There's Room For Canada-U.S. Collaboration As Companies Turn To Electric Cars


ev charging

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Canada EV Supply Chain aligns electric vehicle manufacturing, batteries, and autonomous tech with cross-border trade, leveraging lithium, cobalt, and rare earths as GM, Ford, and Project Arrow scale zero-emissions innovation and domestic sourcing.

 

Key Points

Canada's integrated resources, battery tech, and manufacturing network supporting EV production and cross-border trade.

✅ Leverages lithium, cobalt, and rare earths for battery supply

✅ Integrates GM, Ford, and Project Arrow manufacturing hubs

✅ Aligns with autonomous tech, hydrogen, and zero-emissions goals

 

The storied North American automotive industry, the ultimate showcase of Canada’s high-tensile trade ties with the United States, is about to navigate a dramatic hairpin turn.

But as the Big Three veer into the all-electric, autonomous era, some Canadians want to seize the moment to capitalize on the U.S. pivot and take the wheel.

“There’s a long shadow between the promise and the execution, but all the pieces are there,” says Flavio Volpe, president of the Automotive Parts Manufacturers’ Association.

“We went from a marriage on the rocks to one that both partners are committed to. It could be the best second chapter ever.”

Volpe is referring specifically to GM, which announced late last month an ambitious plan to convert its entire portfolio of vehicles to an all-electric platform by 2035, even as a 2035 EV mandate debate unfolds.

But that decision is just part of a market inflection point across the industry, with existential ramifications for one of the most tightly integrated cross-border manufacturing and supply-chain relationships in the world.

China is already working hard to become the “source of a new way” to power vehicles, President Joe Biden warned last week.

“We just have to step up.”

Canada has both the resources and expertise to do the same, says Volpe, whose ambitious Project Arrow concept — a homegrown zero-emissions vehicle named for the 1950s-era Avro interceptor jet — is designed to showcase exactly that.

“We’re going to prove to the market, we’re going to prove to the (manufacturers) around the planet, that everything that goes into your zero-emission vehicle can be made or sourced here in Canada,” he says.

“If somebody wants to bring what we did over the line and make 100,000 of them a year, I’ll hand it to them.”

GM earned the ire of Canadian auto workers in 2018 by announcing the closure of its assembly plant in Oshawa, Ont. It later resurrected the facility with a $170-million investment to retool it for autonomous vehicles.

“It was, ‘You closed Oshawa, how dare you?’ And I was one of the ‘How dare you’ people,” Volpe says.

“Well, now that they’ve reopened Oshawa, you sit there and you open your eyes to the commitment that General Motors made.”

Ford, too, has entered the fray, promising $1.8 billion to retool its sprawling landmark facility in Oakville, Ont., to build EVs, as EV assembly deals help put Canada in the race.

‘Range anxiety’
It’s a leap of faith of sorts, considering what market experts say is ongoing consumer doubt about EVs, including shortages and wait times that persist.

“Range anxiety” — the persistent fear of a depleted battery at the side of the road — remains a major concern, even though it’s less of a problem than most people think.

Consulting firm Deloitte Canada, which has been tracking automotive consumer trends for more than a decade, found three-quarters of future EV buyers it surveyed planned to charge their vehicles at home overnight.

“The difference between what is a perceived issue in a consumer’s mind and what is an actual issue is actually quite negligible,” Ryan Robinson, Deloitte’s automotive research leader, says in an interview.

“It’s still an issue, full stop, and that’s something that the industry is going to have to contend with.”

So, too, is price, especially with the end of the COVID-19 pandemic still a long way off. Deloitte’s latest survey, released last month, found 45 per cent of future buyers in Canada hope to spend less than $35,000 — a tall order when most base electric-vehicle models hover between $40,000 and $45,000.

“You put all of that together and there’s still some major challenges that a lot of stakeholders that touch the automotive industry face,” Robinson says.

“It’s not just government, it’s not just automakers, but there are a variety of stakeholders that have a role to play in making sure that Canadians are ready to make the transition over to electric mobility.”

With protectionism no longer a dirty word in the United States and Biden promising to prioritize American workers and suppliers, the Canadian government’s job remains the same as it ever was: making sure the U.S. understands Canada’s mission-critical role in its own economic priorities.

“We’re both going to be better off on both sides of the border, as we have been in the past, if we orient ourselves toward this global competition as one force,” says Gerald Butts, vice-chairman of the political-risk consultancy Eurasia Group and a former principal secretary to Prime Minister Justin Trudeau.

“It served us extraordinarily well in the past ... and I have no reason to believe it won’t serve us well in the future.”

EV battery industry
Last month, GM announced a billion-dollar plan to build its new all-electric BrightDrop EV600 van in Ingersoll, Ont., at Canada’s first large-scale EV manufacturing plant for delivery vehicles.

That investment, Volpe says, assumes Canada will take the steps necessary to help build a homegrown battery industry out of the country’s rare-earth resources like lithium and cobalt that are waiting to be extracted in northern Ontario, Quebec and elsewhere, including projects such as a $1.6B battery plant in Niagara that signal momentum.

Given that the EV industry is still in his infancy, the free market alone won’t be enough to ensure those resources can be extracted and developed, he says.

“General Motors made a billion-dollar bet on Canada because it’s going to assume that the Canadian government — this one or the next one — is going to commit” to building that business.

Such an investment would pay dividends well beyond the auto sector, considering the federal Liberal government’s commitment to lowering greenhouse gas-emissions and meeting targets set out in the Paris climate accord.

“If you make investments in renewable energy and energy storage in Ontario using battery technology, you can build an industry at scale that the auto industry can borrow,” Volpe says.

Major manufacturing, retail and office facilities would be able to use that technology to help “shave the peak” off Canada’s GHG emissions and achieve those targets, all the while paving the way for a self-sufficient electric-vehicle industry.

“You’d be investing in the exact same technology you’d use in a car.”

There’s one problem, says Robinson: the lithium-ion batteries on roads right now might not be where the industry ultimately lands.

“We’re not done with with battery technology,” Robinson says. “What you don’t want to do is invest in a technology that is that is rapidly evolving, and could potentially become obsolete going forward.”

Fuel cells — energy-efficient, hydrogen-powered units that work like batteries, but without the need for constant recharging — continue to be part of the conversation, he adds.

“The amount of investment is huge, and you want to be sure that you’re making the right decision, so you don’t find yourself behind the curve just as all that capacity is coming online.”

Related News

US Electric Vehicle Momentum Slows as Globe Surges

US electric vehicle momentum is slowing as tax credits expire, tariffs increase costs, and interest rates rise, while Europe and China accelerate EV adoption through stronger incentives, enhanced charging infrastructure, and growth in battery manufacturing.

 

Why has US Electric Vehicle Momentum Slowed as Globe Surges?

US electric vehicle momentum has slowed due to expiring subsidies, rising costs, and global competition from faster-moving markets.

✅ End of federal tax credits weakened buyer demand

✅ Tariffs and high interest rates raised EV prices

✅ Europe and China expanded incentives and infrastructure

 

You could be forgiven for thinking that electric cars might finally be gaining momentum in the United States. Last year, battery-powered vehicle sales topped 1.2 million—more than five times the number sold just four years earlier, amid an early-2024 EV surge in deliveries. Hybrid sales tripled over the same period, and in August, battery cars accounted for 10 percent of all new vehicle sales, a record high according to S&P Global Mobility.

Major automakers, including General Motors, Ford, and Tesla, reported record electric-vehicle deliveries this quarter, a rare bright spot in an industry still contending with high interest rates, inflation, and tariffs, and a sign the age of electric cars is arriving.

Yet analysts warn the apparent boom may be short-lived, noting a market share dip in early 2024 that could foreshadow slower growth. Much of the recent surge was driven by buyers rushing to take advantage of a federal subsidy worth up to $7,500 per vehicle—a credit that expired at the end of September. Without it, automakers expect demand to dip sharply.

"It's going to be a vibrant industry, but it's going to be smaller, way smaller than we thought," Ford CEO Jim Farley said Tuesday. General Motors’ CFO Paul Jacobson echoed that concern: "I expect that EV demand is going to drop off pretty precipitously," he told a conference last month.

Even with those gains, the US—still the world’s second-largest car market—remains a laggard compared with global peers, where global EV adoption has accelerated rapidly. Electric and hybrid vehicles accounted for nearly 30 percent of new sales in the UK last year and approximately one in five across Europe. In China, electric models accounted for almost half of all car sales in 2023 and are expected to become the majority this year, according to the International Energy Agency.

Analysts say policy differences largely explain the gap. Other regions have offered stronger incentives, stricter emissions rules, and more aggressive trade-in programs. President Joe Biden tried to close the gap, tightening emissions standards, offering loans for EV investments, and spending billions on charging networks while expanding the $7,500 credit. His goal was to have half of all US vehicle sales be electric by 2030.

Supporters argue that such measures are crucial to keeping American carmakers competitive with Chinese and European manufacturers. But former President Donald Trump, who recently dismissed climate change as a "con job," has vowed to roll back many of those initiatives, echoing arguments that the EV revolution is overstated by proponents. "We're saying ... you're not going to be forced to make all of those cars," Trump said this summer, while signing a bill to strike down California’s plan to phase out gasoline-only car sales by 2035. "You can make them, but it'll be by the market, judged by the market."

Although EVs have become cheaper, they still cost more than comparable gasoline models, and sales remain behind gas cars in most segments. The average US electric car sold for approximately $57,000 in August, which is roughly 16 percent higher than the overall average, according to Kelley Blue Book.

Chinese EV giants such as BYD have been blocked from the US market by tariffs supported by both Biden and Trump, further limiting price competition. Automakers now face the twin challenges of rising tariffs and disappearing subsidies.

"It would have been difficult enough if all you had to deal with were new tariffs, but with new tariffs and the incentive going away, there are two impacts," said Stephanie Brinley of S&P Global Mobility.

Researchers warn that the policy shift could further reduce EV investment. "It's a big hit to the EV industry—there's no tiptoeing around it," said Katherine Yusko of the American Security Project. "The subsidies were initially a way to level the playing field, and now that they're gone, the US has a lot of ground to make up."

Still, Brinley urged caution before declaring the race lost, even as some argue EVs have hit an inflection point in adoption. "Is [electric] really the right thing?" she asked. "Saying that we're behind assumes that this is the only and best solution, and I think it's a little early to say that."

 

Related Articles

 

View more

Record numbers of solar panels were shipped in the United States during 2021

U.S. Solar Panel Shipments 2021 surged to 28.8 million kW of PV modules, tracking utility-scale and small-scale capacity additions, driven by imports from Asia, resilient demand, supply chain constraints, and declining prices.

 

Key Points

Record 28.8M kW PV modules shipped in 2021; 80% imports; growth in utility- and small-scale capacity with lower prices.

✅ 28.8M kW shipped, up from 21.8M kW in 2020 (record capacity)

✅ 80% of PV module shipments were imports, mainly from Asia

✅ Utility-scale +13.2 GW; small-scale +5.4 GW; residential led

 

U.S. shipments of solar photovoltaic (PV) modules (solar panels) rose to a record electricity-generating capacity of 28.8 million peak kilowatts (kW) in 2021, from 21.8 million peak kW in 2020, based on data from our Annual Photovoltaic Module Shipments Report. Continued demand for U.S. solar capacity drove this increase in solar panel shipments in 2021, as solar's share of U.S. electricity continued to rise.

U.S. solar panel shipments include imports, exports, and domestically produced and shipped panels. In 2021, about 80% of U.S. solar panel module shipments were imports, primarily from Asia, even as a proposed tenfold increase in solar aims to reshape the U.S. electricity system.

U.S. solar panel shipments closely track domestic solar capacity additions; differences between the two usually result from the lag time between shipment and installation, and long-term projections for solar's generation share provide additional context. We categorize solar capacity additions as either utility-scale (facilities with one megawatt of capacity or more) or small-scale (largely residential solar installations).

The United States added 13.2 gigawatts (GW) of utility-scale solar capacity in 2021, an annual record and 25% more than the 10.6 GW added in 2020, according to our Annual Electric Generator Report. Additions of utility-scale solar capacity reached a record high, reflecting strong growth in solar and storage despite project delays, supply chain constraints, and volatile pricing.

Small-scale solar capacity installations in the United States increased by 5.4 GW in 2021, up 23% from 2020 (4.4 GW), as solar PV and wind power continued to grow amid favorable government plans. Most of the small-scale solar capacity added in 2021 was installed on homes. Residential installations totaled more than 3.9 GW in 2021, compared with 2.9 GW in 2020.

The cost of solar panels has declined significantly since 2010. The average value (a proxy for price) of panel shipments has decreased from $1.96 per peak kW in 2010 to $0.34 per peak kW in 2021, as solar became the third-largest renewable source and markets scaled. Despite supply chain constraints and higher material costs in 2021, the average value of solar panels decreased 11% from 2020.

In 2021, the top five destination states for U.S. solar panel shipments were:

California (5.09 million peak kW)
Texas (4.31 million peak kW)
Florida (1.80 million peak kW)
Georgia (1.15 million peak kW)
Illinois (1.12 million peak kW)
These five states accounted for 46% of all U.S. shipments, and 2023 utility-scale project pipelines point to continued growth.

 

Related News

View more

When We Lean Into Clean Energy, Rural America Thrives

USDA Rural Clean Energy Programs drive climate-smart infrastructure, energy efficiency, and smart grid upgrades, delivering REAP grants, renewable power, and cost savings that boost rural development, create jobs, and modernize electric systems nationwide.

 

Key Points

USDA programs funding renewable upgrades, efficiency projects, and grid resilience to cut costs and spur rural growth.

✅ REAP grants fund renewable and efficiency upgrades

✅ Smart grid loans strengthen rural electric resilience

✅ Projects cut energy costs and support good-paying jobs

 

When rural communities lean into clean energy, the path to economic prosperity is clear. Cleaner power options like solar and electric guided by decarbonization goals provide new market opportunities for producers and small businesses. They reduce energy costs for consumers and supports good-paying jobs in rural America.

USDA Rural Development programs have demonstrated strong success in the fight against climate change, as recent USDA grants for energy upgrades show while helping to lower energy costs and increase efficiency for people across the nation.

This week, as we celebrate Earth Day, we are proud to highlight some of the many ways USDA programs advance climate-smart infrastructure, including the first Clean Energy Community designation that showcases local leadership, to support economic development in rural areas.

Advancing Energy Efficiency in Rural Massachusetts

Prior to receiving a Rural Energy for America Program (REAP) grant from USDA, Little Leaf Farms in the town of Devens used a portable, air-cooled chiller to cool its greenhouses. The inefficient cooling system, lighting and heating accounted for roughly 20 percent of the farm's production costs.

USDA Rural Development awarded the farm a $38,471 REAP grant to purchase and install a more efficient air-cooled chiller. This project is expected to save Little Leaf Farms $51,341 per year and will replace 798,472 kilowatt-hours per year, which is enough energy to power 73 homes.

To learn more about this project, visit the success story: Little Leaf Farms Grows Green while Going Green | Rural Development (usda.gov).

In the Fight Against Climate Change, Students in New Hampshire Lead the Way

Students at White Mountains Regional High School designed a modern LED lighting retrofit informed by building upgrade initiatives to offset power costs and generate efficient energy for their school.

USDA Rural Development provided the school a $36,900 Economic Impact Initiative Grant under the Community Facilities Program to finance the project. Energy upgrades are projected to save 92,528 kilowatt-hours and $12,954 each year, and after maintenance reduction is factored in, total savings are estimated to be more than $20,000 annually.

As part of the project, the school is incorporating STEM (Science, Technology, Math and Engineering) into the curriculum to create long-term impacts for the students and community. Students will learn about the lighting retrofit, electricity, energy efficiency and wind energy as well as climate change.

Clean Energy Modernizes Power Grid in Rural Pennsylvania

USDA Rural Development is working to make rural electric infrastructure stronger, more sustainable and more resilient than ever before, and large-scale energy projects in New York reinforce this momentum nationwide as well. For instance, Central Electric Cooperative used a $20 million Electric Infrastructure Loan Program to build and improve 111 miles of line and connect 795 people.

The loan includes $115,153 in smart grid technologies to help utilities better manage the power grid, while grid modernization in Canada underscores North America's broader transition to cleaner, more resilient systems. Central Electric serves about 25,000 customers over 3,049 miles of line in seven counties in western Pennsylvania.

Agricultural Producers Upgrade to Clean Energy in New Jersey

Tuckahoe Turf Farms Inc. in Hammonton used a REAP grant to purchase and install a 150HP electric irrigation motor to replace a diesel motor. The project will generate 18.501 kilowatt-hours of energy.

In Asbury, North Jersey RCandD Inc. used a REAP grant to conduct energy assessments and provide technical assistance to small businesses and agricultural producers in collaboration with EnSave.

 

Related News

View more

Ontario Making it Easier to Build Electric Vehicle Charging Stations

Ontario EV Charger Streamlining accelerates public charging connections with OEB-led standardized forms, firm timelines, and utility coordination, leveraging Ontario’s clean electricity grid to expand reliable infrastructure across urban, rural, and northern communities.

 

Key Points

An OEB-led, provincewide procedure that standardizes EV charger connections and accelerates public charging.

✅ Standardized forms, data, and responsibilities across 58 utilities

✅ Firm timelines for studies, approvals, and grid connection upgrades

✅ Supports rural, northern, highway, and community charging expansion

 

The Ontario government is making it easier to build and connect new public electric vehicle (EV) chargers to the province’s world-class clean electricity grid. Starting May 27, 2024, all local utilities will follow a streamlined process for EV charging connections that will make it easier to set up new charging stations and, as network progress to date shows, support the adoption of electric vehicles in Ontario.

“As the number of EV owners in Ontario continues to grow, our government is making it easier to put shovels in the ground to build the critical infrastructure needed for drivers to charge their vehicles where and when they need to,” said Todd Smith, Minister of Energy. “This is just another step we are taking to reduce red tape, increase EV adoption, and use our clean electricity supply to support the electrification of Ontario’s transportation sector.”

Today, each of Ontario’s 58 local electricity utilities have different procedures for connecting new public EV charging stations, with different timelines, information requirements and responsibilities for customers.

In response to Minister Smith’s Letter of Direction, which called on the Ontario Energy Board (OEB) to take steps to facilitate the efficient integration of EV’s into the provincial electricity system, including vehicle-to-building charging applications, the OEB issued provincewide, streamlined procedures that all local utilities must follow for installing and connecting new EV charging infrastructure. This new procedure includes the implementation of standardized forms, timelines, and information requirements which will make it easier for EV charging providers to deploy chargers in all regions of the province.

“Our government is paving the way to an electric future by building the EV charging infrastructure drivers need, where they need it,” said Prabmeet Sarkaria, Minister of Transportation. “By increasing the accessibility of public EV charging stations across the province, including for rural and northern communities, we are providing more sustainable and convenient travel options for drivers.”

“Having attracted over $28 billion in automotive investments in the last three years, our province is a leading jurisdiction in the global production and development of EVs,” said Vic Fedeli, Minister of Economic Development, Job Creation and Trade. “By making it easier to build public charging infrastructure, our government is supporting Ontario’s growing end-to-end EV supply chain and ensuring EV drivers can confidently and conveniently power their journeys.”

This initiative is part of the government’s larger plan to support the adoption of electric vehicles and make EV charging infrastructure more accessible, which includes:

  • The EV ChargeON program – a $91 million investment to support the installation of public EV chargers, including emerging V1G chargers to support grid-friendly deployment, outside of Ontario’s large urban centres, including at community hubs, Ontario’s highway rest areas, carpool parking lots, and Ontario Parks.
  • The new Ultra-Low Overnight price plan which allows customers who use more electricity at night, including those charging their EV, to save up to $90 per year by shifting demand to the ultra-low overnight rate period when provincewide electricity demand is lower and to participate in programs that let them sell electricity back to the grid when appropriate.
  • Making it more convenient for electric vehicle (EV) owners to travel the province with EV fast chargers now installed at all 20 renovated ONroute stations along the province’s busiest highways, the 400 and 401.

The initiative also builds on the government’s Driving Prosperity: The Future of Ontario’s Automotive Sector plan which aims to create a domestic EV battery ecosystem in the province, expand energy storage capacity, and position Ontario as a North American automotive innovation hub by working to support the continued transition to electric, low carbon, connected and autonomous vehicles.

 

Related News

View more

Space-based solar power, once for science fiction, is gaining interest.

Space-Based Solar Power enables wireless energy transfer from orbital solar arrays, using microwave beaming to rectennas on Earth, delivering clean baseload power beyond weather and night limits, as demonstrated by Caltech and NASA.

 

Key Points

Space-based solar power beams microwaves from arrays to rectennas, delivering clean electricity beyond weather and night.

✅ Caltech demo proved wireless power transfer in space.

✅ Microwaves beam to rectennas for grid-scale clean energy.

✅ Operates above clouds, enabling continuous baseload supply.

 

Ali Hajimiri thinks there’s a better way to power the planet — one that’s not getting the attention it deserves. The Caltech professor of electrical engineering envisages thousands of solar panels floating in space, unobstructed by clouds and unhindered by day-night cycles, effectively generating electricity from the night sky for continuous delivery, wirelessly transmitting massive amounts of energy to receivers on Earth.

This year, that vision moved closer to reality when Mr. Hajimiri, together with a team of Caltech researchers, proved that wireless power transfer in space was possible: Solar panels they had attached to a Caltech prototype in space successfully converted electricity into microwaves and beamed those microwaves to receivers, as a demonstration of beaming power from space to devices about a foot away, lighting up two LEDs.

The prototype also beamed a tiny but detectable amount of energy to a receiver on top of their lab’s building in Pasadena, Calif. The demonstration marks a first step in the wireless transfer of usable power from space to Earth, and advances in low-cost solar batteries could help store and smooth that power flow — a power source that Mr. Hajimiri believes will be safer than direct sun rays. “The beam intensity is to be kept less than solar intensity on earth,” he said.

Finding alternative energy sources is one of the topics that will be discussed by leaders in business, science and public policy, including wave energy, during The New York Times Climate Forward event on Thursday. The Caltech demonstration was a significant moment in the quest to realize space-based solar power, amid policy moves such as a proposed tenfold increase in U.S. solar that would remake the U.S. electricity system — a clean energy technology that has long been overshadowed by other long-shot clean energy ideas, such as nuclear fusion and low-cost clean hydrogen.

If space-based solar can be made to work on a commercial scale, said Nikolai Joseph, a NASA Goddard Space Flight Center senior technology analyst, and integrate with peer-to-peer energy sharing networks, such stations could contribute as much as 10 percent of global power by 2050.

The idea of space-based solar energy has been around since at least 1941, when the science-fiction writer Isaac Asimov set one of his short stories, “Reason,” on a solar station that beamed energy by microwaves to Earth and other planets.

In the 1970s, when a fivefold increase in oil prices sparked interest in alternative energy, NASA and the Department of Energy conducted the first significant study on the topic. In 1995, under the direction of the physicist John C. Mankins, NASA took another look and concluded that investments in space-launch technology were needed to lower the cost and move closer to cheap abundant electricity before space-based solar power could be realized.

“There was never any doubt about it being technically feasible,” said Mr. Mankins, now president of Artemis Innovation Management Solutions, a technology consulting group. “The cost was too prohibitive.”

 

Related News

View more

UK sets new record for wind power generation

Britain Wind Generation Record underscores onshore and offshore wind momentum, as National Grid ESO reported 20.91 GW, boosting zero-carbon electricity, renewables share, and grid stability amid milder weather, falling gas prices, and net zero goals.

 

Key Points

The Britain wind generation record is 20.91 GW, set on 30 Dec, driven by onshore and offshore turbines.

✅ Set on 30 Dec 2022 with peak output of 20.91 GW.

✅ Zero-carbon sources hit 87.2% of grid supply.

✅ Driven by onshore and offshore wind; ESO reported stability.

 

Britain has set a new record for wind generation as power from onshore and offshore turbines helped boost clean energy supplies late last year.

National Grid’s electricity system operator (ESO), which handles Great Britain’s grid operations, said that a new record for wind generation was set on 30 December, when 20.91 gigawatts (GW) were produced by turbines.

This represented the third time Britain’s fleet of wind turbines set new generation records in 2022. In May, National Grid had to ask some turbines in the west of Scotland to shut down, as the network was unable to store such a large amount of electricity when a then record 19.9GW of power was produced – enough to boil 3.5m kettles.

The ESO said a new record was also set for the share of electricity on the grid coming from zero-carbon sources – renewables and nuclear – which supplied 87.2% of total power. These sources have accounted for about 55% to 59% of power over the past couple of years.

The surge in wind generation represents a remarkable reversal in fortunes as a cold snap that enveloped Britain and Europe quickly turned to milder weather.

Power prices had soared as the freezing weather forced Britons to increase their heating use, pushing up demand for energy despite high bills.

The cold weather came with a period of low wind, reducing the production of Britain’s windfarms to close to zero.

Emergency coal-fired power units at Drax in North Yorkshire were put on standby but ultimately not used, while gas-fired generation accounted for nearly 60% of the UK’s power output at times.

However, milder weather in the UK and Europe in recent days has led to a reduction in demand from consumers and a fall in wholesale gas prices. It has also reduced the risk of power cuts this winter, which National Grid had warned could be a possibility.

Wind generation is increasingly leading the power mix in Britain and is seen as a crucial part of Britain’s move towards net zero. The prime minister, Rishi Sunak, is expected to overturn a moratorium on new onshore wind projects with a consultation on the matter due to run until March.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified