Requests for Proposal launched for purchase of clean electricity in Alberta


alberta Renewable Energy

NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Canada Clean Electricity Procurement advances federal operations with renewable energy in Alberta, leveraging RECs, competitive sourcing, Indigenous participation, and grid decarbonization to cut greenhouse gas emissions and stimulate new clean power infrastructure.

 

Key Points

A plan to procure clean power and RECs, cutting emissions in Alberta and attributing use where renewables are absent.

✅ RFPs to source new clean electricity in Alberta

✅ RECs from net new Canadian renewable generation

✅ Mandatory Indigenous participation via equity or set-asides

 

Public Services and Procurement Canada (PSPC) is taking concrete steps to meet the Government of Canada's commitment in the Greening Government Strategy to reduce greenhouse gas emissions from federal government buildings, vehicle fleets and other operations, aligning with broader vehicle electrification trends across Canada.

The Honourable Anita Anand, Minister of Public Services and Procurement, announced the Government of Canada has launched Requests for Proposal to buy new clean electricity in the province of Alberta, which is moving ahead with the retirement of coal power to clean its grid, to power federal operations there.

As well, Canada will purchase Renewable Energy Certificates (REC) from new clean energy generation in Canada. This will enable Canada to attribute its energy consumption as clean in regions where new clean renewable sources are not yet available. The Government of Canada is excited about this opportunity to stimulate net new Canadian clean electricity generation through the procurement of RECs and complementary power purchase agreements that secure long-term supply for federal demand.

Together, these contracts will help to ensure Canada is reducing its greenhouse gas footprint by approximately 133 kilotonnes or 56% of total real property emissions in Alberta. Additionally, the contracts will displace approximately 41 kilotonnes of greenhouse gas emissions from electricity use in the rest of Canada, supporting progress toward 2035 clean electricity goals even as challenges remain.

Through these open, fair and transparent competitive procurement processes, PSPC will be a key purchaser of clean electricity and will support the growth of new clean electricity and renewable power infrastructure, such as recent turbine investments in Manitoba that expand capacity.

The Government of Canada's Clean Electricity Initiative plans to use 100% clean electricity by 2022, where available, in alignment with evolving net-zero electricity regulations that shape supply choices, to reduce greenhouse gas emissions and stimulate growth in clean renewable power infrastructure. PSPC has applied the goals of the Government of Canada's Clean Electricity Initiative to its specific requirement for net new clean electricity generation to power federal operations in Alberta.  

These procurements will support economic opportunities for Indigenous businesses by encouraging participation in the move towards clean energy, seen in provincial shifts toward clean power in Ontario that broaden markets. Each Request for Proposal incorporates mandatory requirements for Indigenous participation through equity holdings or set-asides under the Procurement Strategy for Aboriginal Business.

 

Related News

Related News

Renewables became the second-most prevalent U.S. electricity source in 2020

2020 U.S. Renewable Electricity Generation set a record as wind, solar, hydro, biomass, and geothermal produced 834 billion kWh, surpassing coal and nuclear, second only to natural gas in nationwide power output.

 

Key Points

The record year when renewables made 834 billion kWh, topping coal and nuclear in U.S. electricity.

✅ Renewables supplied 21% of U.S. electricity in 2020

✅ Coal output fell 20% y/y; nuclear slipped 2% on retirements

✅ EIA forecasts renewables rise in 2021-2022; coal rebounds

 

In 2020, renewable energy sources (including wind, hydroelectric, solar, biomass, and geothermal energy) generated a record 834 billion kilowatthours (kWh) of electricity, or about 21% of all the electricity generated in the United States. Only natural gas (1,617 billion kWh) produced more electricity than renewables in the United States in 2020. Renewables surpassed both nuclear (790 billion kWh) and coal (774 billion kWh) for the first time on record. This outcome in 2020 was due mostly to significantly less coal use in U.S. electricity generation and steadily increased use of wind and solar generation over time, amid declining consumption trends nationwide.

In 2020, U.S. electricity generation from coal in all sectors declined 20% from 2019, while renewables, including small-scale solar, increased 9%. Wind, currently the most prevalent source of renewable electricity in the United States, grew 14% in 2020 from 2019, and the EIA expects solar and wind to be larger sources in summer 2022, reflecting continued growth. Utility-scale solar generation (from projects greater than 1 megawatt) increased 26%, and small-scale solar, such as grid-connected rooftop solar panels, increased 19%, while early 2021 January power generation jumped year over year.

Coal-fired electricity generation in the United States peaked at 2,016 billion kWh in 2007 and much of that capacity has been replaced by or converted to natural gas-fired generation since then. Coal was the largest source of electricity in the United States until 2016, and 2020 was the first year that more electricity was generated by renewables and by nuclear power than by coal (according to our data series that dates back to 1949). Nuclear electric power declined 2% from 2019 to 2020 because several nuclear power plants retired and other nuclear plants experienced slightly more maintenance-related outages.

We expect coal-fired generation to increase in the United States during 2021 as natural gas prices continue to rise and as coal becomes more economically competitive. Based on forecasts in our Short-Term Energy Outlook (STEO), we expect coal-fired electricity generation in all sectors in 2021 to increase 18% from 2020 levels before falling 2% in 2022. We expect U.S. renewable generation across all sectors to increase 7% in 2021 and 10% in 2022, and in 2021, non-fossil fuel sources accounted for about 40% of U.S. electricity. As a result, we forecast coal will be the second-most prevalent electricity source in 2021, and renewables will be the second-most prevalent source in 2022. We expect nuclear electric power to decline 2% in 2021 and 3% in 2022 as operators retire several generators.

 

Related News

View more

B.C. Hydro predicts 'bottleneck' as electric-vehicle demand ramps-up

B.C. EV Bottleneck signals a post-pandemic demand surge for electric vehicles amid semiconductor and lithium-ion battery shortages, driving waitlists, record sales, rebates, charging infrastructure needs, and savings on fuel and maintenance across British Columbia.

 

Key Points

B.C. EV bottleneck is rising demand outpacing supply from chip and battery shortages, creating waitlists.

✅ 85% delayed EV purchase; demand rebounds with reopening.

✅ Supply chain limits: chips and lithium-ion batteries.

✅ Plan ahead: join waitlists, consider used EVs, claim rebates.

 

B.C. Hydro is warning of a post-pandemic “EV bottleneck” as it predicts pent-up demand and EV shortages will lead to record-breaking sales for electric vehicles in 2021.

A new survey by B.C. Hydro found 85 per cent of British Columbians put off buying an electric vehicle during the pandemic, but as the province reopens, the number of people on the road commuting to-and-from work and school is expected to rise 15 per cent compared with before the pandemic.

It found about two-thirds of British Columbians are considering buying an EV over the next five years, with 60 per cent saying they would go with an EV if they can get one sooner.

“The EV market is at a potential tipping point, as demand is on the rise and will likely continue to grow long-term, with one study projecting doubling power output to meet full road electrification,” said a report about the findings released Wednesday.

The demand for EVs is prompted by rising gas prices, environmental concerns and to save money on maintenance costs like oil changes and engine repairs, said the report. At the same time, a shortage of semiconductor chips and lithium ion batteries needed for auto production is squeezing supply.

For people wanting to make the switch to electric, B.C. Hydro recommended they plan ahead and get on several waiting lists and explore networks offering faster charging options. Used EVs are also a cheaper option.

B.C. Hydro said an electric vehicle can save 80 per cent in gas expenses over a year and about $100 a month in maintenance costs compared with a gas-powered vehicle. There are also provincial and federal rebates of up to $8,000 for EV purchases in B.C., and additional charger rebates can help with installation costs.

B.C. has the highest electric vehicle uptake in North America, with zero-emission vehicles making up almost 10 per cent of all car sales in the province in 2020 as the province expands EV charging to support growth — more than double the four per cent in 2018.

According to a report by University of B.C. business Prof. Werner Antweiler on the state of EV adoption in B.C., electric vehicles are still concentrated in urban areas like Metro Vancouver and the Capital Regional District on Vancouver Island where public charging stations are more readily available.

He said electric vehicle purchases are still hampered by limited choice and a lack of charging stations, especially for people who park on the street or in condo parkades, which would require permission from strata councils to install a charging station, though rebates for home and workplace charging can ease installation.

The online survey was conducted by market researcher Majid Khoury of 800 British Columbians from May 17-19. It has a margin of error of plus-or-minus 3.5 per cent, 19 times out of 20.

 

Related News

View more

German steel powerhouse turns to 'green' hydrogen produced using huge wind turbines

Green Hydrogen for Steelmaking enables decarbonization in Germany by powering electrolyzers with wind turbines at Salzgitter. Partners Vestas, Avacon, and Linde support renewable hydrogen for iron ore reduction, cutting CO2 in heavy industry.

 

Key Points

Hydrogen from renewable-powered electrolysis replacing coal in iron ore reduction, cutting CO2 emissions from steelmaking

✅ 30 MW Vestas wind farm powers 2x1.25 MW electrolyzers.

✅ Salzgitter, Avacon, Linde link sectors to replace fossil fuels.

✅ Targets CO2 cuts in iron ore reduction and steel smelting.

 

A major green hydrogen facility in Germany has started operations, with those behind the project hoping it will help to decarbonize the energy-intensive steel industry in the years ahead. 

The "WindH2" project involves German steel giant Salzgitter, E.ON subsidiary Avacon and Linde, a firm specializing in engineering and industrial gases, and aligns with calls for hydrogen-ready power plants in Germany today.

Hydrogen can be produced in a number of ways. One method includes using electrolysis, with an electric current splitting water into oxygen and hydrogen, and advances in PEM hydrogen technology continue to improve efficiency worldwide.

If the electricity used in the process comes from a renewable source such as wind or solar, as underscored by recent German renewables gains, then it's termed "green" or "renewable" hydrogen.

The development in Germany is centered around seven new wind turbines operated by Avacon and two 1.25 megawatt (MW) electrolyzer units installed by Salzgitter Flachstahl, which is part of the wider Salzgitter Group. The facilities were presented to the public this week. 

The turbines, from Vestas, have a hub height of 169 meters and a combined capacity of 30 MW. All are located on premises of the Salzgitter Group, with three situated on the site of a steel mill in the city of Salzgitter, Lower Saxony, northwest Germany, where grid expansion woes can affect project timelines.

The hydrogen produced using renewables will be utilized in processes connected to the smelting of iron ore. Total costs for the project come to roughly 50 million euros (around $59.67 million), with the building of the electrolyzers subsidized by state-owned KfW, while a national net-zero roadmap could reduce electricity costs over time.

"Green gases have the wherewithal to become 'staple foodstuff' for the transition to alternative energies and make a considerable contribution to decarbonizing industry, mobility and heat," E.ON's CEO, Johannes Teyssen, said in a statement issued Thursday.

"The jointly realized project symbolizes a milestone on the path to virtually CO2 free production and demonstrates that fossil fuels can be replaced by intelligent cross-sector linking," he added.

According to the International Energy Agency, the iron and steel sector is responsible for 2.6 gigatonnes of direct carbon dioxide emissions each year, a figure that, in 2019, was greater than the direct emissions from sectors such as cement and chemicals. 

It adds that the steel sector is "the largest industrial consumer of coal, which provides around 75% of its energy demand."

The project in Germany is not unique in focusing on the role green hydrogen could play in steel manufacturing.

Across Europe, projects are also exploring natural gas pipe storage to balance intermittent renewables and enable sector coupling.

H2 Green Steel, a Swedish firm backed by investors including Spotify founder Daniel Ek, plans to build a steel production facility in the north of the country that will be powered by what it describes as "the world's largest green hydrogen plant."

In an announcement last month the company said steel production would start in 2024 and be based in Sweden's Norrbotten region.

Other energy-intensive industries are also looking into the potential of green hydrogen, and examples such as Schott's green power shift show parallel decarbonization. A subsidiary of multinational building materials firm HeidelbergCement has, for example, worked with researchers from Swansea University to install and operate a green hydrogen demonstration unit at a site in the U.K.

 

Related News

View more

Hitachi Energy to accelerate sustainable mobility in Germany's biggest city

Grid-eMotion Fleet Smart Charging enables BVG Berlin to electrify bus depots with compact grid-to-plug DC infrastructure, smart charging software, and high reliability, accelerating zero-emission electric buses, lower noise, and space-efficient e-mobility.

 

Key Points

Grid-to-plug DC charging for bus depots, with smart software to reliably power zero-emission electric bus fleets.

✅ Up to 60% less space and 40% less cabling than alternatives

✅ DC charging with smart scheduling for depot operations

✅ Scalable, grid-code compliant, low-noise, high reliability

 

Grid-eMotion Fleet smart charging solution to help the City of Berlin reach its goal of a zero-emission bus fleet by 2030

Dubai, UAE: Hitachi Energy has won an order from Berliner Verkehrsbe-triebe (BVG), Germany’s biggest municipal public transportation company, to supply its Grid-eMotionTM Fleet smart charging infrastructure to help BVG transition to sustainable mobility in Berlin, the country’s capital, where an electric flying ferry initiative underscores the city’s e-mobility momentum.

Hitachi Energy will provide a complete Grid-eMotion Fleet grid-to-plug charging infrastructure solution for the next two bus depots to be converted in the bus electrification program. Hitachi Energy’s solution offers the smallest footprint for both the connection, as well as low noise emissions and high reliability that support grid stability across operations – three key requirements for bus depots in a densely populated urban environment, where space is limited and flawless charging is vital to ensure buses run on time.

The solution comprises a connection to the distribution grid, where effective grid coordination streamlines integration, power distribution and DC charging infrastructure with charging points and smart charging systems. Hitachi Energy will perform the engineering and integrate, install and service the entire solution. The solution has a compact and robust design that requires less equipment than competing infrastructure, which results in a small footprint, lower operating and maintenance costs, and higher reliability. Typically, Grid-eMotion Fleet requires 60 percent less space and 40 percent less cabling than alternative charging systems; it also provides superior overall system reliability.

“We are delighted to help the City of Berlin in its transition to quiet and emission-free transportation and a sustainable energy future for the people of this iconic capital,” said Niklas Persson, Managing Director of Hitachi Energy’s Grid Integration business. “We feel the urgency and have the pioneering technology and commitment to advance sustainable mobility, thus improving the quality of life of millions of people.”

BVG operates Germany’s biggest city bus fleet of around 1,500 vehicles, which it aims to make completely electric and emission-free by 2030, and could benefit from vehicle-to-grid pilots to enhance flexibility. This requires the installation of charging infra-structure in its large network of bus depots.

About Grid-eMotion:

Grid-eMotion comprises two unique, innovative solutions – Fleet and Flash. Grid-eMotion Fleet is a grid-code compliant and space-saving grid-to-plug charging solution that can be in-stalled in new and existing bus depots. The charging solution can be scaled flexibly as the fleet gets bigger and greener. It includes a robust and compact grid connection and charging points, and is also available for commercial vehicle fleets, including last-mile delivery and heavy-duty trucks, as electric truck fleets scale up, requiring high power charging of several megawatts. Grid-eMotionTM Flash enables operators to flash-charge buses within seconds at passenger stops and fully recharge within minutes at the route terminus, without interrupting the bus schedule.

Both solutions are equipped with configurable smart charging digital platforms that can be em-bedded with larger fleet and energy management systems, enabling vehicle-to-grid capabilities for bidirectional charging. Additional offerings from Hitachi Energy for EV charging systems consist of e-meshTM energy management and optimization solutions and Lumada APM, EAM and FSM solutions, to help transportation operators make informed decisions that maximize their uptime and improve efficiency.

In the past few months alone, Hitachi Energy has won orders from customers and partners all over the world for its smart charging portfolio – a sign that Grid-eMotion is changing the e-mobility landscape for electric buses and commercial vehicles, as advances in energy storage and mobile charging bolster resilience. Grid-eMotion solutions are al-ready operating or under development in Australia, Canada, China, India, the Middle East, the United States and several countries in Europe.

 

Related News

View more

B.C. expands EV charging, leads country in going electric

BC EV Charging Network Funding accelerates CleanBC goals with new public fast-charging stations, supporting ZEV adoption, the Electric Highway, and rebates, lowering fuel costs and emissions across British Columbia under the Clean Transportation Action Plan.

 

Key Points

Funding to expand fast-charging stations, grow ZEV adoption, and advance CleanBC and the Electric Highway.

✅ $26M funds ~250 public fast-charging stations.

✅ Supports Electric Highway and remote access.

✅ Drives ZEV sales under CleanBC targets.

 

As British Columbians are embracing zero-emission vehicles faster than any other jurisdiction in Canada, the Province is helping them go electric with new incentives and $26 million in new funding for public charging stations.

“British Columbians are switching to clean energy and cleaner transportation in record numbers as part of our CleanBC plan and leading Canada in the transition to zero emission vehicles,” said Josie Osborne, Minister of Energy, Mines and Low Carbon Innovation, on Tuesday. “The new funding we are announcing today to expand B.C.’s public charging network will help get more EVs on the road, reduce our reliance on fossil fuels, and lower fuel costs for people.”

The Province’s newly released annual report about zero-emission vehicles (ZEV) shows they represented 18.1% of new light-duty passenger vehicles sold in 2022 – the highest percentage for any province or territory. To support British Columbians’ transition to electric vehicles and to help industry lower its emissions, year-end funding of $26 million will go toward the CleanBC Public Charging Program for light-duty vehicle charging.

The new funding will support approximately 250 more public light-duty fast-charging stations, including stations to complete the B.C. Electric Highway, a CleanBC Roadmap to 2030 commitment that will make recharging easier in every corner of the province.

The 2022 ZEV Update report highlights CleanBC Go Electric rebates and programs that have helped drive growth in the number of electric vehicles in B.C. The number of registered light-duty EVs rose from 5,000 in 2016 to more than 100,000 today – a 1,900% increase in the past six years. Last year, 30,004 zero-emission vehicles were bought in B.C., beating the previous record of 24,263 in 2021.

In addition, the report outlines progress in the installation of public charging stations across British Columbia, supported by B.C. Hydro expansion, which now has one of the largest public charging networks in Canada, with more than 3,800 charging stations at the end of 2022. That compares to just 781 charging stations in 2016.

The CleanBC Roadmap to 2030, released in 2021, details a range of expanded actions to accelerate the switch to cleaner transportation, including strengthening the Zero-Emission Vehicles Act to require 26% of light-duty vehicle sales to be ZEV by 2026, 90% by 2030 and 100% by 2035 – five years ahead of the original target, and implementing the Clean Transportation Action Plan.

George Heyman, Minister of Environment and Climate Change Strategy, said: “Transportation accounts for about 40% of emissions in B.C., which is why we are committed to accelerating requirements for ZEVs and setting new standards for medium- and heavy-duty vehicles. To support this uptake, we continue to expand B.C.’s electric vehicle charging network, including faster EV charging options, with a target of having 10,000 public EV charging stations by 2030.”

Blair Qualey, President and CEO, New Car Dealers Association of BC, said: “B.C.’s new car dealers are proud to be involved in a true partnership that has been so instrumental in B.C. establishing and maintaining a leadership position in zero-emission vehicle adoption. Ongoing investments that continue to support the CleanBC Go Electric rebate program, including home and workplace charging rebates, and the availability of adequate charging infrastructure for consumers and businesses will be critical to the Province meeting its ZEV mandate targets, while also creating the promise of a greener and stronger economic future for British Columbians.”

Harry Constantine, President, Vancouver Electric Vehicle Association, said: “Expanding the buildout of the Electric Highway and establishing a network of charging stations are critical steps for moving the adoption of electric vehicles forward as demand ramps up across B.C. This stands to benefit all British Columbians, including remote communities. We are very pleased to see the Province investing in these measures.”

 

Related News

View more

Solar produced 4.7% of U.S. electricity in 2022, generation up 25%

US Solar Electricity Generation 2022 rose to a 4.7% share, with 202,256 GWh, per EIA Electric Power Monthly; driven by PV capacity additions despite import constraints, alongside renewables trends in wind, nuclear, and hydroelectric output.

 

Key Points

The share and output of US solar PV in 2022: 4.7% of electricity and 202,256 GWh, as reported by the EIA.

✅ Solar PV reached 4.7% of US power; 202,256 GWh generated in 2022.

✅ Monthly share varied from about 3% in Jan to just over 6% in Apr.

✅ Wind was 10.1%; wind+solar hit slightly over 20% in April.

 

In 2022, solar photovoltaics made up 4.7% of U.S. electricity generation, an increase of almost 21% over the 2021 total when solar produced 3.9% of US electricity and about 3% in 2020 according to long-term outlooks. Total solar generation was up 25%, breaking through 200,000 GWh for the year.

The record deployment volumes of 2020 when renewables became the second-most U.S. electricity source and 2021 are the main factors behind this increase. If it were not for ongoing solar panel import difficulties and general inflation, solar’s contribution to electricity generation might have reached 5% in 2022. The data was released by the Department of Energy’s Energy Information Administration (EIA) in their Electric Power Monthly. This release includes data from December 2022, as well as the rest of the data from 2022.

Solar as a percentage of monthly electricity generation ranged from a low of almost 3% in January, to just over 6% in April. April’s production marked a new monthly record for solar generation in the US and coincided with a renewables share record that month.

Total generation of solar electricity peaked in July, at 21,708 GWh. Over the course of the year, solar production reached  202,256 GWh, and total U.S. electricity generation reached 4,303,980 GWh, a year in which renewables surpassed coal in the power mix overall. Total US electricity generation increased by 3.5% over the 4,157,467 GWh produced in 2021.

In 2022, wind energy contributed 10.1% of the total electricity generated in the United States. Wind and solar together produced 14.8% of U.S. electricity in 2022, growing from the 13% recorded in 2021. In April, when solar power peaked at just over 6%, wind and solar power together reached a peak of slightly over 20%, as a wind-and-solar milestone versus nuclear was noted that month, a new monthly record for the two energy sources.

In total, emissions free energy sources such as wind, solar photovoltaic and thermal, nuclear, hydroelectric, and geothermal, accounted for 37.9% of the total electricity generated in the U.S., while renewables provided about 25.5% share of the mix during the year. This value is barely higher than 2020’s 37.7% – but represents a return to growth after 2021 saw a decrease in emission free electricity to 37%.

Nuclear power was the most significant contributor to emission free electricity, making up a bit more than 45% of the total emissions free electricity. Wind energy ranked second at 26%, followed by hydroelectricity at 15%, and solar photovoltaic at 12%, confirming solar as the #3 renewable in the U.S. mix.

Emissions free electricity is a different summation than the EIA’s ‘Renewable Energy’ category. The Renewable Energy category also includes:

  • Wood and Wood-Derived Fuels
  • Landfill Gas
  • Biogenic Municipal Solid Waste
  • Other Waste Biomass

Nuclear produced 17.9% of the total U.S. electricity, a value that has generally stayed flat over the years. However, since nuclear facilities are being retired faster than new facilities are coming online, nuclear production has fallen in the past two years. After multiple long delays, we will probably see reactor three of the Vogtle nuclear facility come online in 2023. Reactor four is officially scheduled to come online later this year.

Hydroelectric production also declined in 2022, due to drought conditions in the southwestern United States. With rain and snow storms in California and the southwest, hydroelectricity generation may rebound in 2023.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.