0 to 180 km in 10 minutes: B.C. Hydro rolls out faster electric vehicle charging


B.C. Hydro rolls out faster electric vehicle charging

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

B.C. Hydro fast EV charging stations roll out 180 kW DC fast chargers, power sharing, and rural network expansion in Surrey, Manning Park, Mackenzie, and Tumbler Ridge to ease range anxiety across northern B.C.

 

Key Points

180 kW DC chargers with power sharing, expanding B.C.'s rural EV network to cut range anxiety and speed up recharging.

✅ 180 kW DC fast charging: ~180 km added in about 10 minutes

✅ Power sharing enables two vehicles to use one unit simultaneously

✅ Expands rural charging coverage to cut range anxiety for northern B.C.

 

B.C. Hydro has unveiled plans to install new charging stations it says can add as much as 180 kilometres worth of range to the average electric vehicle in 10 minutes.

The utility says the new 180-kilowatt units will be added to its network, expanding stations in southern B.C. as soon as this fall, with even more scheduled to arrive in 2024.

The first communities to get the new faster-charge stations are Surrey, Manning Park and, north of Prince George, Mackenzie and Tumbler Ridge, while the Lillooet fast-charging site is already operational.

B.C. Hydro president Chris O'Riley says both current and prospective electric vehicle owners have said they want improved coverage in more rural parts of the province in order to address range anxiety, as the utility has warned of a potential EV charging bottleneck if demand outpaces infrastructure.

"We are listening to feedback from our customers," he said.

The new stations will also be the first from B.C. Hydro to offer power sharing, which lets two different vehicles use the same unit to charge at the same time.

The adoption of electric vehicles in B.C. is much higher in southern urban areas than rural, northern ones, according to statistics from the provincial government made available in 2022, as the province leads the country in going electric according to recent reports.

The figures showed about one in every 45 people owns a zero-emission vehicle in the southwest regions of the province, but that number drops to one in 232 in the Kootenays, where the region makes electric cars a priority through local initiatives, and one in 414 in northern B.C.

The number of public charging stations closely corresponds to the number of zero-emission vehicles in various regions.

The Vancouver area has more than 500 fast-charging ports, according to ChargeHub, a website that tracks charging stations in North America. 

In contrast, the route from Prince George to Fort Nelson via Dawson Creek along Highway 97, part of the B.C. Electric Highway network connecting the region — a distance of more than 800 kilometres — has just three locations where a vehicle can be charged to 80 per cent power in an hour or less, creating challenges for people hoping to travel the route.

The disparity is also clear in a just-published analysis from the non-profit Community Energy Association, which acts as an advisory group to government associations. 

It found that while there is roughly one charging port every three square kilometres in Metro Vancouver, the number drops to one every 250 square kilometres in the Regional District of East Kootenay and one every 3,500 square kilometres in the Peace River Regional District, in the province's northeast.

"The more infrastructure we can get across the region ... the more the adoption of electric vehicles will increase," said the association's director of transportation initiatives, Danielle Weiss.

"We are excited to hear that B.C. Hydro is also viewing rural areas as a key focus for their new, enhanced charging technology."

B.C. Hydro says it currently has 153 charging units at 84 locations across the province with plans to add an additional 3,000 ports over the next 10 years, with provincial EV charger rebates supporting home and workplace installations as well.

 

Related News

Related News

What to know about DOE's hydrogen hubs

U.S. Clean Hydrogen Hubs aim to scale production, storage, transport, and use as DOE and the Biden administration fund regional projects under the infrastructure law, blending green and blue hydrogen, carbon capture, renewables, and pipelines.

 

Key Points

Federally funded regional projects to make, move, and use low-carbon hydrogen via green, blue, and pink routes.

✅ $7B DOE funding via infrastructure law

✅ Mix of green, blue, pink hydrogen pathways

✅ Targets 10M metric tons annually by 2030

 

New details are emerging about the Biden administration’s landmark plans to build out a U.S. clean hydrogen industry.

On Friday, the Department of Energy named the seven winners of $7 billion in federal funds to establish regional hydrogen hubs. The hubs — funded through the infrastructure law — are part of the administration’s efforts to jump-start an industry it sees as key to achieving climate goals like the goal of 100 percent clean electricity by 2035 set by the administration. The aim is to demonstrate everything from the production and storage of hydrogen to its transport and consumption.

“All across the country, from coast to coast, in the heartland, we’re building a clean energy future here in America, not somewhere else,” President Joe Biden said while announcing the hubs in Philadelphia.

From 79 initial proposals, DOE chose the following: the Mid-Atlantic Hydrogen Hub, Appalachian Hydrogen Hub, California Hydrogen Hub, Gulf Coast Hydrogen Hub, Heartland Hydrogen Hub, Midwest Hydrogen Hub and Pacific Northwest Hydrogen Hub.

Many of the winning proposals are backed by state government leaders and industry partners, and by Southeast cities that have ramped up clean energy purchases in recent years as well. The Midwest hub, for example, is a coalition of Illinois, Indiana and Michigan — supported by politicians like Illinois Gov. J.B. Pritzker (D), as well as such companies as Air Liquide, Ameren Illinois and Atlas Agro. The mid-Atlantic hub is supported by Democratic members of Congress representing the region, including Delaware Sens. Chris Coons and Tom Carper and Rep. Lisa Blunt Rochester.

The administration hopes the hubs will produce 10 million metric tons of “clean” hydrogen annually by 2030. But much about the projects remains unknown — including how trends like cheap batteries for solar could affect clean power supply — and dependent on negotiations with DOE.


A win for ‘blue’ hydrogen?
Nearly all hydrogen created in the U.S. today is extracted from natural gas through steam methane reformation. The emissions-intensive process produces what is known as “grey” hydrogen — or “blue” hydrogen when combined with carbon capture and storage.

Four recipients — the Appalachian, Gulf Coast, Heartland and Midwest hydrogen hubs — include blue hydrogen in their plans, though the infrastructure law only mandated one.

That has drawn the ire of environmentalists, who argue blue hydrogen is not emissions-free, partly because of the potential for methane leaks during the production process.

“This is worse than expected,” Clean Energy Group President Seth Mullendore said after the recipients were announced Friday. “The fact that more than half the hubs will be using fossil gas is outrageous.”

Critics have also pointed out that many of the industry partners backing the hub projects include oil and gas companies. The coalitions are a mix of private-sector groups — often including renewable energy developers — and government stakeholders. Proposals have also looped in universities, utilities, environmental groups, community organizations, labor unions and tribal nations, among others.

“The massive build out of hydrogen infrastructure is little more than an industry ploy to rebrand fracked gas,” said Food & Water Watch Policy Director Jim Walsh in a statement Friday. “In a moment when every political decision that we make must reject fossil expansion, the Biden administration is going in the opposite direction.”

The White House has emphasized that roughly two-thirds of the $7 billion pot is “associated” with the production of “green” hydrogen, which uses electricity from renewable sources. Two of the chosen proposals — in California and the Pacific Northwest — are making green hydrogen their focus, reflecting advances such as offshore green hydrogen being pursued by industry leaders, while three other hubs plan to include green hydrogen alongside hydrogen made with natural gas (blue) or nuclear energy (pink).

Many hubs plan to use several methods for hydrogen production, and globally, projects like Brazil's green hydrogen plant highlight the scale of investment, but the exact mix may change depending on which projects make it through the DOE negotiations process. The Midwest hub, for example, told E&E News it’s pursuing an “all-of-the-above” strategy and has projects for green, blue and “pink” hydrogen. The mid-Atlantic hub in southeastern Pennsylvania, Delaware and New Jersey will also generate hydrogen with nuclear reactors.

Energy Secretary Jennifer Granholm has described clean hydrogen as a fresh business opportunity, especially for the natural gas industry, which has supported the concept of sending hydrogen to market through its pipeline network. Lawmakers like Sen. Joe Manchin (D-W.Va.) — who said the Appalachian hub will make West Virginia the “new epicenter of hydrogen” — have pushed for continuing to use natural gas to make hydrogen in his state.

“Natural gas utilities are committed to exploring all options for emissions reduction as demonstrated by the 39 hydrogen pilot projects already underway and are eager to participate in a number of the hubs,” said American Gas Association President and CEO Karen Harbert in a statement Friday.

Green hydrogen also has faced criticism. Some groups argue that the renewable resources needed to produce green hydrogen are limited, even with sources such as wind, solar and hydropower technology, so funding should be reserved for applications that cannot be easily electrified, mostly industrial processes. There also is uncertainty about how the Treasury Department will handle hydrogen made from grid electricity — which can include power from fossil fuel plants — in its upcoming guidance on the first-ever tax credit for clean hydrogen production.

“Even the cleanest forms of hydrogen present serious problems,” Walsh said. “As groundwater sources are drying up across the country, there is no reason to waste precious drinking water resources on hydrogen when there are cheaper, cleaner energy sources that can facilitate a real transition off fossil fuels.”

But Angelina Galiteva, CEO of the hub in drought-prone California, said hydrogen will enable the state “to increase renewable penetration to reach all corners of the economy,” noting parallel initiatives such as Dubai's solar hydrogen plans that illustrate the potential.

“Transitioning to renewable clean hydrogen will pose significantly less stress on water resources than remaining on the current fossil path,” she said.

 

Related News

View more

Winds of Change: Vineyard Wind Ushers in a New Era for Clean Energy

Vineyard Wind Offshore Wind Farm delivers clean power to Massachusetts near Martha's Vineyard, with 62 turbines and 800 MW capacity, advancing renewable energy, cutting carbon, lowering costs, and driving net-zero emissions and green jobs.

 

Key Points

An 800 MW Massachusetts offshore project of 62 turbines supplying clean power to 400,000+ homes and cutting emissions.

✅ 800 MW powering 400,000+ MA homes and businesses

✅ 62 turbines, 13 MW each, 15 miles from Martha's Vineyard

✅ Cuts 1.6M tons CO2 annually; boosts jobs and port infrastructure

 

The crisp Atlantic air off the coast of Martha's Vineyard carried a new melody on February 2nd, 2024. Five colossal turbines, each taller than the Statue of Liberty, began their graceful rotations, marking the historic moment power began flowing from Vineyard Wind, the first large-scale offshore wind farm in the United States, enabled by Interior Department approval earlier in the project timeline. This momentous occasion signifies a seismic shift in Massachusetts' energy landscape, one that promises cleaner air, lower energy costs, and a more sustainable future for generations to come.

Nestled 15 miles southeast of Martha's Vineyard and Nantucket, Vineyard Wind is a colossal undertaking. The project, a joint venture between Avangrid Renewables and Copenhagen Infrastructure Partners, will ultimately encompass 62 turbines, each capable of generating a staggering 13 megawatts. Upon full completion later this year, Vineyard Wind will power over 400,000 homes and businesses across Massachusetts, contributing a remarkable 800 megawatts to the state's energy grid.

But the impact of Vineyard Wind extends far beyond mere numbers. This trailblazing project holds immense environmental significance. By harnessing the clean and inexhaustible power of the wind, Vineyard Wind is projected to annually reduce carbon emissions by a staggering 1.6 million metric tons – equivalent to taking 325,000 cars off the road. This translates to cleaner air, improved public health, and a crucial step towards mitigating the climate crisis.

Governor Maura Healey hailed the project as a "turning point" in Massachusetts' clean energy journey. "Across the Commonwealth, homes and businesses will now be powered by clean, affordable energy, contributing to cleaner air, lower energy costs, and pushing us closer to achieving net-zero emissions," she declared.

Vineyard Wind's impact isn't limited to the environment; it's also creating a wave of economic opportunity. Since its inception in 2017, the project has generated nearly 2,000 jobs, with close to 1,000 positions filled by union workers thanks to a dedicated Project Labor Agreement. Construction has also breathed new life into the New Bedford Marine Commerce Terminal, with South Coast construction activity accelerating around the port, transforming it into the nation's first port facility specifically designed for offshore wind, showcasing the project's commitment to local infrastructure development.

"Every milestone on Vineyard Wind 1 is special, but powering up these first turbines stands apart," emphasized Pedro Azagra, CEO of Avangrid Renewables. "This accomplishment reflects the years of dedication and collaboration that have defined this pioneering project. Each blade rotation and megawatt flowing to Massachusetts homes is a testament to the collective effort that brought offshore wind power to the United States."

Vineyard Wind isn't just a project; it's a catalyst for change. It perfectly aligns with Massachusetts' ambitious clean energy goals, which include achieving net-zero emissions by 2050 and procuring 3,200 megawatts of offshore wind by 2028, while BOEM lease requests in the Northeast continue to expand the development pipeline across the region. As Energy and Environmental Affairs Secretary Rebecca Tepper stated, "Standing up a new industry is no easy feat, but we're committed to forging ahead and growing this sector to lower energy costs, create good jobs, and build a cleaner, healthier Commonwealth."

The launch of Vineyard Wind transcends Massachusetts, serving as a beacon for the entire U.S. offshore wind industry, as New York's biggest offshore wind farm moves forward to amplify regional momentum. This demonstration of large-scale development paves the way for further investment and growth in this critical clean energy source. However, the journey isn't without its challenges, and questions persist about reaching 1 GW on the grid nationwide as stakeholders navigate timelines. Concerns regarding potential impacts on marine life and visual aesthetics remain, requiring careful consideration and ongoing community engagement.

Despite these challenges, Vineyard Wind stands as a powerful symbol of hope and progress. It represents a significant step towards a cleaner, more sustainable future, powered by renewable energy sources at a time when U.S. offshore wind is about to soar according to industry outlooks. It's a testament to the collaborative effort of policymakers, businesses, and communities working together to tackle the climate crisis. As the turbines continue their majestic rotations, they carry a message of hope, reminding us that a brighter, more sustainable future is within reach, powered by the wind of change.

Additional Considerations:

  • The project boasts a dedicated Fisheries Innovation Fund, fostering collaboration between the fishing and offshore wind industries to ensure sustainable coexistence.
  • Vineyard Wind has invested in education and training programs, preparing local residents for careers in the burgeoning wind energy sector.
  • The project's success opens doors for further offshore wind development in the U.S., such as Long Island proposals gaining attention, paving the way for a clean energy revolution.

 

Related News

View more

Wind power is Competitive on Reliability and Resilience Says AWEA CEO

Wind farm reliability services now compete in wholesale markets, as FERC and NERC endorse market-based solutions that reward performance, bolster grid resilience, and compensate ancillary services like frequency regulation, voltage support, and spinning reserve.

 

Key Points

Grid support from wind plants, including frequency, voltage, ramping, and inertial response via advanced controls.

✅ Enabled by advanced controls and inverter-based technology

✅ Compete in market-based mechanisms for ancillary services

✅ Support frequency, voltage, reserves; enhance grid resilience

 

 

American Wind Energy Association CEO Tom Kiernan has explained to a congressional testimony that wind farms can now compete, as renewables approach market majority, to provide essential electric reliability services. 

Mr Kiernan appeared before the US Congress House Energy and Commerce Committee where he said that, thanks to technological advances, wind farms are now competitive with other energy technologies with regard to reliability and resiliency. He added that grid reliability and resilience are goals that everyone can support and that efforts underway at the Federal Energy Regulatory Commission (FERC) and by market operators are rightly focused on market-based solutions to better compensate generators for providing those essential services.

AWEA strongly agreed with other witnesses on the panel who endorsed market-based solutions in their submitted testimony, including the American Petroleum Institute, Solar Energy Industries Association, Energy Storage Association, Natural Resources Defence Council, National Hydropower Association, and others. However, AWEA is concerned that the Department of Energy’s recent proposal to provide payments to specific resources based on arbitrary requirements is anti-competitive, and threatens to undermine electricity markets that are bolstering reliability and saving consumers billions of dollars per year.

“We support the objective of maintaining a reliable and resilient grid which is best achieved through free and open markets, with a focus on needed reliability services – not sources – and a programme to promote transmission infrastructure.”

Kiernan outlined several major policy recommendations in his testimony, including reliance on competitive markets that reward performance to ensure affordable and reliable electricity, a focus on reliability needs rather than generation sources and the promotion of transmission infrastructure investment to improve resilience and allow consumers greater access to all low-cost forms of energy.

The CEO of the North American Electric Reliability Corporation (NERC) has recently testified that the state of reliability in North America remains strong and the trend line shows continuing improvement year over year. Technological advances and innovation by over 100,000 US wind workers enable wind farms today to provide the grid reliability services traditionally provided by conventional power plants. NERC’s CEO emphasised in its testimony at last month’s hearing that “variable resources significantly diversify the generation portfolio and can contribute to reliability and resilience in important ways.”

 

Related News

View more

US Army deploys its first floating solar array

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

View more

Road to electric vehicle targets in Manitoba not smooth, experts say

Manitoba ZEV Roadblocks highlight EV charging station gaps, rural infrastructure limits, dealership supply shortages, and ZEV mandate timelines, pushing mode shift to transit, cycling, and walking while hampering zero-emission vehicle adoption across the province.

 

Key Points

EV charging gaps, rural access limits, and supply constraints slow Manitoba's progress toward ZEV targets.

✅ Sparse Level 3 fast chargers outside Winnipeg

✅ Rural infrastructure limits long-distance confidence

✅ Dealership supply lags; long pre-order wait times

 

The federal government’s push toward zero-emission vehicles (ZEVs), including forthcoming EV sales regulations, is hitting some roadblocks in Manitoba.

Earlier this year, Ottawa set a sales target to encourage Canadians to choose ZEVs. By 2026, their goal is to have ZEVs make up 20 per cent of new vehicle purchases. By 2035, they want all new vehicles sold to be ZEVs, a target that has sparked 2035 EV mandate debate among industry observers.

READ MORE: Ottawa sets 2026 target for mandating electric vehicle sales

Connie Blixhavn with the Manitoba Electric Vehicle Association (MEVA) doesn’t think Manitoba is on track.

“We’re not, not at all,” she said.

Blixhavn lives in Killarney, Man., and bought an electric vehicle last year. She plans her trips to Brandon and Winkler around the life of her car’s battery, but finds the charging infrastructure to be lacking and unreliable, a challenge echoed by Labrador's lagging infrastructure in Newfoundland and Labrador.

“Brandon is my closest place to get a level three charge, and when they’re not working, it limits where you can go,” she said.

Level three is the fastest type of EV charger, taking about 15-45 minutes to fully charge a vehicle’s batteries.

According to CAA, 68 of the province’s 94 EV charging stations are in Winnipeg. Blixhavn says it limits options for rural people to confidently adopt EVs, even as jurisdictions like the N.W.T. encourage EV adoption through targeted programs.

“I know we’re a big area, but they need to strategically plan where they put these so we all have access,” she said.

ZEVs are often not found on dealership lots – they have to be pre-ordered. One dealership employee told Global News demand far outweighs supply, amid EV shortages and wait times reported nationally, with some customers waiting one to two years for their new vehicle to arrive.

Mel Marginet with the Green Action Centre’s Sustainable Transporation Team is also wary of Manitoba’s ability to meet the 2026 goal, noting that even as experts question Quebec's EV push there are broader challenges. She believes the only way to come close is to change how much Manitobans use personal vehicles altogether.

“If we’re really concerned about the environment, we need to double and triple down on just reducing personal vehicle trips by and large,” she said.

Marginet points to transit, walking and cycling as ways to reduce reliance on driving.

“We depend on personal vehicles a lot in this province, and far more than we should have to,” she said. “My biggest worry is that we’ll take resources away from what we need to build to get people to use personal vehicles less.”

For Blixhavn, the lack of charging stations in her area has caused her to reduce her vehicle use. While she says she’s fine with the extra planning it takes to travel, she believes the lack of infrastructure is preventing Manitobans, especially those in rural areas, from catching up with other provinces, as Atlantic Canada EV interest lags the rest of the country, when it comes to choosing electric vehicles.

 

Related News

View more

Electric cars don't need better batteries. America needs better charging networks

EV charging anxiety reflects concerns beyond range anxiety, focusing on charging infrastructure, fast chargers, and network reliability during road trips, from Tesla Superchargers to Electrify America stations across highways in the United States.

 

Key Points

EV charging anxiety is worry about finding reliable fast chargers on public networks, not just limited range.

✅ Non-Tesla networks vary in uptime and plug-and-charge reliability.

✅ Charging deserts complicate route planning on long highway stretches.

✅ Sync stops: align rest breaks with fast chargers to save time.

 

With electric cars, people often talk about "range anxiety," and how cars with bigger batteries and longer driving ranges will alleviate that. I just drove an electric car from New York City to Atlanta, a distance of about 950 miles, and it taught me something important. The problem really isn't range anxiety. It's anxiety around finding a convenient and working chargers on America's still-challenged EV charging networks today.

Back in 2019, I drove a Tesla Model S Long Range from New York City to Atlanta. It was a mostly uneventful trip, thanks to Tesla's nicely organized and well maintained network of fast chargers that can fill the batteries with an 80% charge in a half hour or less. Since then, I've wanted to try that trip again with an electric car that wasn't a Tesla, one that wouldn't have Tesla's unified charging network to rely on.
I got my chance with a Mercedes-Benz EQS 450+, a car that is as close to a direct competitor to the Tesla Model S as any. And while I made it to Atlanta without major incident, I encountered glitchy chargers, called the charging network's customer service twice, and experienced some serious charging anxiety during a long stretch of the Carolinas.

Long range
The EPA estimated range for the Tesla I drove in 2019 was 370 miles, and Tesla's latest models can go even further.

The EQS 450+ is officially estimated to go 350 miles on a charge, but I beat that handily without even trying. When I got into the car, its internal displays showed a range estimate of 446 miles. On my trip, the car couldn't stretch its legs quite that far, because I was driving almost entirely on highways at fairly high speeds, but by my calculations, I could have gone between 370 and 390 miles on a charge.

I was going to drive over the George Washington Bridge then down through New Jersey, Delaware, Virginia then North Carolina and South Carolina. I figured three charging stops would be needed and, strictly speaking, that was correct. The driving route laid out by the car's navigation system included three charging stops, but the on-board computers tended push things to the limit. At each stop, the battery would be drained to a little over 10% or so. (I learned later this is a setting I could adjust to be more conservative if I'd wanted.)

But I've driven enough electric cars to have some concerns. I use public chargers fairly often, and I know they're imperfect, and we need to fix these problems to build confidence. Sometimes they aren't working as well as they should. Sometimes they're just plain broken. And even if the car's navigation system is telling you that a charger is "available," that can change at any moment. Someone else can pull into the charging spot just a few seconds before you get there.
I've learned to be flexible and not push things to the limit.

On the first day, when I planned to drive from New York to Richmond, Virginia, no charging stop was called for until Spotsylvania, Virginia, a distance of nearly 300 miles. By that point, I had 16% charge left in the car's batteries which, by the car's own calculation, would have taken me another 60 miles.

As I sat and worked inside the Spotsylvania Town Centre mall I realized I'd been dumb. I had already stopped twice, at rest stops in New Jersey and Delaware. The Delaware stop, at the Biden Welcome Center, had EV fast chargers, as the American EV boom accelerates nationwide. I could have used one even though the car's navigation didn't suggest it.

Stopping without charging was a lost opportunity and it cost me time. If I'm going to stop to recharge myself why not recharge the car, too?
But that's the thing, though. A car can be designed to go 350 miles or more before needing to park whereas human beings are not. Elementary school math will tell you that at highway speeds, that's nearly six hours of driving all at once. We need bathrooms, beverages, food, and to just get out and move around once in a while. Sure, it's physically possible to sit in a car for longer than that in one go, but most people in need of speed will take an airplane, and a driver of an EQS, with a starting price just north of $100,000, can almost certainly afford the ticket.

I stopped for a charge in Virginia but realized I could have stopped sooner. I encountered a lot of other electric cars on the trip, including this Hyundai Ioniq 5 charging next to the Mercedes.

I vowed not to make that strategic error again. I was going to take back control. On the second day, I decided, I would choose when I needed to stop, and would look for conveniently located fast chargers so both the EQS and I could get refreshed at once. The EQS's navigation screen pinpointed available charging locations and their maximum charging speeds, so, if I saw an available charger, I could poke on the icon with my finger and add it onto my route.

For my first stop after leaving Richmond, I pulled into a rest stop in Hillsborough, North Carolina. It was only about 160 miles south from my hotel and I still had half of a full charge.

I sipped coffee and answered some emails while I waited at a counter. I figured I would take as long as I wanted and leave when I was ready with whatever additional electricity the car had gained in that time. In all, I was there about 45 minutes, but at least 15 minutes of that was used trying to get the charger to work. One of the chargers was simply not working at all, and, at another one, a call to Electrify America customer service -- the EV charging company owned by Volkswagen that, by coincidence, operated all the chargers I used on the trip -- I got a successful charging session going at last. (It was unclear what the issue was.)

That was the last and only time I successfully matched my own need to stop with the car's. I left with my battery 91% charged and 358 miles of range showing on the display. I would only need to stop once more on way to Atlanta and not for a long time.

Charging deserts
Then I began to notice something. As I drove through North Carolina and then South Carolina, the little markers on the map screen indicating available chargers became fewer and fewer. During some fairly long stretches there were none showing at all, highlighting how better grid coordination could improve coverage.

It wasn't an immediate concern, though. The EQS's navigation wasn't calling for me to a charge up again until I'd nearly reached the Georgia border. By that point I would have about 11% of my battery charge remaining. But I was getting nervous. Given how far it was between chargers my whole plan of "recharging the car when I recharge myself" had already fallen apart, the much-touted electric-car revolution notwithstanding. I had to leave the highway once to find a gas station to use the restroom and buy an iced tea. A while later, I stopped for lunch, a big plate of "Lexington Style BBQ" with black eyed peas and collard greens in Lexington, North Carolina. None of that involved charging because there no chargers around.

Fortunately, a charger came into sight on my map while I still had 31% charge remaining. I decided I would protect myself by stopping early. After another call to Electrify America customer service, I was able to get a nice, high-powered charging session on the second charger I tried. After about an hour I was off again with a nearly full battery.

I drove the last 150 miles to Atlanta, crossing the state line through gorgeous wetlands and stopping at the Georgia Welcome Center, with hardly a thought about batteries or charging or range.

But I was driving $105,000 Mercedes. What if I'd been driving something that cost less and that, while still going farther than a human would want to drive at a stretch, wouldn't go far enough to make that trip as easily, a real concern for those deciding if it's time to buy an electric car today. Obviously, people do it. One thing that surprised me on this trip, compared to the one in 2019, was the variety of fully electric vehicles I saw driving the same highways. There were Chevrolet Bolts, Audi E-Trons, Porsche Taycans, Hyundai Ioniqs, Kia EV6s and at least one other Mercedes EQS.

Americans are taking their electric cars out onto the highways, as the age of electric cars gathers pace nationwide. But it's still not as easy as it ought to be.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified