Building Energy Celebrates the Beginning of Operations and Electricity Generation


Building Energy SpA

NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Building Energy Iowa Wind Farm delivers 30 MW of renewable energy near Des Moines, generating 110 GWh annually with wind turbines, a long-term PPA, CO2 reduction, and community benefits like jobs and clean power.

 

Key Points

Building Energy Iowa Wind Farm is a 30 MW project generating 110 GWh a year, cutting CO2 and supporting local jobs.

✅ 30 MW capacity, 10 onshore turbines (3 MW each)

✅ ~110 GWh per year; power for 11,000 households

✅ Long-term PPA; jobs and emissions reductions in Iowa

 

With 110 GWh generated per year, the plant will be beneficial to Iowa's environment, reflecting broader Iowa wind power investment trends, contributing to the reduction of 100,000 tons of CO2 emissions, as well as providing economic benefits to host local communities.

Building Energy SpA, multinational company operating as a global integrated IPP in the Renewable Energy Industry, amid milestones such as Enel's 450 MW U.S. wind project, through its subsidiary Building Energy Wind Iowa LLC, announces the inauguration of its first wind farm in Iowa, which adds up to 30 MW of wind distribution generation capacity. The project, located north of Des Moines, in Story, Boone, Hardin and Poweshiek counties, will generate approximately 110 GWh per year. The beginning of operations has been celebrated on the occasion of the Wind of Life event in Ames, Iowa, in the presence of Andrea Braccialarghe, MD America of Building Energy, Alessandro Bragantini, Chief Operating Officer of Building Energy and Giuseppe Finocchiaro, Italian Consul General.

The overall investment in the construction of the Iowa distribution generation wind farms amounted to $58 million and it sells its energy and related renewable credits under a bundled, long-term power purchase agreement with a local utility, reflecting broader utility investment trends such as WEC Energy's Illinois wind stake in the region.

The wind facility, developed, financed, owned and operated by Building Energy, consists of ten 3.0 MW geared onshore wind turbines, each with a rotor diameter of 125 meters mounted on an 87.5 meter steel tower. The energy generated will satisfy the energy needs of 11,000 U.S. households every year, similar in community impact to North Carolina's first wind farm, while avoiding the emission of about 70,000 tons of CO2 emissions every year, according to US Environmental Protection Agency methodology, which is equivalent to taking 15,000 cars off the road each year.

Besides the environmental benefits, the wind farm also has advantages for the local community, providing it with clean energy and creating jobs for local Iowans. The project involved more than a hundred of local skilled workers during the construction phase. Some of those jobs will be also permanent as necessary for the operation and maintenance activities as well as for additional services such as delivery, transportation, spare parts management, landscape mitigation, and further environmental monitoring studies.

The Company is present in many US states since 2013 with more than 500 MW of projects under development, spread across different renewable energy technologies, and aligning with federal initiatives like DOE wind energy awards that support innovation.

 

Related News

Related News

US Moving Towards 30% Electricity From Wind & Solar

US Wind and Solar Outlook 2026 projects cheap renewables displacing coal and gas, with utility-scale additions, rooftop solar growth, improved grid reliability, and EV V2G integration accelerating decarbonization across the electricity market.

 

Key Points

An analysis forecasting wind and solar growth, displacing coal and gas as utility-scale and rooftop solar expand.

✅ Utility-scale solar installs avg 21 GW/yr through 2026.

✅ 37.7 GW wind in pipeline; 127.8 GW already online.

✅ Small-scale solar could near 100 TWh in 2026.

 

A recent report from the Institute for Energy Economics and Financial Analysis (IEEFA) predicts that cheap renewables in the form of wind and solar will push coal and gas out of the energy market space. Already at 9% of US generation, the report predicts that wind and solar will supply almost 30% of US electricity demand by 2026, consistent with renewables nearing one-fourth of U.S. generation projections for the near term.

“The Solar Energy Industries Association now expects utility-scale installations to average more than 21,000MW a year through 2026, following a year when U.S. solar generation rose 25% and with a peak of 25,000MW in 2023,” IEEFA writes. “Continued growth is also expected in U.S. wind generation, mirroring global trends where China's solar PV expansion outpaced all other fuels in 2016, with 37.7GW of new capacity already under construction or in advanced development, which would be added to 127.8GW in existing installed capacity.”

Meanwhile, with wind and solar growth booming, fossil fuels are declining, as renewables surpassed coal in 2022 nationwide. “Coal and natural gas are now locked into an essentially zero-sum game where increases in one fuel’s generation comes at the expense of the other. Together, they are not gaining market share, rather they are trading it back and forth, and the rapid growth in renewable generation will cut even deeper into the market share of both.”

And what of rooftop solar? Some states in Australia now have periods where the entire state grid is powered just by solar on the roofs of private citizens. As this revolution progresses in the USA, especially if a tenfold national solar push moves forward, what impact will it make on fossil fuel generators — which are expensive to build, expensive to maintain, expensive to fuel, and rely on an expensive distribution network.

“EIA estimates that this ‘small-scale solar’ produced 41.7 million MWh of power in 2020, when solar accounted for about 3% of U.S. electricity, a 19 percent increase from 2019. This growth will likely continue in the years ahead as costs continue to fall and concerns about grid reliability rise. Assuming a conservative 15 percent annual increase in small-scale solar going forward would push the sector’s generation to almost 100 million MWh in 2026.”

The Joker in the story might be the impact from electric vehicle adoption. Sales are set to surge and there’s more and more interest in V2G technology, even as wind and solar could provide 50% by 2050 in broader forecasts.

 

Related News

View more

4 European nations to build North Sea wind farms

North Sea Offshore Wind Farms will deliver 150 GW by 2050 as EU partners scale renewable energy, offshore turbines, grid interconnectors, and REPowerEU goals to cut emissions, boost energy security, and reduce Russian fossil dependence.

 

Key Points

A joint EU initiative to build 150 GW of offshore wind by 2050, advancing REPowerEU, decarbonization, and energy security.

✅ Targets at least 150 GW of offshore wind by 2050

✅ Backed by Belgium, Netherlands, Germany, and Denmark

✅ Aligns with REPowerEU, grid integration, and emissions cuts

 

Four European Union countries plan to build North Sea wind farms capable of producing at least 150 gigawatts of energy by 2050 to help cut carbon emissions that cause climate change, with EU wind and solar surpassing gas last year, Danish media have reported.

Under the plan, wind turbines would be raised off the coasts of Belgium, the Netherlands, Germany and Denmark, where a recent green power record highlighted strong winds, daily Danish newspaper Jyllands-Posten said.

The project would mean a tenfold increase in the EU's current offshore wind capacity, underscoring how renewables are crowding out gas across Europe today.

“The North Sea can do a lot," Danish Prime Minister Frederiksen told the newspaper, adding the close cooperation between the four EU nations "must start now.”

European Commission President Ursula von der Leyen, German Chancellor Olaf Scholz, Dutch Prime Minister Mark Rutte and Belgian Prime Minister Alexander De Croo are scheduled to attend a North Sea Summit on Wednesday in Esbjerg, 260 kilometers (162 miles) west of Copenhagen.

In Brussels, the European Commission moved Wednesday to jump-start plans for the whole 27-nation EU to abandon Russian energy amid the Kremlin’s war in Ukraine. The commission proposed a nearly 300 billion-euro ($315 billion) package that includes more efficient use of fuels and a faster rollout of renewable power, even as stunted hydro and nuclear output may hobble recovery efforts.

The investment initiative by the EU's executive arm is meant to help the bloc start weaning themselves off Russian fossil fuels this year, even as Europe is losing nuclear power during the transition. The goal is to deprive Russia, the EU’s main supplier of oil, natural gas and coal, of tens of billions in revenue and strengthen EU climate policies.

“We are taking our ambition to yet another level to make sure that we become independent from Russian fossil fuels as quickly as possible,” von der Leyen said in Brussels when announcing the package, dubbed REPowerEU.

The EU has pledged to reduce carbon dioxide emissions by 55% compared with 1990 levels by 2030, and to get to net zero emissions by 2050, with a recent German renewables milestone underscoring the pace of change.

The European Commission has set an overall target of generating 300 gigawatts of offshore energy of by 2050, though grid expansion challenges in Germany highlight hurdles.

Along with climate change, the war in Ukraine has made EU nations eager to reduce their dependency on Russian natural gas and oil. In 2021, the EU imported roughly 40% of its gas and 25% of its oil from Russia.

At a March 11 summit, EU leaders agreed in principle to phase out Russian gas, oil and coal imports by 2027.

 

Related News

View more

Solar produced 4.7% of U.S. electricity in 2022, generation up 25%

US Solar Electricity Generation 2022 rose to a 4.7% share, with 202,256 GWh, per EIA Electric Power Monthly; driven by PV capacity additions despite import constraints, alongside renewables trends in wind, nuclear, and hydroelectric output.

 

Key Points

The share and output of US solar PV in 2022: 4.7% of electricity and 202,256 GWh, as reported by the EIA.

✅ Solar PV reached 4.7% of US power; 202,256 GWh generated in 2022.

✅ Monthly share varied from about 3% in Jan to just over 6% in Apr.

✅ Wind was 10.1%; wind+solar hit slightly over 20% in April.

 

In 2022, solar photovoltaics made up 4.7% of U.S. electricity generation, an increase of almost 21% over the 2021 total when solar produced 3.9% of US electricity and about 3% in 2020 according to long-term outlooks. Total solar generation was up 25%, breaking through 200,000 GWh for the year.

The record deployment volumes of 2020 when renewables became the second-most U.S. electricity source and 2021 are the main factors behind this increase. If it were not for ongoing solar panel import difficulties and general inflation, solar’s contribution to electricity generation might have reached 5% in 2022. The data was released by the Department of Energy’s Energy Information Administration (EIA) in their Electric Power Monthly. This release includes data from December 2022, as well as the rest of the data from 2022.

Solar as a percentage of monthly electricity generation ranged from a low of almost 3% in January, to just over 6% in April. April’s production marked a new monthly record for solar generation in the US and coincided with a renewables share record that month.

Total generation of solar electricity peaked in July, at 21,708 GWh. Over the course of the year, solar production reached  202,256 GWh, and total U.S. electricity generation reached 4,303,980 GWh, a year in which renewables surpassed coal in the power mix overall. Total US electricity generation increased by 3.5% over the 4,157,467 GWh produced in 2021.

In 2022, wind energy contributed 10.1% of the total electricity generated in the United States. Wind and solar together produced 14.8% of U.S. electricity in 2022, growing from the 13% recorded in 2021. In April, when solar power peaked at just over 6%, wind and solar power together reached a peak of slightly over 20%, as a wind-and-solar milestone versus nuclear was noted that month, a new monthly record for the two energy sources.

In total, emissions free energy sources such as wind, solar photovoltaic and thermal, nuclear, hydroelectric, and geothermal, accounted for 37.9% of the total electricity generated in the U.S., while renewables provided about 25.5% share of the mix during the year. This value is barely higher than 2020’s 37.7% – but represents a return to growth after 2021 saw a decrease in emission free electricity to 37%.

Nuclear power was the most significant contributor to emission free electricity, making up a bit more than 45% of the total emissions free electricity. Wind energy ranked second at 26%, followed by hydroelectricity at 15%, and solar photovoltaic at 12%, confirming solar as the #3 renewable in the U.S. mix.

Emissions free electricity is a different summation than the EIA’s ‘Renewable Energy’ category. The Renewable Energy category also includes:

  • Wood and Wood-Derived Fuels
  • Landfill Gas
  • Biogenic Municipal Solid Waste
  • Other Waste Biomass

Nuclear produced 17.9% of the total U.S. electricity, a value that has generally stayed flat over the years. However, since nuclear facilities are being retired faster than new facilities are coming online, nuclear production has fallen in the past two years. After multiple long delays, we will probably see reactor three of the Vogtle nuclear facility come online in 2023. Reactor four is officially scheduled to come online later this year.

Hydroelectric production also declined in 2022, due to drought conditions in the southwestern United States. With rain and snow storms in California and the southwest, hydroelectricity generation may rebound in 2023.

 

Related News

View more

Report: Canada's renewable energy growth projections scaled back after Ontario scraps clean energy program

Canada Renewable Energy Outlook highlights IEA forecasts of slower capacity growth as Ontario cancels LRP auctions; wind, solar, and hydro expand amid carbon pricing, coal phase-out, Alberta tenders, and falling costs despite natural gas competition.

 

Key Points

The Canada Renewable Energy Outlook distills IEA projections and policies behind wind, solar, and hydro growth to 2022.

✅ IEA trims Canada renewables growth to 9 GW by 2022

✅ Ontario LRP cuts and Quebec tenders reduce near-term additions

✅ Wind, solar, hydro expand amid carbon pricing and coal phase-out

 

A new report expects growth in Canadian renewable energy capacity to slow in the next five years compared to earlier projections, a decrease that comes after Ontario scrapped a contentious clean energy program aimed at boosting wind and solar supplies.

The International Energy Agency’s annual outlook for renewable energy, released Wednesday, projects Canada’s renewable capacity to grow by nine gigawatts between 2017 and 2022, down from last year’s report that projected capacity would grow by 13GW.

The influential Paris-based agency said its recent outlook for Canadian renewables was “less optimistic” than its 2016 projection due to “recent changes in auctions schemes in Ontario and Quebec.”

 

PROGRAM CUTS

In mid-2016 the Ontario government suspended the second phase of its Large Renewable Procurement (LPR) program, axing $3.8 billion in planned renewable energy contracts. And Quebec cancelled tenders for several clean energy projects, which also led the agency to trim its forecasts, the report said.

Ontario cut the LRP program amid anger over rising electricity bills, which critics said was at least partly due to the rapid expansion of wind power supplies across the province.

Experts said the rise in costs was also partly due to major one-time costs to maintain aging infrastructure, particularly the $12.8-billion refurbishment of the Darlington nuclear plant located east of Toronto. The province also has plans to renovate the nearby Pickering nuclear plant in coming years.

The IEA report comes as Ottawa aims to drastically cut carbon emissions, largely by expanding renewable energy capacity. The provinces, including the Prairie provinces, have meanwhile been looking to pare back emissions by phasing out coal and implementing a carbon tax.

While Ontario’s decision to scrap the LRP program is a minor setback in the near-term, analysts say that tightening environmental policy in Canada and elsewhere will regardless continue to drive rapid growth in renewable energy supplies like wind power and solar.

Even the threat of cheap supplies of natural gas, a major competitor to renewable supplies, is unlikely to keep wind and solar supplies off the market, despite lagging solar demand in some regions, as costs continue to fall.

“It’s not just this (Ontario) renewables program, it’s the carbon pricing program, the coal phase out, a whole plethora of programs that are squeezing natural gas margins,” said Dave Sawyer, an economist at EnviroEconomics in Ottawa.

 

RENEWABLE ENERGY CAPACITY

Canada’s renewable energy capacity is still expected to grow at a robust 10 per cent per year, the report said, and is expected to supply 69 per cent of overall power generation in the country by 2022.

The IEA, however, expects the growth in hydro power capacity to “slow significantly” beyond 2022, after a raft of new hydro projects come online.

Canadian hydro power capacity is projected to grow 2.2GW in the next five years, mostly due to the commissioning of the Keeyask plant in Manitoba the Muskrat Falls dam in Newfoundland and Labrador and the Romaine 3 and 4 stations in Quebec, in a sector where Canada ranks in the top 10 for hydropower jobs nationwide.

Solar capacity in Canada is expected to grow by 2GW to 4.7GW in 2022, approaching the 5 GW milestone in the near term, mostly due to feed-in-tariff programs in Ontario and renewable energy tenders currently underway in Alberta.

Globally, China and India lead renewable capacity growth projections. China alone is expected to be responsible for 40 per cent of renewable capacity growth in the next five years, while India will double its renewable electricity capacity by 2022. The world is collectively expected to grow renewable electricity capacity by 43 per cent between 2017 and 2022.

 

Related News

View more

When We Lean Into Clean Energy, Rural America Thrives

USDA Rural Clean Energy Programs drive climate-smart infrastructure, energy efficiency, and smart grid upgrades, delivering REAP grants, renewable power, and cost savings that boost rural development, create jobs, and modernize electric systems nationwide.

 

Key Points

USDA programs funding renewable upgrades, efficiency projects, and grid resilience to cut costs and spur rural growth.

✅ REAP grants fund renewable and efficiency upgrades

✅ Smart grid loans strengthen rural electric resilience

✅ Projects cut energy costs and support good-paying jobs

 

When rural communities lean into clean energy, the path to economic prosperity is clear. Cleaner power options like solar and electric guided by decarbonization goals provide new market opportunities for producers and small businesses. They reduce energy costs for consumers and supports good-paying jobs in rural America.

USDA Rural Development programs have demonstrated strong success in the fight against climate change, as recent USDA grants for energy upgrades show while helping to lower energy costs and increase efficiency for people across the nation.

This week, as we celebrate Earth Day, we are proud to highlight some of the many ways USDA programs advance climate-smart infrastructure, including the first Clean Energy Community designation that showcases local leadership, to support economic development in rural areas.

Advancing Energy Efficiency in Rural Massachusetts

Prior to receiving a Rural Energy for America Program (REAP) grant from USDA, Little Leaf Farms in the town of Devens used a portable, air-cooled chiller to cool its greenhouses. The inefficient cooling system, lighting and heating accounted for roughly 20 percent of the farm's production costs.

USDA Rural Development awarded the farm a $38,471 REAP grant to purchase and install a more efficient air-cooled chiller. This project is expected to save Little Leaf Farms $51,341 per year and will replace 798,472 kilowatt-hours per year, which is enough energy to power 73 homes.

To learn more about this project, visit the success story: Little Leaf Farms Grows Green while Going Green | Rural Development (usda.gov).

In the Fight Against Climate Change, Students in New Hampshire Lead the Way

Students at White Mountains Regional High School designed a modern LED lighting retrofit informed by building upgrade initiatives to offset power costs and generate efficient energy for their school.

USDA Rural Development provided the school a $36,900 Economic Impact Initiative Grant under the Community Facilities Program to finance the project. Energy upgrades are projected to save 92,528 kilowatt-hours and $12,954 each year, and after maintenance reduction is factored in, total savings are estimated to be more than $20,000 annually.

As part of the project, the school is incorporating STEM (Science, Technology, Math and Engineering) into the curriculum to create long-term impacts for the students and community. Students will learn about the lighting retrofit, electricity, energy efficiency and wind energy as well as climate change.

Clean Energy Modernizes Power Grid in Rural Pennsylvania

USDA Rural Development is working to make rural electric infrastructure stronger, more sustainable and more resilient than ever before, and large-scale energy projects in New York reinforce this momentum nationwide as well. For instance, Central Electric Cooperative used a $20 million Electric Infrastructure Loan Program to build and improve 111 miles of line and connect 795 people.

The loan includes $115,153 in smart grid technologies to help utilities better manage the power grid, while grid modernization in Canada underscores North America's broader transition to cleaner, more resilient systems. Central Electric serves about 25,000 customers over 3,049 miles of line in seven counties in western Pennsylvania.

Agricultural Producers Upgrade to Clean Energy in New Jersey

Tuckahoe Turf Farms Inc. in Hammonton used a REAP grant to purchase and install a 150HP electric irrigation motor to replace a diesel motor. The project will generate 18.501 kilowatt-hours of energy.

In Asbury, North Jersey RCandD Inc. used a REAP grant to conduct energy assessments and provide technical assistance to small businesses and agricultural producers in collaboration with EnSave.

 

Related News

View more

Zero-emissions electricity by 2035 is possible

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified