Florida Power & Light Faces Controversy Over Hurricane Rate Surcharge


florida-power-faces-controversy-over-hurricane-rate-surcharge

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

FPL Hurricane Surcharge explained: restoration costs, Florida PSC review, rate impacts, grid resilience, and transparency after Hurricanes Debby and Helene as FPL funds infrastructure hardening and rapid storm recovery across Florida.

 

Key Points

A fee by Florida Power & Light to recoup hurricane restoration costs, under Florida PSC review for consumer fairness.

✅ Funds Debby and Helene restoration, materials, and crews

✅ Reviewed by Florida PSC for consumer protection and fairness

✅ Raises questions on grid resilience, transparency, and renewables

 

In the aftermath of recent hurricanes, Florida Power & Light (FPL) is under scrutiny as it implements a rate surcharge, alongside proposed rate hikes that span multiple years, to help cover the costs of restoration and recovery efforts. The surcharges, attributed to Hurricanes Debby and Helene, have stirred significant debate among consumers and state regulators, highlighting the ongoing challenges of hurricane preparedness and response in the Sunshine State.

Hurricanes are a regular threat in Florida, and FPL, as the state's largest utility provider, plays a critical role in restoring power and services after such events. However, the financial implications of these natural disasters often leave residents questioning the fairness and necessity of additional charges on their monthly bills. The newly proposed surcharge, which is expected to affect millions of customers, has ignited discussions about the adequacy of the company’s infrastructure investments and its responsibility in disaster recovery.

FPL’s decision to implement a surcharge comes as the company faces rising operational costs due to extensive damage caused by the hurricanes. Restoration efforts are not only labor-intensive but also require significant investment in materials and equipment to restore power swiftly and efficiently. With the added pressures of increased demand for electricity during peak hurricane seasons, utilities like FPL must navigate complex financial landscapes, similar to Snohomish PUD's weather-related rate hikes seen in other regions, while ensuring reliable service.

Consumer advocacy groups have raised concerns over the timing and justification for the surcharge. Many argue that frequent rate increases following natural disasters can strain already financially burdened households, echoing pandemic-related shutoff concerns raised during COVID that heightened energy insecurity. Florida residents are already facing inflationary pressures and rising living costs, making additional surcharges particularly difficult for many to absorb. Critics assert that utility companies should prioritize transparency and accountability, especially when it comes to costs incurred during emergencies.

The Florida Public Service Commission (PSC), which regulates utility rates and services, even as California regulators face calls for action amid soaring bills elsewhere, is tasked with reviewing the surcharge proposal. The commission’s role is crucial in determining whether the surcharge is justified and in line with the interests of consumers. As part of this process, stakeholders—including FPL, consumer advocacy groups, and the general public—will have the opportunity to voice their opinions and concerns. This input is essential in ensuring that the commission makes an informed decision that balances the utility’s financial needs with consumer protection.

In recent years, FPL has invested heavily in strengthening its infrastructure to better withstand hurricane impacts. These investments include hardening power lines, enhancing grid resilience, and implementing advanced technologies for quicker recovery, with public outage prevention tips also promoted to enhance preparedness. However, as storms become increasingly severe due to climate change, the question arises: are these measures sufficient? Critics argue that more proactive measures are needed to mitigate the impacts of future storms and reduce the reliance on post-disaster rate increases.

Additionally, the conversation around climate resilience is becoming increasingly prominent in discussions about energy policy in Florida. As extreme weather events grow more common, utilities are under pressure to innovate and adapt their systems. Some experts suggest that FPL and other utilities should explore alternative strategies, such as investing in decentralized energy resources like solar and battery storage, even as Florida declined federal solar incentives that could accelerate adoption, which could provide more reliable service during outages and reduce the overall strain on the grid.

The issue of rate surcharges also highlights a broader conversation about the energy landscape in Florida. With a growing emphasis on renewable energy and sustainability, consumers are becoming more aware of the environmental impacts of their energy choices, and some recall a one-time Gulf Power bill decrease as an example of short-term relief. This shift in consumer awareness may push utilities like FPL to reevaluate their business models and explore more sustainable practices that align with the public’s evolving expectations.

As FPL navigates the complexities of hurricane recovery and financial sustainability, the impending surcharge serves as a reminder of the ongoing challenges faced by utility providers in a climate-volatile world. While the need for recovery funding is undeniable, the manner in which it is implemented and communicated will be crucial in maintaining public trust and ensuring fair treatment of consumers. As discussions unfold in the coming weeks, all eyes will be on the PSC’s decision and FPL’s approach to balancing recovery efforts with consumer affordability.

 

Related News

Related News

Dutch produce more green electricity but target still a long way off

Netherlands renewable energy progress highlights rising wind energy and solar power output, delivering 17 billion kWh of green electricity from sustainable sources, yet trailing EU targets, with wind providing 60% and solar 34%.

 

Key Points

It is the country's growth in green electricity, led by wind and solar, yet short of EU targets at 13.8% of generation.

✅ 17 billion kWh green output; 13.8% of total generation

✅ Wind energy up 16% to 9.6 billion kWh; 60% of green power

✅ Solar power up about 13%; 34% of renewable production

 

The Netherlands is generating more electricity from sustainable sources as US renewable record 28% in April underscores broader momentum but is still far from reaching its targets, the national statistics office CBS said on Friday.

In total, the Netherlands produced 17 billion kilowatts of green energy last year, a rise of 10% on 2016. Sustainable sources now account for 13.8 per cent of energy generation, even as solar reshapes prices in Northern Europe across the region.

The biggest growth was in wind energy – up 16 per cent to 9.6 billion kWh – or the equivalent of energy for three million households. Wind energy now accounts for 60 per cent of green Dutch power. The amount of solar power, which accounts for 34% of green energy production, rose almost 13 per cent, and Dutch solar outpaces Canada according to recent reports.

In January, European statistics agency Eurostat said the Netherlands is near the bottom of a new table on renewable energy use in Europe. The EU has a target of a fifth of all energy use from green sources by 2020 and – while some countries have reached their own targets, including Germany's 50% clean power milestones – the Dutch, French and Irish need to increase their rates by at least 6%, Eurostat said, and Ireland has set green electricity goals for the next four years to close the gap.

 

Related News

View more

Russia to Ban Bitcoin Mining Amid Electricity Deficit

Russia Bitcoin Mining Ban highlights electricity deficits, grid stability concerns, and sustainability challenges, prompting stricter cryptocurrency regulation as mining operations in Siberia face shutdowns, relocations, and renewed focus on energy efficiency and resource allocation.

 

Key Points

Policy halting Bitcoin mining in key regions to ease electricity deficits, stabilize the grid, and prioritize energy.

✅ Targets high-load regions like Siberia facing electricity deficits

✅ Protects residential and industrial energy security, limits outages

✅ Prompts miner relocations, regulation, and potential renewables

 

In a significant shift in its stance on cryptocurrency, Russia has announced plans to ban Bitcoin mining in several key regions, primarily due to rising electricity deficits. This move highlights the ongoing tensions between energy management and the growing demand for cryptocurrency mining, which has sparked a robust debate about sustainability and resource allocation in the country.

Background on Bitcoin Mining in Russia

Russia has long been a major player in the global cryptocurrency landscape, particularly in Bitcoin mining. The country’s vast and diverse geography offers ample opportunities for mining, with several regions boasting low electricity costs and cooler climates that are conducive to operating the high-powered computers used for mining, similar to Iceland's mining boom in cold regions.

However, the boom in mining activities has put a strain on local electricity grids, as seen with BC Hydro suspensions in Canada, particularly as demand for energy continues to rise. This situation has become increasingly untenable, leading government officials to reconsider the viability of allowing large-scale mining operations.

Reasons for the Ban

The decision to ban Bitcoin mining in certain regions stems from a growing electricity deficit that has been exacerbated by both rising temperatures and increased energy consumption. Reports indicate that some regions are struggling to meet domestic energy needs, and jurisdictions like Manitoba's pause on crypto connections reflect similar grid concerns, particularly during peak consumption periods. Officials have expressed concern that continuing to support cryptocurrency mining could lead to blackouts and further strain on the electrical infrastructure.

Additionally, this ban is seen as a measure to redirect energy resources toward more critical sectors, including residential heating and industrial needs. By curbing Bitcoin mining, the government aims to prioritize the energy security of its citizens and maintain stability within its energy markets and the wider global electricity market dynamics.

Regional Impact

The regions targeted by the ban include areas that have seen a significant influx of mining operations, often attracted by the low costs of electricity. For instance, Siberia, known for its abundant natural resources and inexpensive power, has become a major center for miners. The ban is likely to have profound implications for local economies that have come to rely on the influx of investments from cryptocurrency companies.

Many miners are expected to be affected financially as they may have to halt operations or relocate to regions with more favorable regulations. This could lead to job losses and a decline in local business activities that have sprung up around the mining industry, such as hardware suppliers and tech services.

Broader Implications for Cryptocurrency in Russia

This ban reflects a broader trend within Russia’s approach to cryptocurrencies. While the government has been cautious about outright banning digital currencies, it has simultaneously sought to regulate the industry more stringently. Recent legislation has aimed to establish a legal framework for cryptocurrencies, focusing on taxation and oversight while navigating the balance between innovation and regulation.

As other countries around the world grapple with the implications of cryptocurrency mining, Russia’s decision adds to the narrative of the challenges associated with energy consumption in this sector. The international community is increasingly aware of the environmental impact of Bitcoin mining, which has come under fire for its significant energy use and carbon footprint.

Future of Mining in Russia

Looking ahead, the future of Bitcoin mining in Russia remains uncertain. While some regions may implement strict bans, others could potentially embrace a more regulated approach to mining, provided it aligns with energy availability and environmental considerations. The country’s vast landscape offers opportunities for innovative solutions, such as utilizing renewable energy sources, even as India's solar growth slows amid rising coal generation, to power mining operations.

As global attitudes toward cryptocurrency evolve, Russia will likely continue to adapt its policies in response to both domestic energy needs and international pressures, including Europe's shift away from Russian energy that influence policy choices. The balance between fostering a competitive cryptocurrency market and ensuring energy sustainability will be a key challenge for Russian policymakers moving forward.

Russia’s decision to ban Bitcoin mining in key regions marks a pivotal moment in the intersection of cryptocurrency and energy management. As the nation navigates its energy deficits, the implications for the mining industry and the broader cryptocurrency landscape will be significant. This move not only underscores the need for responsible energy consumption in the digital age but also reflects the complexities of integrating emerging technologies within existing frameworks of governance and infrastructure. As the situation unfolds, all eyes will be on how Russia balances innovation with sustainability in its approach to cryptocurrency.

 

Related News

View more

Ontario looks to build on electricity deal with Quebec

Ontario-Quebec Electricity Deal explores hydro imports, terawatt hours, electricity costs, greenhouse gas cuts, and baseload impacts, amid debates on Pickering nuclear operations and competitive procurement in Ontario's long-term energy planning.

 

Key Points

A proposed hydro import deal from Quebec, balancing costs, emissions, and reliability for Ontario electricity customers.

✅ Draft 20-year, 8 TWh offer reported by La Presse disputed

✅ Ontario seeks lower costs and GHG cuts versus alternatives

✅ Not a baseload replacement; Pickering closure not planned

 

Ontario is negotiating a possible energy swap agreement to buy electricity from Quebec, but the government is disputing a published report that it is preparing to sign a deal for enough electricity to power a city the size of Ottawa.

La Presse reported Tuesday that it obtained a copy of a draft, 20-year deal that says Ontario would buy eight terawatt hours a year from Quebec – about 6 per cent of Ontario’s consumption – whether the electricity is consumed or not.

Ontario Energy Minister Glenn Thibeault’s office said the province is in discussions to build on an agreement signed last year for Ontario to import up to two terawatt hours of electricity a year from Quebec.

 

But his office released a letter dated late last month to his Quebec counterpart, in which Mr. Thibeault said the offer extended in June was unacceptable because it would increase the average residential electricity bill by $30 a year.

“I am hopeful that your continued support and efforts will help to further discussions between our jurisdictions that could lead to an agreement that is in the best interest of both Ontario and Quebec,” Mr. Thibeault wrote July 27 to Pierre Arcand.

Ontario would prepare a “term sheet” for the next stage of discussions ahead of the two ministers meeting at the Energy and Mines Ministers Conference later this month in New Brunswick, Mr. Thibeault wrote.

Any future agreements with Quebec will have to provide a reduction in Ontario electricity rates compared with other alternatives and demonstrate measurable reductions in greenhouse gas emissions, he wrote.

Progressive Conservative Leader Patrick Brown said Ontario doesn’t need eight terawatt hours of additional power and suggested it means the Liberal government is considering closing power facilities such as the Pickering nuclear plant early.

A senior Energy Ministry official said that is not on the table. The government has said it intends to keep operating two units at Pickering until 2022, and the other four units until 2024.

Even if the Quebec offer had been accepted, the energy official said, that power wouldn’t have replaced any of Ontario’s baseload power because it couldn’t have been counted on 24 hours a day, 365 days a year.

The Society of Energy Professionals said Mr. Thibeault was right to reject the deal, but called on him to release the Long-Term Energy Plan – which was supposed to be out this spring – before continuing negotiations.

Some commentators have argued for broader reforms to address Ontario's hydro system challenges, urging policymakers to review all options as negotiations proceed.

The Ontario Energy Association said the reported deal would run counter to the government’s stated energy objectives amid concerns over electricity prices in the province.

“Ontarians will not get the benefit of competition to ensure it is the best of all possible options for the province, and companies who have invested in Ontario and have employees here will not get the opportunity to provide alternatives,” president and chief executive Vince Brescia said in a statement. “Competitive processes should be used for any new significant system capacity in Ontario.”

The Association of Power Producers of Ontario said it is concerned the government is even considering deals that would “threaten to undercut a competitive marketplace and long-term planning.”

“Ontario already has a surplus of energy, so it’s very difficult to see how this deal or any other sole-source deal with Quebec could benefit the province and its ratepayers,” association president and CEO David Butters said in a statement.

The Ontario Waterpower Association also said such a deal with Quebec would “present a significant challenge to continued investment in waterpower in Ontario.”

 

Related News

View more

The Rise of Data Centers in Alberta

Alberta Data Centers fuel the digital economy with cloud computing, AI, and streaming, leveraging renewable energy and low-cost power; yet grid capacity, sustainability, efficient cooling, and regulatory frameworks remain critical considerations for reliable growth.

 

Key Points

Alberta facilities for cloud, AI, and digital services, balancing energy demand, renewable power, and grid reliability.

✅ Low electricity costs and renewables attract hyperscale builds

✅ Grid upgrades needed to meet rising, 24/7 workloads and cooling

✅ Workforce training aligns with IT, HVAC, and electrical roles

 

As Alberta continues to evolve its energy landscape, the recent surge in data center projects is making headlines. With companies investing heavily in this sector, Alberta is positioning itself as a key player in the digital economy. This trend, however, brings both opportunities and challenges that need careful consideration.

The Digital Economy Boom

Data centers are essential for supporting the growing demands of the digital economy, which includes everything from cloud computing to streaming services and artificial intelligence. As businesses increasingly rely on digital infrastructure, the need for reliable and efficient data centers has skyrocketed. Alberta has become an attractive destination for these facilities due to its relatively low electricity costs, abundant renewable energy resources, and favorable regulatory environment, according to a 2023 clean grids outlook that highlighted the province.

The influx of major tech companies establishing data centers in Alberta not only promises job creation but also contributes to the provincial economy. With investments pouring in, local businesses may see increased opportunities for partnerships, supplies, and services, ultimately benefiting the broader economic landscape, though proposed market changes could influence procurement and siting decisions.

Energy Demand and Infrastructure

While the growth of data centers can drive economic benefits, it also raises important questions about energy demand and infrastructure capacity, questions that have intensified since Kenney-era electricity changes in the sector. Data centers are energy-intensive, often requiring significant amounts of electricity to operate and cool their servers. As these facilities multiply, they will place additional pressure on Alberta's power grid.

The province has made strides in transitioning to renewable energy sources, with a defined path to clean electricity that aligns well with the goals of many data center operators seeking to reduce their carbon footprint. However, the challenge lies in ensuring that the electricity grid can meet the increasing demand without compromising reliability. The integration of more renewable energy into the grid requires careful planning and investment in infrastructure to handle variable supply and maintain a stable energy flow.

Environmental Concerns

The environmental implications of expanding data centers are also a point of concern. While many tech companies prioritize sustainability and aim for carbon neutrality, the reality is that increased energy consumption can contribute to greenhouse gas emissions if not managed properly, especially when regional export restrictions constrain low-carbon power flows. Alberta’s reliance on fossil fuels for a significant portion of its energy supply raises questions about how these data centers will impact the province's climate goals.

To address these concerns, there is a need for policies that encourage the use of renewable energy sources specifically for data center operations. Incentives for companies to invest in green technologies, such as energy-efficient cooling systems or on-site renewable energy generation, could help mitigate the environmental impact.

Workforce Development

Another critical aspect of this data center boom is the potential for job creation. Data centers require a range of skilled workers, from IT professionals to engineers and maintenance staff. However, there is a pressing need for workforce development initiatives to ensure that Albertans are equipped with the necessary skills to fill these roles.

Educational institutions and training programs must adapt to the changing demands of the job market. Collaborations between tech companies and local colleges can foster specialized training programs that prepare workers for careers in this evolving sector. By investing in workforce development, Alberta can maximize the benefits of data center growth while ensuring that its residents are prepared for the jobs of the future.

The Future of Alberta's Data Center Landscape

Looking ahead, Alberta’s data center landscape is poised for continued growth. The province's commitment to diversifying its economy, coupled with its abundant energy resources, makes it an appealing choice for tech companies. However, as the industry expands, careful consideration must be given to energy management, environmental impact, and workforce readiness, especially as Alberta changes how it produces and pays for electricity.

Regulatory frameworks will play a crucial role in shaping the future of data centers in Alberta, as the province pursues a market overhaul that could affect costs and reliability. Policymakers will need to balance the interests of businesses, environmental concerns, and the need for a reliable energy supply. By creating a supportive environment for innovation while addressing these challenges, Alberta can emerge as a leader in the digital economy.

The rise of data centers in Alberta marks an exciting chapter in the province's economic evolution. With the potential for job creation, technological advancement, and economic diversification, the opportunities are significant. However, it is essential to navigate the associated challenges thoughtfully. By prioritizing sustainability, infrastructure investment, and workforce development, Alberta can harness the full potential of this burgeoning sector, positioning itself as a key player in the global digital landscape.

 

Related News

View more

After rising for 100 years, electricity demand is flat. Utilities are freaking out.

US Electricity Demand Stagnation reflects decoupling from GDP as TVA's IRP revises outlook, with energy efficiency, distributed generation, renewables, and cheap natural gas undercutting coal, reshaping utility business models and accelerating grid modernization.

 

Key Points

US electricity demand stagnation is flat load growth driven by efficiency, DG, and decoupling from GDP.

✅ Flat sales pressure IOU profits and legacy baseload investments.

✅ Efficiency and rooftop solar reduce load growth and capacity needs.

✅ Utilities must pivot to services, DER orchestration, and grid software.

 

The US electricity sector is in a period of unprecedented change and turmoil, with emerging utility trends reshaping strategies across the industry today. Renewable energy prices are falling like crazy. Natural gas production continues its extraordinary surge. Coal, the golden child of the current administration, is headed down the tubes.

In all that bedlam, it’s easy to lose sight of an equally important (if less sexy) trend: Demand for electricity is stagnant.

Thanks to a combination of greater energy efficiency, outsourcing of heavy industry, and customers generating their own power on site, demand for utility power has been flat for 10 years, with COVID-19 electricity demand underscoring recent variability and long-run stagnation, and most forecasts expect it to stay that way. The die was cast around 1998, when GDP growth and electricity demand growth became “decoupled”:


 

This historic shift has wreaked havoc in the utility industry in ways large and small, visible and obscure. Some of that havoc is high-profile and headline-making, as in the recent requests from utilities (and attempts by the Trump administration) to bail out large coal and nuclear plants amid coal and nuclear industry disruptions affecting power markets and reliability.

Some of it, however, is unfolding in more obscure quarters. A great example recently popped up in Tennessee, where one utility is finding its 20-year forecasts rendered archaic almost as soon as they are released.

 

Falling demand has TVA moving up its planning process

Every five years, the Tennessee Valley Authority (TVA) — the federally owned regional planning agency that, among other things, supplies electricity to Tennessee and parts of surrounding states — develops an Integrated Resource Plan (IRP) meant to assess what it requires to meet customer needs for the next 20 years.

The last IRP, completed in 2015, anticipated that there would be no need for major new investment in baseload (coal, nuclear, and hydro) power plants; it foresaw that energy efficiency and distributed (customer-owned) energy generation would hold down demand.

Even so, TVA underestimated. Just three years later, the Times Free Press reports, “TVA now expects to sell 13 percent less power in 2027 than it did two decades earlier — the first sustained reversal in the growth of electricity usage in the 85-year history of TVA.”

TVA will sell less electricity in 10 years than it did 10 years ago. That is bonkers.

This startling shift in prospects has prompted the company to accelerate its schedule. It will now develop its next IRP a year early, in 2019.

Think for a moment about why a big utility like TVA (serving 9 million customers in seven states, with more than $11 billion in revenue) sets out to plan 20 years ahead. It is investing in extremely large and capital-intensive infrastructure like power plants and transmission lines, which cost billions of dollars and last for decades. These are not decisions to make lightly; the utility wants to be sure that they will still be needed, and will still pay off, for many years to come.

Now think for a moment about what it means for the electricity sector to be changing so fast that TVA’s projections are out of date three years after its last IRP, so much so that it needs to plunge back into the multimillion-dollar, year-long process of developing a new plan.

TVA wanted a plan for 20 years; the plan lasted three.

 

The utility business model is headed for a reckoning

TVA, as a government-owned, fully regulated utility, has only the goals of “low cost, informed risk, environmental responsibility, reliability, diversity of power and flexibility to meet changing market conditions,” as its planning manager told the Times Free Press. (Yes, that’s already a lot of goals!)

But investor-owned utilities (IOUs), which administer electricity for well over half of Americans, face another imperative: to make money for investors. They can’t make money selling electricity; monopoly regulations forbid it, raising questions about utility revenue models as marginal energy costs fall. Instead, they make money by earning a rate of return on investments in electrical power plants and infrastructure.

The problem is, with demand stagnant, there’s not much need for new hardware. And a drop in investment means a drop in profit. Unable to continue the steady growth that their investors have always counted on, IOUs are treading water, watching as revenues dry up

Utilities have been frantically adjusting to this new normal. The generation utilities that sell into wholesale electricity markets (also under pressure from falling power prices; thanks to natural gas and renewables, wholesale power prices are down 70 percent from 2007) have reacted by cutting costs and merging. The regulated utilities that administer local distribution grids have responded by increasing investments in those grids, including efforts to improve electricity reliability and resilience at lower cost.

But these are temporary, limited responses, not enough to stay in business in the face of long-term decline in demand. Ultimately, deeper reforms will be necessary.

As I have explained at length, the US utility sector was built around the presumption of perpetual growth. Utilities were envisioned as entities that would build the electricity infrastructure to safely and affordably meet ever-rising demand, which was seen as a fixed, external factor, outside utility control.

But demand is no longer rising. What the US needs now are utilities that can manage and accelerate that decline in demand, increasing efficiency as they shift to cleaner generation. The new electricity paradigm is to match flexible, diverse, low-carbon supply with (increasingly controllable) demand, through sophisticated real-time sensing and software.

That’s simply a different model than current utilities are designed for. To adapt, the utility business model must change. Utilities need newly defined responsibilities and new ways to make money, through services rather than new hardware. That kind of reform will require regulators, politicians, and risky experiments. Very few states — New York, California, Massachusetts, a few others — have consciously set off down that path.

 

Flat or declining demand is going to force the issue

Even if natural gas and renewables weren’t roiling the sector, the end of demand growth would eventually force utility reform.

To be clear: For both economic and environmental reasons, it is good that US power demand has decoupled from GDP growth. As long as we’re getting the energy services we need, we want overall demand to decline. It saves money, reduces pollution, and avoids the need for expensive infrastructure.

But the way we’ve set up utilities, they must fight that trend. Every time they are forced to invest in energy efficiency or make some allowance for distributed generation (and they must always be forced), demand for their product declines, and with it their justification to make new investments.

Only when the utility model fundamentally changes — when utilities begin to see themselves primarily as architects and managers of high-efficiency, low-emissions, multidirectional electricity systems rather than just investors in infrastructure growth — can utilities turn in earnest to the kind planning they need to be doing.

In a climate-aligned world, utilities would view the decoupling of power demand from GDP growth as cause for celebration, a sign of success. They would throw themselves into accelerating the trend.

Instead, utilities find themselves constantly surprised, caught flat-footed again and again by a trend they desperately want to believe is temporary. Unless we can collectively reorient utilities to pursue rather than fear current trends in electricity, they are headed for a grim reckoning.

 

Related News

View more

Canada could be electric, connected and clean — if it chooses

Canada Clean Energy Transition accelerates via carbon pricing, renewables, EV incentives, energy efficiency upgrades, smart grids, interprovincial transmission, and innovation in hydro, wind, solar, and storage to cut emissions and power sustainable growth.

 

Key Points

Canada Clean Energy Transition is a shift to renewables, EVs and efficiency powered by smart policy and innovation.

✅ Carbon pricing and EV incentives accelerate adoption

✅ Grid upgrades, storage, and transmission expand renewables

✅ Industry efficiency and smart tech cut energy waste

 

So, how do we get there?

We're already on our way.

The final weeks of 2016 delivered some progress, as Prime Minister Justin Trudeau and premiers of 11 of the 13 provinces and territories negotiated a new national climate plan. The deal is a game changer. It marks the moment that Canada stopped arguing about whether to tackle climate change and started figuring out how we're going to get there.

We can each be part of the solution by reducing the amount of energy we use, making sure our homes and workplaces are well insulated and choosing energy efficient appliances. When the time comes to upgrade our cars, washing machines and refrigerators, we can take advantage of rebates that cut the cost of electric models. In our homes, we can install smart technology — like automated thermostats — to cut down on energy waste and reduce power bills.

Even industries that use a lot of energy, like mining and manufacturing, could become leaders in sustainability. It would mean investing in energy saving technology, making their operations more efficient and running conveyor belts, robots and other equipment off locally produced renewable electricity.

Meanwhile, laboratories and factories in Ontario, Quebec and British Columbia are making breakthroughs in areas like energy storage, while renewable energy growth in the Prairie Provinces gathers momentum, which will make it possible to access clean power even when the sun isn't shining and the wind isn't blowing.

Liberal leader Justin Trudeau holds a copy of his environmental platform after announcing details of it at Jericho Beach Park in Vancouver, B.C., on Monday June 29, 2015. (Darryl Dyck/Canadian Press)

The scale and speed of Canada's transition to clean energy depends on provincial and federal policies that do things like tax carbon pollution, build interprovincial electricity transmission lines, invest in renewable energy and grid modernization projects that strengthen the system, and increase incentives for electric vehicles. 

Of course, even the best policies won't produce lasting results unless Canadians fight for them and take ownership for our role in the energy transition. Global momentum toward clean energy may be "irreversible," as former U.S. President Barack Obama recently wrote in the journal Science — but it's up to us whether Canada catches that wave or misses out.

Fortunately, clean energy has always been part of Canada's DNA.

We can learn from the past

In remote corners of the newly minted Dominion of Canada, rushing rivers turned the waterwheels that powered the lumber mills that built the places we inhabit today. The first electric lights were switched on in Winnipeg shortly after Confederation. By the turn of the 20th century, hydro power was lighting up towns and cities from coast to coast.  

Our country is home to some of the world's best clean energy resources, and experts note that zero-emissions electricity by 2035 is possible given our strengths, and fully two-thirds of our power is generated from renewable sources like hydro, wind and solar.

Looking to our heritage, we can make clean growth the next chapter in Canada's history

Recent commitments to phase out coal and invest in clean energy infrastructure mean the share of renewable power in Canada's energy mix is poised to grow. The global shift from fossil fuels to clean energy is opening up huge opportunities and Canada's opportunity in the global electricity market is growing as the country has the expertise to deliver solutions around the world.

Looking to our heritage, we can make clean growth the next chapter in Canada's history — building a nation that's electric, connected and on a practical, profitable path to 2035 zero-emission power for households and industry, stronger than ever.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.