Renewables Poised to Eclipse Coal in Global Power Generation by 2025


wind power

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

IEA Electricity 2024 Renewables Outlook projects renewable energy surpassing coal in global electricity generation by early 2025, with nuclear power rebounding, clean energy expansion, electrification, and grid upgrades cutting emissions and decarbonizing power systems.

 

Key Points

IEA forecast: renewables beat coal by 2025, nuclear rebounds, speeding cleaner power and deeper emissions cuts by 2026.

✅ Renewables surpass coal by 2025; nuclear output hits records by 2025-2026.

✅ Power demand grows 3.4% avg to 2026 via EVs, data centers, electrification.

✅ Gas displaces coal; grids need investment; drought and supply chains pose risks.

 

The International Energy Agency's latest Electricity 2024 report predicts that renewable energy sources will surpass coal in global electricity generation by early 2025, reaching over one-third of the world's total power output. Additionally, nuclear power is expected to achieve record production levels by 2025, recovering from recent downturns and reflecting low-carbon electricity lessons from the COVID-19 period.

By 2026, the report estimates that renewables and nuclear will jointly contribute to nearly half of the global power generation, up from less than 40 percent in 2023. This shift is crucial as the United Nations emphasizes the transition to clean energy, with Asia to use half of electricity by 2025 highlighting the scale of the challenge, as a key factor in limiting global warming to 1.5 degrees Celsius above preindustrial levels.

IEA Executive Director Fatih Birol highlighted the promising trends of renewables, led by affordable solar power and the resurgence of nuclear power, as key factors covering almost all demand growth over the next three years.

At the COP28 climate summit in Dubai, participants agreed on a plan for phasing out fossil fuels and committed to tripling renewable capacity by 2030. This shift in the electricity mix is expected to reduce emissions from the power sector, which is currently the largest source of carbon dioxide emissions worldwide.

Despite a modest 2.2 percent growth in global electricity demand in 2023, an acceleration to an average annual increase of 3.4 percent is projected from 2024 to 2026. This surge in electricity demand is driven by factors like home and business electrification, the proliferation of electric vehicles, and industrial expansion.

Significant growth in electricity usage from data centers worldwide is anticipated, potentially doubling between 2022 and 2026, as global power demand has surged above pre-pandemic levels. Regulatory updates and technological advancements are essential to manage this energy consumption increase effectively.

Emissions from the electricity sector are expected to decrease following a 1 percent rise in 2023, with a more than 2 percent reduction projected in 2024 and continued declines in subsequent years. This reduced carbon intensity in electricity generation will enhance the emissions savings from electrifying cars and appliances.

Natural gas-fired power is predicted to see a modest increase over the next three years, primarily replacing coal power. While Europe has witnessed sharp declines in gas power, EU wind and solar beat gas last year, growth in the United States, Asia, Africa, and the Middle East is expected due to available liquefied natural gas supplies.

By 2026, fossil fuels are forecasted to account for 54 percent of global generation, dropping below 60 percent for the first time in over five decades. The U.S. is anticipated to boost renewable generation by approximately 10 percent annually between 2024 and 2026, surpassing coal generation in 2024.

The report warns of potential risks to clean energy trends, including droughts impacting hydropower, extreme weather affecting electricity reliability, and supply chain interruptions threatening new renewable and nuclear projects, and a generation mix sensitive to policies and gas prices that could shift trajectories.

Keisuke Sadamori, IEA’s director of energy markets and security, underscores the need for continued investment in grid infrastructure to integrate incoming renewable energy and sustain the power sector's trajectory towards emissions reduction goals.

Related News

Ford Motor Co. details plans to spend $1.8B to produce EVs

Ford Oakville Electric Vehicle Complex will anchor EV production in Ontario, adding a battery plant, retooling lines, and assembly capacity for passenger models targeting the North American market and Canada's zero-emission mandates.

 

Key Points

A retooled Ontario hub for passenger EV production, featuring on-site battery assembly and modernized lines.

✅ Retooling begins Q2 2024; EV production slated for 2025.

✅ New 407,000 sq ft battery plant for pack assembly.

✅ First full-line passenger EV production in Canada.

 

Ford Motor Co. has revealed some details of its plan to spend $1.8 billion on its Oakville Assembly Complex to turn it into an electric vehicle production hub, a government-backed Oakville EV deal, in the latest commitment by an automaker transitioning towards an electric future.

The automaker said Tuesday that it will start retooling the Ontario complex in the second quarter of 2024, bolstering Ontario's EV jobs boom, and begin producing electric vehicles in 2025.

The transformation of the Oakville site, to be renamed the Oakville Electric Vehicle Complex, will include a new 407,000 square-foot battery plant, similar to Honda's Ontario battery investment efforts, where parts produced at Ford's U.S. operations will be assembled into battery packs.

General Motors is already producing electric delivery vans in Canada, and its Ontario EV plant plans continue to expand, but Ford says this is the first time a full-line automaker has announced plans to produce passenger EVs in Canada for the North American market.

GM said in February it plans to build motors for electric vehicles at its St. Catharines, Ont. propulsion plant, aligning with the Niagara Region battery investment now underway. The motors will go into its BrightDrop electric delivery vans, which it produces in part at its Ingersoll, Ont. plant, as well as its electric pickup trucks, producing enough at the plant for 400,000 vehicles a year.

Ford's announcement is the latest commitment by an automaker transitioning towards an electric future, part of Canada's EV assembly push that is accelerating.

"Canada and the Oakville complex will play a vital role in our Ford Plus transformation," said chief executive Jim Farley in a statement.

The company has committed to invest over US$50 billion in electric vehicles globally and has a target of producing two million EVs a year by the end of 2026 as part of its Ford Plus growth plan, reflecting an EV market inflection point worldwide.

Ford didn't specify in the release which models it planned to build at the Oakville complex, which currently produces the Ford Edge and Lincoln Nautilus.

The company's spending plans were first announced in 2020 as part of union negotiations, with workers seeking long-term production commitments and the Detroit Three automakers eventually agreeing to invest in Canadian operations in concert with spending agreements with the Ontario and federal governments.

The two governments agreed to provide $295 million each in funding to secure the Ford investment.

"The partnership between Ford and Canada helps to position us as a global leader in the EV supply chain for decades to come," said Industry Minister Francois-Philippe Champagne in Ford's news release.

Funding help comes as the federal government moves to require that at least 20 percent of new vehicles sold in Canada will be zero-emission by 2026, at least 60 per cent by 2030, and 100 per cent by 2035.

 

Related News

View more

25.5% Of US Electricity Coming From Renewable Energy

US Renewable Energy Growth drives the US electricity mix as wind, solar, and hydropower rise while coal, natural gas, and nuclear decline, boosting market share month over month and year over year across the grid.

 

Key Points

US Renewable Energy Growth tracks rising wind, solar, and hydro shares in the mix as coal, gas, and nuclear decline.

✅ Wind and solar surpass nuclear in April share

✅ Renewables reach 29.3% of US electricity in April

✅ Coal and natural gas shares trend lower since 2020

 

Electricity generated by renewable energy sources continues to grow month over month and year over year in the United States. In April 2022, the share of US electricity coming from renewable energy was up to 29.3%, surpassing a record April level reported previously in national data. That was up from 24.8% in April 2020 and 25.7% in April 2021.

Looking at the first four months of the year, renewables provided 25.5% of US electricity, and were the second-most U.S. source in 2020 as well, while the figure for January–April 2020 was 21.7% and the figure for January–April 2021 was 22.5%.

Coal power (20.2% of US electricity) was down year over year in this time period (from 22% in January–April 2021), even as renewables surpassed coal in 2022 nationwide, but is admittedly still a bit higher than it was in January–April 2020 (16.8%).

Electricity from natural gas is also down year over year, but only very slightly (34.7% for both years). Though, it has dropped significantly since January–April 2020 (39.6%).

Electricity from nuclear power continued to take a steady, step-by-step tumble.

Wind & Solar Power Growth Strong
As reported earlier, April was the first month that wind and solar power provided more electricity than nuclear across the United States. Wind and solar power provided 21% of US electricity, while nuclear power provided 17.8% of US electricity (coal, incidentally, also provided 17.8% of US electricity, but wind and solar had provided more electricity than coal in some previous months as well).

Wind and solar power’s combined market share for the first four months of the year was up from just 14.6% in 2020 and 18.4% in 2021.

Looking at their growth year over year, you can see strong and continuous expansion of solar-provided electricity and wind-provided electricity, amid favorable government plans that have supported deployment.

Solar grew from 2.9% in January–April 2020 to 3.6%in January–April 2021 to, eventually, 4.4% in January–April 2022, with solar's 2022 share rising to 4.7% for the full year. Wind rose from 9.2% to 10.3% to 12.2%.

Together, wind and solar were up from 12.1% in January–April 2020 to 13.9% in January–April 2021, reflecting a surge in wind power within the U.S. electricity mix over this period, to 16.7% January–April 2022.

Hydropower (6.5%) is holding approximately the same position as the same period in 2021 (6.5%), but it is down a significant chunk from April 2020 (8.2%).

 

Related News

View more

Solar and wind power curtailments are rising in California

CAISO Renewable Curtailments reflect grid balancing under transmission congestion and oversupply, reducing solar and wind output while leveraging WEIM trading, battery storage, and transmission expansion to integrate renewables and stabilize demand-supply.

 

Key Points

CAISO renewable curtailments are reductions in wind and solar output to balance grid amid congestion or oversupply.

✅ Driven mainly by transmission congestion, less by oversupply.

✅ Peaks in spring when demand is low and solar output is high.

✅ Mitigated by WEIM trades, new lines, and battery storage growth.

 

The California Independent System Operator (CAISO), the grid operator for most of the state, is increasingly curtailing solar- and wind-powered electricity generation, as reported in rising curtailments, as it balances supply and demand during the rapid growth of wind and solar power in California.

Grid operators must balance supply and demand to maintain a stable electric system as advances in solar and wind continue to scale. The output of wind and solar generators are reduced either through price signals or rarely, through an order to reduce output, during periods of:

Congestion, when power lines don’t have enough capacity to deliver available energy
Oversupply, when generation exceeds customer electricity demand

In CAISO, curtailment is largely a result of congestion. Congestion-related curtailments have increased significantly since 2019 because California's solar boom has been outpacing upgrades in transmission capacity.

In 2022, CAISO curtailed 2.4 million megawatthours (MWh) of utility-scale wind and solar output, a 63% increase from the amount of electricity curtailed in 2021. As of September, CAISO has curtailed more than 2.3 million MWh of wind and solar output so far this year, even as the US project pipeline is dominated by wind, solar, and batteries.

Solar accounts for almost all of the energy curtailed in CAISO—95% in 2022 and 94% in the first seven months of 2023. CAISO tends to curtail the most solar in the spring when electricity demand is relatively low (because moderate spring temperatures mean less demand for space heating or air conditioning) and solar output is relatively high, although wildfire smoke impacts can reduce available generation during fire season as well.

CAISO has increasingly curtailed renewable generation as renewable capacity has grown in California, and the state has even experienced a near-100% renewables moment on the grid in recent years. In 2014, a combined 9.0 gigawatts (GW) of wind and solar capacity had been built in California. As of July 2023, that number had grown to 17.6 GW. Developers plan to add another 3.0 GW by the end of 2024.

CAISO is exploring and implementing various solutions to its increasing curtailment of renewables, including:

The Western Energy Imbalance Market (WEIM) is a real-time market that allows participants outside of CAISO to buy and sell energy to balance demand and supply. In 2022, more than 10% of total possible curtailments were avoided by trading within the WEIM. A day ahead market is expected to be operational in Spring 2025.

CAISO is expanding transmission capacity to reduce congestion. CAISO’s 2022–23 Transmission Planning Process includes 45 transmission projects to accommodate load growth and a larger share of generation from renewable energy sources.

CAISO is promoting the development of flexible resources that can quickly respond to sudden increases and decreases in demand such as battery storage technologies that are rapidly becoming more affordable. California has 4.9 GW of battery storage, and developers plan to add another 7.6 GW by the end of 2024, according to our survey of recent and planned capacity changes. Renewable generators can charge these batteries with electricity that would otherwise have been curtailed.

 

Related News

View more

Electric Cars Have Hit an Inflection Point

U.S. EV Manufacturing Expansion accelerates decarbonization as Ford and SK Innovation invest in lithium-ion batteries and truck assembly in Tennessee and Kentucky, building new factories, jobs, and supply chain infrastructure in right-to-work states.

 

Key Points

A rapid scale-up of U.S. electric vehicle production, battery plants, and assembly lines fueled by major investments.

✅ Ford and SK build battery and truck plants by 2025

✅ $11.4B investment, 11,000 jobs in TN and KY

✅ Right-to-work context reshapes union dynamics

 

One theme of this newsletter is that the world’s physical infrastructure will have to massively change if we want to decarbonize the economy by 2050, which the United Nations has said is necessary to avoid the worst effects of the climate crisis. This won’t be as simple as passing a carbon tax or a clean-electricity mandate: Wires will have to be strung as the power grid expands; solar farms will have to be erected; industries will have to be remade. And although that kind of change can be orchestrated only by the government (hence the importance of the infrastructure bills in Congress), consumers and companies will ultimately do most of the work to make it happen.

Take electric cars, for instance. An electric car is an expensive, highly specialized piece of technology, but building one takes even more expensive, specialized technology—tools that tend to be custom-made, large and heavy, and spread across a factory or the world. And if you want those tools to produce a car in a few years, you have to start planning now, as the EV timeline accelerates ahead.

That’s exactly what Ford is doing: Last night, the automaker and SK Innovation, a South Korean battery manufacturer, announced that they were spending $11.4 billion to build two new multi-factory centers in Tennessee and Kentucky that are scheduled to begin production in 2025. The facilities, which will hire a combined 11,000 employees, will manufacture EV batteries and assemble electric F-series pickup trucks. While Ford already has several factories in Kentucky, this will be its first plant in Tennessee in six decades. The 3,600-acre Tennessee facility, located an hour outside Memphis, will be Ford’s largest campus ever—and its first new American vehicle-assembly plant in decades.

The politics of this announcement are worth dwelling on. Ford and SK Innovation were lured to Tennessee with $500 million in incentives; Kentucky gave them $300 million and more than 1,500 acres of free land. Ford’s workers in Detroit have historically been unionized—and, indeed, a source of power in the national labor movement. But with these new factories, Ford is edging into a more anti-union environment: Both Tennessee and Kentucky are right-to-work states, meaning that local laws prevent unions from requiring that only unionized employees work in a certain facility. In an interview, Jim Farley, Ford’s CEO, played coy about whether either factory will be unionized. (Last week, the company announced that it was investing $250 million, a comparative pittance, to expand EV production at its unionized Michigan facilities.)

That news might depress those on the left who hope that old-school unions, such as the United Auto Workers, can enjoy the benefits of electrification. But you can see the outline of a potential political bargain here. Climate-concerned Democrats get to see EV production expand in the U.S., creating opportunities for Canada to capitalize as supply chains shift, while climate-wary Republicans get to add jobs in their home states. (And unions get shafted.) Whether that bargain can successfully grow support for more federal climate policy, further accelerating the financial-political-technological feedback loop that I’ve dubbed “the green vortex,” remains to be seen.

Read: How the U.S. made progress on climate change without ever passing a bill

More important than the announcement is what it portends. In the past, environmentalists have complained that even when the law has required that automakers make climate-friendly cars, they haven’t treated them as a major product. It’s easy to tune out climate-friendly announcements as so much corporate greenwashing, amid recurring EV hype, but Ford’s two new factories represent real money: The automaker’s share of the investment exceeds its 2019 annual earnings. This investment is sufficiently large that Ford will treat EVs as a serious business line.

And if you look around globally, you’ll see that Ford isn’t alone. EVs are no longer the neglected stepchild of the global car industry. Here are some recent headlines:

Nine percent of new cars sold globally this year will be EVs or plug-in hybrids, according to S&P Global. That’s up from 3 percent two years ago, a staggering, iPhone-like rise.

GM, Ford, Volkswagen, Toyota, BMW, and the parent company of Fiat-Chrysler have all pledged that by 2030, at least 40 percent of their new cars worldwide will run on a non-gasoline source, and there is scope for Canada-U.S. collaboration as companies turn to electric cars. A few years ago, the standard forecast was that half of new cars sold in the U.S. would be electric by 2050. That timeline has moved up significantly not only in America, but around the world. (In fact, counter to its high-tech self-image, America is the laggard in this global transition. The two largest markets for EVs worldwide are China and the European Union.)

More remarkably (and importantly), automakers are spending like they actually believe that goal: The auto industry as a whole will pump more than $500 billion into EV investment by 2030, and new assembly deals are putting Canada in the race. Ford’s investment in these two plants represents less than a third of its planned total $30 billion investment in EV production by 2025, and that’s relatively small compared with its peers’. Volkswagen has announced more than $60 billion in investment. Honda has committed $46 billion.

Norway could phase out gas cars ahead of schedule. The country has one of the world’s most robust pro-EV policies, and it is still outperforming its own mandates. In the most recent accounting period, eight out of 10 cars had some sort of electric drivetrain. If the current trend holds, Norway would sell its last gas car in April of next year—and while I doubt the demise will be that steep, consumer preferences are running well ahead of its schedule to ban new gas-car sales by 2025.

 

Related News

View more

German steel powerhouse turns to 'green' hydrogen produced using huge wind turbines

Green Hydrogen for Steelmaking enables decarbonization in Germany by powering electrolyzers with wind turbines at Salzgitter. Partners Vestas, Avacon, and Linde support renewable hydrogen for iron ore reduction, cutting CO2 in heavy industry.

 

Key Points

Hydrogen from renewable-powered electrolysis replacing coal in iron ore reduction, cutting CO2 emissions from steelmaking

✅ 30 MW Vestas wind farm powers 2x1.25 MW electrolyzers.

✅ Salzgitter, Avacon, Linde link sectors to replace fossil fuels.

✅ Targets CO2 cuts in iron ore reduction and steel smelting.

 

A major green hydrogen facility in Germany has started operations, with those behind the project hoping it will help to decarbonize the energy-intensive steel industry in the years ahead. 

The "WindH2" project involves German steel giant Salzgitter, E.ON subsidiary Avacon and Linde, a firm specializing in engineering and industrial gases, and aligns with calls for hydrogen-ready power plants in Germany today.

Hydrogen can be produced in a number of ways. One method includes using electrolysis, with an electric current splitting water into oxygen and hydrogen, and advances in PEM hydrogen technology continue to improve efficiency worldwide.

If the electricity used in the process comes from a renewable source such as wind or solar, as underscored by recent German renewables gains, then it's termed "green" or "renewable" hydrogen.

The development in Germany is centered around seven new wind turbines operated by Avacon and two 1.25 megawatt (MW) electrolyzer units installed by Salzgitter Flachstahl, which is part of the wider Salzgitter Group. The facilities were presented to the public this week. 

The turbines, from Vestas, have a hub height of 169 meters and a combined capacity of 30 MW. All are located on premises of the Salzgitter Group, with three situated on the site of a steel mill in the city of Salzgitter, Lower Saxony, northwest Germany, where grid expansion woes can affect project timelines.

The hydrogen produced using renewables will be utilized in processes connected to the smelting of iron ore. Total costs for the project come to roughly 50 million euros (around $59.67 million), with the building of the electrolyzers subsidized by state-owned KfW, while a national net-zero roadmap could reduce electricity costs over time.

"Green gases have the wherewithal to become 'staple foodstuff' for the transition to alternative energies and make a considerable contribution to decarbonizing industry, mobility and heat," E.ON's CEO, Johannes Teyssen, said in a statement issued Thursday.

"The jointly realized project symbolizes a milestone on the path to virtually CO2 free production and demonstrates that fossil fuels can be replaced by intelligent cross-sector linking," he added.

According to the International Energy Agency, the iron and steel sector is responsible for 2.6 gigatonnes of direct carbon dioxide emissions each year, a figure that, in 2019, was greater than the direct emissions from sectors such as cement and chemicals. 

It adds that the steel sector is "the largest industrial consumer of coal, which provides around 75% of its energy demand."

The project in Germany is not unique in focusing on the role green hydrogen could play in steel manufacturing.

Across Europe, projects are also exploring natural gas pipe storage to balance intermittent renewables and enable sector coupling.

H2 Green Steel, a Swedish firm backed by investors including Spotify founder Daniel Ek, plans to build a steel production facility in the north of the country that will be powered by what it describes as "the world's largest green hydrogen plant."

In an announcement last month the company said steel production would start in 2024 and be based in Sweden's Norrbotten region.

Other energy-intensive industries are also looking into the potential of green hydrogen, and examples such as Schott's green power shift show parallel decarbonization. A subsidiary of multinational building materials firm HeidelbergCement has, for example, worked with researchers from Swansea University to install and operate a green hydrogen demonstration unit at a site in the U.K.

 

Related News

View more

Biden's interior dept. acts quickly on Vineyard Wind

Vineyard Wind I advances as BOEM issues a final environmental impact statement for the 800 MW offshore wind farm south of Martha's Vineyard, delivering clean energy, jobs, and carbon reductions to Massachusetts toward net-zero.

 

Key Points

An 800 MW offshore wind project near Martha's Vineyard supplying clean power to Massachusetts.

✅ 800 MW capacity; power for 400,000+ homes and businesses

✅ BOEM final EIS; record of decision pending within 30+ days

✅ 1.68M metric tons CO2 avoided annually; jobs and lower rates

 

Federal environmental officials have completed their review of the Vineyard Wind I offshore wind farm, moving the project that is expected to deliver clean renewable energy to Massachusetts by the end of 2023 closer to becoming a reality.

The U.S. Department of the Interior said Monday morning that its Bureau of Ocean Energy Management completed the analysis it resumed about a month ago, published the project's final environmental impact statement, and said it will officially publish notice of the impact statement in the Federal Register later this week.

"More than three years of federal review and public comment is nearing its conclusion and 2021 is poised to be a momentous year for our project and the broader offshore wind industry," Vineyard Wind CEO Lars Pedersen said. "Offshore wind is a historic opportunity to build a new industry that will lead to the creation of thousands of jobs, reduce electricity rates for consumers and contribute significantly to limiting the impacts of climate change. We look forward to reaching the final step in the federal permitting process and being able to launch an industry that has such tremendous potential for economic development in communities up and down the Eastern seaboard."

The 800-megawatt wind farm planned for 15 miles south of Martha's Vineyard was the first offshore wind project selected by Massachusetts utility companies with input from the Baker administration to fulfill part of a 2016 clean energy law. It is projected to generate cleaner electricity for more than 400,000 homes and businesses in Massachusetts, produce at least 3,600 jobs, reduce costs for Massachusetts ratepayers by an estimated $1.4 billion, and eliminate 1.68 million metric tons of carbon dioxide emissions annually.

Offshore wind power, informed by the U.S. offshore wind outlook, is expected to become an increasingly significant part of Massachusetts' energy mix. The governor and Legislature agree on a goal of net-zero carbon emissions by 2050, but getting there is projected to require having about 25 gigawatts of offshore wind power. That means Massachusetts will need to hit a pace in the 2030s where it has about 1 GW of new offshore wind power on the grid coming online each year.

"I think that's why today's announcement is so historic, because it does represent that culmination of work to understand how to permit and build a cost-effective and environmentally-responsible wind farm that can deliver clean energy to Massachusetts ratepayers, but also just how to do this from start to finish," said Energy and Environmental Affairs Secretary Kathleen Theoharides. "As we move towards our goal of probably [25 GW] of offshore wind by 2050 to hit our net-zero target, this does give us confidence that we have a much clearer path in terms of permitting."

She added, "There's a huge pipeline, so getting this project out really should open the door to the many additional projects up and down the East Coast, such as Long Island proposals, that will come after it."

According to the American Wind Energy Association, there are expected to be 14 offshore projects totaling 9,112 MW of capacity in operation by 2026.

Susannah Hatch, the clean energy coalition director for the Environmental League of Massachusetts and a leader of the broad-based New England for Offshore Wind Regional group, called offshore wind farms like Vineyard Wind "the linchpin of our decarbonization efforts in New England." She said the Biden administration's quick action on Vineyard Wind is a positive sign for the burgeoning sector.

"Moving swiftly on responsibly developed offshore wind is critical to our efforts to mitigate climate change, and offshore wind also provides an enormous opportunity to grow the economy, create thousands of jobs, and drive equitable economic benefits through increased minority economic participation in New England," Hatch said.

With the final environmental impact statement published, Vineyard Wind still must secure a record of decision from BOEM, which processes wind lease requests, an air permit from the Environmental Protection Agency and sign-offs from the U.S. Army Corps of Engineers and the National Marine Fisheries Service to officially clear the way for the project that is on track to be the nation's first utility-scale offshore wind farm. BOEM must wait at least 30 days from the publication of the final environmental impact statement to issue a record of decision.

Project officials have said they expect the final impact statement and then a record of decision "sometime in the first half of 2021." That would allow the project to hit its financial close milestone in the second half of this year, begin on-shore work quickly thereafter, start offshore construction in 2022, begin installing turbines in 2023 and begin exporting power to the grid, marking Vineyard Wind first power, by late 2023, Pedersen said in January.

"Offshore energy development provides an opportunity for us to work with Tribal nations, communities, and other ocean users to ensure all decisions are transparent and utilize the best available science," BOEM Director Amanda Lefton said.

The commercial fishing industry has been among the most vocal opponents of aspects of the Vineyard Wind project and the Responsible Offshore Development Alliance (RODA) has repeatedly urged the new administration to ensure the voices of the industry are heard throughout the licensing and permitting process.

In comments submitted earlier this month in response to a BOEM review of an offshore wind project that is expected to deliver power to New York, including the recent New York offshore wind approval, RODA said the present is "a time of significant confusion and change in the U.S. approach to offshore wind energy (OSW) planning" and detailed mitigation measures it wants to see incorporated into all projects.

"To be clear, none of these requests are new -- nor hardly radical. They have simply been ignored again, and again, and again in a political push/pull between multinational energy companies and the U.S. government, leaving world-famous seafood, and the communities founded around its harvest, off the table," the group said in a press release last week. Some of RODA's suggestions were analyzed as part of BOEM's Vineyard Wind review.

Vineyard Wind has certainly taken a circuitous path to get to this point. The timeline for the project was upended in August 2019 when the Trump administration decided to conduct a much broader assessment of potential offshore wind projects up and down the East Coast, which delayed the project by almost a year.

When the Trump administration delayed its action on a final environmental impact statement last year, Vineyard Wind on Dec. 1 announced that it was pulling its project out of the federal review pipeline in order to complete an internal study on whether the decision to use a certain type of turbine would warrant changes to construction and operations plan. The Trump administration declared the federal review of the project "terminated."

Within two weeks of President Joe Biden being inaugurated, Vineyard Wind said its review determined no changes were necessary and the company resubmitted its plans for review. BOEM agreed to pick up where the Trump administration had left off despite the agency previously declaring its review terminated.

"It would appear that fishing communities are the only ones screaming into a void while public resources are sold to the highest bidder, as BOEM has reversed its decision to terminate a project after receiving a single letter from Vineyard Wind," RODA said.

The final environmental impact statement that BOEM published Monday showed that the federal regulators believe the Vineyard Wind I development as proposed will have "moderate" impacts on commercial fisheries and for-hire recreational fishing outfits, and that the project combined with other factors not related to wind energy development will have "major" impacts on commercial and recreational fishing ventures.

Vineyard Wind pointed Monday to the fishery mitigation agreements it has entered into with Massachusetts and Rhode Island, a fishery science collaboration with the University of Massachusetts Dartmouth's School of Marine Science and Technology, and an agreement with leading environmental organizations around the protection of the endangered right whale.

Responding to concerns about safe navigation among RODA and others in the fishing sector, Vineyard Wind and the four other developers holding leases for offshore wind sites off New England agreed to orient their turbines in fixed east-to-west rows and north-to-south columns spaced one nautical mile apart. Last year, the U.S. Coast Guard concluded that the grid layout was the best way to maintain maritime safety and ease of navigation in the offshore wind development areas south of Martha's Vineyard and Nantucket.

Since a 2016 clean energy law kicked off the state's foray into the offshore wind world, Massachusetts utilities have contracted for a total of about 1,600 MW between two projects, Vineyard Wind I and Mayflower Wind.

A joint venture of Shell and Ocean Winds North America, Mayflower Wind was picked unanimously in 2019 by utility executives to build and operate a wind farm approximately 26 nautical miles south of Martha's Vineyard and 20 nautical miles south of Nantucket, with South Coast construction activity expected as the project progresses. The 804-megawatt project is expected to be operational by December 2025.

Massachusetts and its utilities are expected to go out to bid for up to another 1,600 MW of offshore wind generation capacity later this year using authorization granted by the Legislature in 2018.

The climate policy bill that Gov. Charlie Baker returned to the Legislature with amendments more than a month ago would require that the executive branch direct Massachusetts utilities to buy an additional 2,400 MW of offshore wind power.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.