well as such companies as Air Liquide, Ameren Illinois and Atlas Agro. The mid-Atlantic hub is supported by Democratic members of Congress representing the region, including Delaware Sens. Chris Coons and Tom Carper and Rep. Lisa Blunt Rochester.

The administration hopes the hubs will produce 10 million metric tons of “clean” hydrogen annually by 2030. But much about the projects remains unknown — including how trends like cheap batteries for solar could affect clean power supply — and dependent on negotiations with DOE.


A win for ‘blue’ hydrogen?
Nearly all hydrogen created in the U.S. today is extracted from natural gas through steam methane reformation. The emissions-intensive process produces what is known as “grey” hydrogen — or “blue” hydrogen when combined with carbon capture and storage.

Four recipients — the Appalachian, Gulf Coast, Heartland and Midwest hydrogen hubs — include blue hydrogen in their plans, though the infrastructure law only mandated one.

That has drawn the ire of environmentalists, who argue blue hydrogen is not emissions-free, partly because of the potential for methane leaks during the production process.

“This is worse than expected,” Clean Energy Group President Seth Mullendore said after the recipients were announced Friday. “The fact that more than half the hubs will be using fossil gas is outrageous.”

Critics have also pointed out that many of the industry partners backing the hub projects include oil and gas companies. The coalitions are a mix of private-sector groups — often including renewable energy developers — and government stakeholders. Proposals have also looped in universities, utilities, environmental groups, community organizations, labor unions and tribal nations, among others.

“The massive build out of hydrogen infrastructure is little more than an industry ploy to rebrand fracked gas,” said Food & Water Watch Policy Director Jim Walsh in a statement Friday. “In a moment when every political decision that we make must reject fossil expansion, the Biden administration is going in the opposite direction.”

The White House has emphasized that roughly two-thirds of the $7 billion pot is “associated” with the production of “green” hydrogen, which uses electricity from renewable sources. Two of the chosen proposals — in California and the Pacific Northwest — are making green hydrogen their focus, reflecting advances such as offshore green hydrogen being pursued by industry leaders, while three other hubs plan to include green hydrogen alongside hydrogen made with natural gas (blue) or nuclear energy (pink).

Many hubs plan to use several methods for hydrogen production, and globally, projects like Brazil's green hydrogen plant highlight the scale of investment, but the exact mix may change depending on which projects make it through the DOE negotiations process. The Midwest hub, for example, told E&E News it’s pursuing an “all-of-the-above” strategy and has projects for green, blue and “pink” hydrogen. The mid-Atlantic hub in southeastern Pennsylvania, Delaware and New Jersey will also generate hydrogen with nuclear reactors.

Energy Secretary Jennifer Granholm has described clean hydrogen as a fresh business opportunity, especially for the natural gas industry, which has supported the concept of sending hydrogen to market through its pipeline network. Lawmakers like Sen. Joe Manchin (D-W.Va.) — who said the Appalachian hub will make West Virginia the “new epicenter of hydrogen” — have pushed for continuing to use natural gas to make hydrogen in his state.

“Natural gas utilities are committed to exploring all options for emissions reduction as demonstrated by the 39 hydrogen pilot projects already underway and are eager to participate in a number of the hubs,” said American Gas Association President and CEO Karen Harbert in a statement Friday.

Green hydrogen also has faced criticism. Some groups argue that the renewable resources needed to produce green hydrogen are limited, even with sources such as wind, solar and hydropower technology, so funding should be reserved for applications that cannot be easily electrified, mostly industrial processes. There also is uncertainty about how the Treasury Department will handle hydrogen made from grid electricity — which can include power from fossil fuel plants — in its upcoming guidance on the first-ever tax credit for clean hydrogen production.

“Even the cleanest forms of hydrogen present serious problems,” Walsh said. “As groundwater sources are drying up across the country, there is no reason to waste precious drinking water resources on hydrogen when there are cheaper, cleaner energy sources that can facilitate a real transition off fossil fuels.”

But Angelina Galiteva, CEO of the hub in drought-prone California, said hydrogen will enable the state “to increase renewable penetration to reach all corners of the economy,” noting parallel initiatives such as Dubai's solar hydrogen plans that illustrate the potential.

“Transitioning to renewable clean hydrogen will pose significantly less stress on water resources than remaining on the current fossil path,” she said.

 

Related News

View more

Wind power is Competitive on Reliability and Resilience Says AWEA CEO

Wind farm reliability services now compete in wholesale markets, as FERC and NERC endorse market-based solutions that reward performance, bolster grid resilience, and compensate ancillary services like frequency regulation, voltage support, and spinning reserve.

 

Key Points

Grid support from wind plants, including frequency, voltage, ramping, and inertial response via advanced controls.

✅ Enabled by advanced controls and inverter-based technology

✅ Compete in market-based mechanisms for ancillary services

✅ Support frequency, voltage, reserves; enhance grid resilience

 

 

American Wind Energy Association CEO Tom Kiernan has explained to a congressional testimony that wind farms can now compete, as renewables approach market majority, to provide essential electric reliability services. 

Mr Kiernan appeared before the US Congress House Energy and Commerce Committee where he said that, thanks to technological advances, wind farms are now competitive with other energy technologies with regard to reliability and resiliency. He added that grid reliability and resilience are goals that everyone can support and that efforts underway at the Federal Energy Regulatory Commission (FERC) and by market operators are rightly focused on market-based solutions to better compensate generators for providing those essential services.

AWEA strongly agreed with other witnesses on the panel who endorsed market-based solutions in their submitted testimony, including the American Petroleum Institute, Solar Energy Industries Association, Energy Storage Association, Natural Resources Defence Council, National Hydropower Association, and others. However, AWEA is concerned that the Department of Energy’s recent proposal to provide payments to specific resources based on arbitrary requirements is anti-competitive, and threatens to undermine electricity markets that are bolstering reliability and saving consumers billions of dollars per year.

“We support the objective of maintaining a reliable and resilient grid which is best achieved through free and open markets, with a focus on needed reliability services – not sources – and a programme to promote transmission infrastructure.”

Kiernan outlined several major policy recommendations in his testimony, including reliance on competitive markets that reward performance to ensure affordable and reliable electricity, a focus on reliability needs rather than generation sources and the promotion of transmission infrastructure investment to improve resilience and allow consumers greater access to all low-cost forms of energy.

The CEO of the North American Electric Reliability Corporation (NERC) has recently testified that the state of reliability in North America remains strong and the trend line shows continuing improvement year over year. Technological advances and innovation by over 100,000 US wind workers enable wind farms today to provide the grid reliability services traditionally provided by conventional power plants. NERC’s CEO emphasised in its testimony at last month’s hearing that “variable resources significantly diversify the generation portfolio and can contribute to reliability and resilience in important ways.”

 

Related News

View more

Electric Cars 101: How EV Motors Work, Tech Differences, and More

Electric Car Motors convert electricity to torque via rotor-stator magnetic fields, using AC/DC inverters, permanent magnets or induction designs; they power EV powertrains efficiently and enable regenerative braking for energy recovery and control.

 

Key Points

Electric car motors turn electrical energy into wheel torque using rotor-stator fields, inverters, and AC or DC control.

✅ AC induction, PMSM, BLDC, and reluctance architectures explained

✅ Inverters manage AC/DC, voltage, and motor speed via frequency

✅ Regenerative braking recovers energy and reduces wear

 

When was the last time you stopped to think about how electric cars actually work, especially if you're wondering whether to buy an electric car today? We superfans of the car biz have mostly developed a reasonable understanding of how combustion powertrains work. Most of us can visualize fuel and air entering a combustion chamber, exploding, pushing a piston down, and rotating a crankshaft that ultimately turns the wheels. We generally understand the differences between inline, flat, vee-shaped, and maybe even Wankel rotary combustion engines.

Mechanical engineering concepts such as these are comparatively easy to comprehend. But it's probably a fair bet to wager that only a minority of folks reading this can explain on a bar napkin exactly how invisible electrons turn a car's wheels or how a permanent-magnet motor differs from an AC induction one. Electrical engineering can seem like black magic and witchcraft to car nuts, so it's time to demystify this bold new world of electromobility, with the age of electric cars arriving ahead of schedule.

How Electric Cars Work: Motors
It has to do with magnetism and the natural interplay between electric fields and magnetic fields. When an electrical circuit closes allowing electrons to move along a wire, those moving electrons generate an electromagnetic field complete with a north and a south pole. When this happens in the presence of another magnetic field—either from a different batch of speeding electrons or from Wile E. Coyote's giant ACME horseshoe magnet, those opposite poles attract, and like poles repel each other.


 

Electric motors work by mounting one set of magnets or electromagnets to a shaft and another set to a housing surrounding that shaft. By periodically reversing the polarity (swapping the north and south poles) of one set of electromagnets, the motor leverages these attracting and repelling forces to rotate the shaft, thereby converting electricity into torque and ultimately turning the wheels, in a sector where the electric motor market is growing rapidly worldwide. Conversely—as in the case of regenerative braking—these magnetic/electromagnetic forces can transform motion back into electricity.

How Electric Cars Work: AC Or DC?
The electricity supplied to your home arrives as alternating current (AC), and bidirectional charging means EVs can power homes for days as needed, so-called because the north/south or plus/minus polarity of the power changes (alternates) 60 times per second. (That is, in the United States and other countries operating at 110 volts; countries with a 220-volt standard typically use 50-Hz AC.) Direct current (DC) is what goes into and comes out of the + and - poles of every battery. As noted above, motors require alternating current to spin. Without it, the electromagnetic force would simply lock their north and south poles together. It's the cycle of continually switching north and south that keeps a motor spinning.


 

Today's electric cars are designed to manage both AC and DC energy on board. The battery stores and dispenses DC current, but again, the motor needs AC. When recharging the battery, and with increasing grid coordination enabling flexibility, the energy comes into the onboard charger as AC current during Level 1 and Level 2 charging and as DC high-voltage current on Level 3 "fast chargers." Sophisticated power electronics (which we will not attempt to explain here) handle the multiple onboard AC/DC conversions while stepping the voltage up and down from 100 to 800 volts of charging power to battery/motor system voltages of 350-800 volts to the many vehicle lighting, infotainment, and chassis functions that require 12-48-volt DC electricity.

How Electric Cars Work: What Types Of Motors?
DC Motor (Brushed): Yes, we just said AC makes the motor go around, and these old-style motors that powered early EVs of the 1900s are no different. DC current from the battery is delivered to the rotor windings via spring-loaded "brushes" of carbon or lead that energize spinning contacts connected to wire windings. Every few degrees of rotation, the brushes energize a new set of contacts; this continually reverses the polarity of the electromagnet on the rotor as the motor shaft turns. (This ring of contacts is known as the commutator).

The housing surrounding the rotor's electromagnetic windings typically features permanent magnets. (A "series DC" or so-called "universal motor" may use an electromagnetic stator.) Advantages are low initial cost, high reliability, and ease of motor control. Varying the voltage regulates the motor's speed, while changing the current controls its torque. Disadvantages include a lower lifespan and the cost of maintaining the brushes and contacts. This motor is seldom used in transportation today, save for some Indian railway locomotives.

Brushless DC Motor (BLDC): The brushes and their maintenance are eliminated by moving the permanent magnets to the rotor, placing the electromagnets on the stator (housing), and using an external motor controller to alternately switch the various field windings from plus to minus, thereby generating the rotating magnetic field.

Advantages are a long lifespan, low maintenance, and high efficiency. Disadvantages are higher initial cost and more complicated motor speed controllers that typically require three Hall-effect sensors to get the stator-winding current phased correctly. That switching of the stator windings can result in "torque ripple"—periodic increases and decreases in the delivered torque. This type of motor is popular for smaller vehicles like electric bikes and scooters, and it's used in some ancillary automotive applications like electric power steering assist.


 

Permanent-Magnet Synchronous Motor (PMSM): Physically, the BLDC and PMSM motors look nearly identical. Both feature permanent magnets on the rotor and field windings in the stator. The key difference is that instead of using DC current and switching various windings on and off periodically to spin the permanent magnets, the PMSM functions on continuous sinusoidal AC current. This means it suffers no torque ripple and needs only one Hall-effect sensor to determine rotor speed and position, so it's more efficient and quieter.

The word "synchronous" indicates the rotor spins at the same speed as the magnetic field in the windings. Its big advantages are its power density and strong starting torque. A main disadvantage of any motor with spinning permanent magnets is that it creates "back electromotive force" (EMF) when not powered at speed, which causes drag and heat that can demagnetize the motor. This motor type also sees some duty in power steering and brake systems, but it has become the motor design of choice in most of today's battery electric and hybrid vehicles.


 

Note that most permanent-magnet motors of all kinds orient their north-south axis perpendicular to the output shaft. This generates "radial (magnetic) flux." A new class of "axial flux" motors orients the magnets' N-S axes parallel to the shaft, usually on pairs of discs sandwiching stationary stator windings in between. The compact, high-torque axial flux orientation of these so-called "pancake motors" can be applied to either BLDC or PMSM type motors.


 

AC Induction: For this motor, we toss out the permanent magnets on the rotor (and their increasingly scarce rare earth materials) and keep the AC current flowing through stator windings as in the PMSM motor above.

Standing in for the magnets is a concept Nikola Tesla patented in 1888: As AC current flows through various windings in the stator, the windings generate a rotating field of magnetic flux. As these magnetic lines pass through perpendicular windings on a rotor, they induce an electric current. This then generates another magnetic force that induces the rotor to turn. Because this force is only induced when the magnetic field lines cross the rotor windings, the rotor will experience no torque or force if it rotates at the same (synchronous) speed as the rotating magnetic field.

This means AC induction motors are inherently asynchronous. Rotor speed is controlled by varying the alternating current's frequency. At light loads, the inverter controlling the motor can reduce voltage to reduce magnetic losses and improve efficiency. Depowering an induction motor during cruising when it isn't needed eliminates the drag created by a permanent-magnet motor, while dual-motor EVs using PMSM motors on both axles must always power all motors. Peak efficiency may be slightly greater for BLDC or PMSM designs, but AC induction motors often achieve higher average efficiency. Another small trade-off is slightly lower starting torque than PMSM. The GM EV1 of the mid-1990s and most Teslas have employed AC Induction motors, despite skepticism about an EV revolution in some quarters.


 

Reluctance Motor: Think of "reluctance" as magnetic resistance: the degree to which an object opposes magnetic flux. A reluctance motor's stator features multiple electromagnet poles—concentrated windings that form highly localized north or south poles. In a switched reluctance motor (SRM), the rotor is made of soft magnetic material such as laminated silicon steel, with multiple projections designed to interact with the stator's poles. The various electromagnet poles are turned on and off in much the same way the field windings in a BLDC motor are. Using an unequal number of stator and rotor poles ensures some poles are aligned (for minimum reluctance), while others are directly in between opposite poles (maximum reluctance). Switching the stator polarity then pulls the rotor around at an asynchronous speed.


 

A synchronous reluctance motor (SynRM) doesn't rely on this imbalance in the rotor and stator poles. Rather, SynRM motors feature a more distributed winding fed with a sinusoidal AC current as in a PMSM design, with speed regulated by a variable-frequency drive, and an elaborately shaped rotor with voids shaped like magnetic flux lines to optimize reluctance.

The latest trend is to place small permanent magnets (often simpler ferrite ones) in some of these voids to take advantage of both magnetic and reluctance torque while minimizing cost and the back EMF (or counter-electromotive force) high-speed inefficiencies that permanent-magnet motors suffer.

Advantages include lower cost, simplicity, and high efficiency. Disadvantages can include noise and torque ripple (especially for switched reluctance motors). Toyota introduced an internal permanent-magnet synchronous reluctance motor (IPM SynRM) on the Prius, and Tesla now pairs one such motor with an AC induction motor on its Dual Motor models. Tesla also uses IPM SynRM as the single motor for its rear-drive models.


 

Electric motors may never sing like a small-block or a flat-plane crank Ferrari. But maybe, a decade or so from now, we'll regard the Tesla Plaid powertrain as fondly as we do those engines, even as industry leaders note that mainstream adoption faces hurdles, and every car lover will be able to describe in intimate detail what kind of motors it uses.
 

 

Related News

View more

4 European nations to build North Sea wind farms

North Sea Offshore Wind Farms will deliver 150 GW by 2050 as EU partners scale renewable energy, offshore turbines, grid interconnectors, and REPowerEU goals to cut emissions, boost energy security, and reduce Russian fossil dependence.

 

Key Points

A joint EU initiative to build 150 GW of offshore wind by 2050, advancing REPowerEU, decarbonization, and energy security.

✅ Targets at least 150 GW of offshore wind by 2050

✅ Backed by Belgium, Netherlands, Germany, and Denmark

✅ Aligns with REPowerEU, grid integration, and emissions cuts

 

Four European Union countries plan to build North Sea wind farms capable of producing at least 150 gigawatts of energy by 2050 to help cut carbon emissions that cause climate change, with EU wind and solar surpassing gas last year, Danish media have reported.

Under the plan, wind turbines would be raised off the coasts of Belgium, the Netherlands, Germany and Denmark, where a recent green power record highlighted strong winds, daily Danish newspaper Jyllands-Posten said.

The project would mean a tenfold increase in the EU's current offshore wind capacity, underscoring how renewables are crowding out gas across Europe today.

“The North Sea can do a lot," Danish Prime Minister Frederiksen told the newspaper, adding the close cooperation between the four EU nations "must start now.”

European Commission President Ursula von der Leyen, German Chancellor Olaf Scholz, Dutch Prime Minister Mark Rutte and Belgian Prime Minister Alexander De Croo are scheduled to attend a North Sea Summit on Wednesday in Esbjerg, 260 kilometers (162 miles) west of Copenhagen.

In Brussels, the European Commission moved Wednesday to jump-start plans for the whole 27-nation EU to abandon Russian energy amid the Kremlin’s war in Ukraine. The commission proposed a nearly 300 billion-euro ($315 billion) package that includes more efficient use of fuels and a faster rollout of renewable power, even as stunted hydro and nuclear output may hobble recovery efforts.

The investment initiative by the EU's executive arm is meant to help the bloc start weaning themselves off Russian fossil fuels this year, even as Europe is losing nuclear power during the transition. The goal is to deprive Russia, the EU’s main supplier of oil, natural gas and coal, of tens of billions in revenue and strengthen EU climate policies.

“We are taking our ambition to yet another level to make sure that we become independent from Russian fossil fuels as quickly as possible,” von der Leyen said in Brussels when announcing the package, dubbed REPowerEU.

The EU has pledged to reduce carbon dioxide emissions by 55% compared with 1990 levels by 2030, and to get to net zero emissions by 2050, with a recent German renewables milestone underscoring the pace of change.

The European Commission has set an overall target of generating 300 gigawatts of offshore energy of by 2050, though grid expansion challenges in Germany highlight hurdles.

Along with climate change, the war in Ukraine has made EU nations eager to reduce their dependency on Russian natural gas and oil. In 2021, the EU imported roughly 40% of its gas and 25% of its oil from Russia.

At a March 11 summit, EU leaders agreed in principle to phase out Russian gas, oil and coal imports by 2027.

 

Related News

View more

Solar produced 4.7% of U.S. electricity in 2022, generation up 25%

US Solar Electricity Generation 2022 rose to a 4.7% share, with 202,256 GWh, per EIA Electric Power Monthly; driven by PV capacity additions despite import constraints, alongside renewables trends in wind, nuclear, and hydroelectric output.

 

Key Points

The share and output of US solar PV in 2022: 4.7% of electricity and 202,256 GWh, as reported by the EIA.

✅ Solar PV reached 4.7% of US power; 202,256 GWh generated in 2022.

✅ Monthly share varied from about 3% in Jan to just over 6% in Apr.

✅ Wind was 10.1%; wind+solar hit slightly over 20% in April.

 

In 2022, solar photovoltaics made up 4.7% of U.S. electricity generation, an increase of almost 21% over the 2021 total when solar produced 3.9% of US electricity and about 3% in 2020 according to long-term outlooks. Total solar generation was up 25%, breaking through 200,000 GWh for the year.

The record deployment volumes of 2020 when renewables became the second-most U.S. electricity source and 2021 are the main factors behind this increase. If it were not for ongoing solar panel import difficulties and general inflation, solar’s contribution to electricity generation might have reached 5% in 2022. The data was released by the Department of Energy’s Energy Information Administration (EIA) in their Electric Power Monthly. This release includes data from December 2022, as well as the rest of the data from 2022.

Solar as a percentage of monthly electricity generation ranged from a low of almost 3% in January, to just over 6% in April. April’s production marked a new monthly record for solar generation in the US and coincided with a renewables share record that month.

Total generation of solar electricity peaked in July, at 21,708 GWh. Over the course of the year, solar production reached  202,256 GWh, and total U.S. electricity generation reached 4,303,980 GWh, a year in which renewables surpassed coal in the power mix overall. Total US electricity generation increased by 3.5% over the 4,157,467 GWh produced in 2021.

In 2022, wind energy contributed 10.1% of the total electricity generated in the United States. Wind and solar together produced 14.8% of U.S. electricity in 2022, growing from the 13% recorded in 2021. In April, when solar power peaked at just over 6%, wind and solar power together reached a peak of slightly over 20%, as a wind-and-solar milestone versus nuclear was noted that month, a new monthly record for the two energy sources.

In total, emissions free energy sources such as wind, solar photovoltaic and thermal, nuclear, hydroelectric, and geothermal, accounted for 37.9% of the total electricity generated in the U.S., while renewables provided about 25.5% share of the mix during the year. This value is barely higher than 2020’s 37.7% – but represents a return to growth after 2021 saw a decrease in emission free electricity to 37%.

Nuclear power was the most significant contributor to emission free electricity, making up a bit more than 45% of the total emissions free electricity. Wind energy ranked second at 26%, followed by hydroelectricity at 15%, and solar photovoltaic at 12%, confirming solar as the #3 renewable in the U.S. mix.

Emissions free electricity is a different summation than the EIA’s ‘Renewable Energy’ category. The Renewable Energy category also includes:

  • Wood and Wood-Derived Fuels
  • Landfill Gas
  • Biogenic Municipal Solid Waste
  • Other Waste Biomass

Nuclear produced 17.9% of the total U.S. electricity, a value that has generally stayed flat over the years. However, since nuclear facilities are being retired faster than new facilities are coming online, nuclear production has fallen in the past two years. After multiple long delays, we will probably see reactor three of the Vogtle nuclear facility come online in 2023. Reactor four is officially scheduled to come online later this year.

Hydroelectric production also declined in 2022, due to drought conditions in the southwestern United States. With rain and snow storms in California and the southwest, hydroelectricity generation may rebound in 2023.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified