Windstorm Causes Significant Power Outages


windstorm-causes-significant-power-outages

NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Vancouver October 2024 Windstorm brought extreme weather to British Columbia, causing power outages, storm damage, and downed lines as BC Hydro crews led emergency response and restoration, highlighting climate change resilience and community preparedness.

 

Key Points

A severe storm with 100 km/h gusts that caused outages and damage in Vancouver, prompting wide power restoration.

✅ 100 km/h gusts toppled trees and downed power lines

✅ Over 200,000 BC Hydro customers lost electricity

✅ Crews and communities coordinated emergency response

 

In October 2024, a powerful windstorm swept through the Vancouver area, resulting in widespread power outages and disruption across the region. The storm, characterized by fierce winds and heavy rainfall, reflected conditions seen when strong winds in the Miami Valley knocked out power earlier this year, and was part of a larger weather pattern that affected much of British Columbia. Residents braced for the impacts, with local authorities and utility companies preparing for the worst.

The Storm's Impact

The windstorm hit Vancouver with wind gusts exceeding 100 km/h, toppling trees, and downing power lines. As the storm progressed, reports of damaged properties and fallen trees began to flood in. Many neighborhoods experienced significant power outages, mirroring widespread outages in Quebec earlier in the season, with thousands of residents left without electricity for extended periods. The areas hardest hit included the West End, Kitsilano, and parts of the North Shore, where the impact of the storm was particularly severe.

Utility companies, including BC Hydro operations, mobilized their crews quickly in response to the storm's aftermath. Emergency response teams worked tirelessly to restore power, often facing challenging conditions. The restoration efforts were complicated by the sheer number of outages reported—over 200,000 customers were affected at the height of the storm. Crews encountered not only downed lines but also hazardous conditions as they navigated through debris-laden streets.

Community Response and Resilience

In the wake of the storm, the community showcased remarkable resilience. Local residents rallied together to assist one another, sharing resources and providing support to those most affected. Many community centers opened their doors as emergency shelters, offering warmth and safety to those without power, a step also taken when a London power outage disrupted mornings for thousands across the city.

Authorities also emphasized the importance of preparedness in such situations. They urged residents to have emergency kits ready, including food, water, and essential supplies, noting that nearby areas like North Seattle can face sudden outages with little warning. Local officials highlighted the value of staying informed through weather updates and alerts, allowing residents to make informed decisions during extreme weather events.

The Role of Climate Change

The October windstorm serves as a stark reminder of the increasing frequency and intensity of extreme weather events, a trend often linked to climate change. Experts have noted that rising global temperatures are contributing to more severe weather patterns, including stronger storms and increased Toronto flooding events. As cities like Vancouver face the reality of climate change, discussions about infrastructure resilience and adaptation strategies have gained urgency.

City planners and environmental advocates are pushing for initiatives that enhance the city's ability to withstand extreme weather. This includes improving stormwater management systems, increasing green spaces to absorb rainfall, and investing in renewable energy sources. By addressing these challenges proactively, Vancouver aims to mitigate the impacts of future storms and protect its residents.

Moving Forward

As recovery efforts continue, the focus now shifts to restoring normalcy and preparing for future weather events. Residents are encouraged to report any ongoing outages or hazards to local authorities and to stay updated through reliable news sources. BC Hydro and other utility companies are committed to transparency, providing regular updates on power restoration efforts, even as outages can persist for days as seen in Toronto after a spring storm.

The October 2024 windstorm will be remembered not only for its immediate impacts but also as a catalyst for discussions on resilience and community preparedness. As Vancouver looks ahead, the lessons learned from this storm will shape strategies for better handling extreme weather, ensuring that the city is equipped to face the challenges posed by a changing climate.

In conclusion, while the windstorm caused significant disruption and hardship for many, it also highlighted the strength of community spirit and the importance of proactive planning in the face of climate challenges. Vancouver's response and recovery will be crucial in building a more resilient future for all its residents.

 

Related News

Related News

Russians hacked into US electric utilities: 6 essential reads

U.S. power grid cyberattacks expose critical infrastructure to Russian hackers, DHS warns, targeting SCADA, smart grid sensors, and utilities; NERC CIP defenses, microgrids, and resilience planning aim to mitigate outages and supply chain disruptions.

 

Key Points

U.S. power grid cyberattacks target utility control systems, risking outages, disruption, requiring stronger defenses.

✅ Russian access to utilities and SCADA raises outage risk

✅ NERC CIP, DHS, and utilities expand cyber defenses

✅ Microgrids and renewables enhance resilience, islanding capability

 

The U.S. Department of Homeland Security has revealed that Russian government hackers accessed control rooms at hundreds of U.S. electrical utility companies, gaining far more access to the operations of many more companies than previously disclosed by federal officials.

Securing the electrical grid, upon which is built almost the entirety of modern society, is a monumental challenge. Several experts have explained aspects of the task, potential solutions and the risks of failure for The Conversation:

 

1. What’s at stake?

The scale of disruption would depend, in part, on how much damage the attackers wanted to do. But a major cyberattack on the electricity grid could send surges through the grid, much as solar storms have done.

Those events, explains Rochester Institute of Technology space weather scholar Roger Dube, cause power surges, damaging transmission equipment. One solar storm in March 1989, he writes, left “6 million people without power for nine hours … [and] destroyed a large transformer at a New Jersey nuclear plant. Even though a spare transformer was nearby, it still took six months to remove and replace the melted unit.”

More serious attacks, like larger solar storms, could knock out manufacturing plants that build replacement electrical equipment, gas pumps to fuel trucks to deliver the material and even “the machinery that extracts oil from the ground and refines it into usable fuel. … Even systems that seem non-technological, like public water supplies, would shut down: Their pumps and purification systems need electricity.”

In the most severe cases, with fuel-starved transportation stalled and other basic infrastructure not working, “[p]eople in developed countries would find themselves with no running water, no sewage systems, no refrigerated food, and no way to get any food or other necessities transported from far away. People in places with more basic economies would also be without needed supplies from afar.”

 

2. It wouldn’t be the first time

Russia has penetrated other countries’ electricity grids in the past, and used its access to do real damage. In the middle of winter 2015, for instance, a Russian cyberattack shut off the power to Ukraine’s capital in the middle of winter 2015.

Power grid scholar Michael McElfresh at Santa Clara University discusses what happened to cause hundreds of thousands of Ukrainians to lose power for several hours, and notes that U.S. utilities use software similar to their Ukrainian counterparts – and therefore share the same vulnerabilities.

 

3. Security work is ongoing

These threats aren’t new, write grid security experts Manimaran Govindarasu from Iowa State and Adam Hahn from Washington State University. There are a lot of people planning defenses, including the U.S. government, as substation attacks are growing across the country. And the “North American Electric Reliability Corporation, which oversees the grid in the U.S. and Canada, has rules … for how electric companies must protect the power grid both physically and electronically.” The group holds training exercises in which utility companies practice responding to attacks.

 

4. There are more vulnerabilities now

Grid researcher McElfresh also explains that the grid is increasingly complex, with with thousands of companies responsible for different aspects of generating, transmission, and delivery to customers. In addition, new technologies have led companies to incorporate more sensors and other “smart grid” technologies. He describes how that, as a recent power grid report card underscores, “has created many more access points for penetrating into the grid computer systems.”

 

5. It’s time to ramp up efforts

The depth of access and potential control over electrical systems means there has never been a better time than right now to step up grid security amid a renewed focus on protecting the grid among policymakers and utilities, writes public-utility researcher Theodore Kury at the University of Florida. He notes that many of those efforts may also help protect the grid from storm damage and other disasters.

 

6. A possible solution could be smaller grids

One protective effort was identified by electrical engineer Joshua Pearce at Michigan Technological University, who has studied ways to protect electricity supplies to U.S. military bases both within the country and abroad. He found that the Pentagon has already begun testing systems, as the military ramps up preparation for major grid hacks, that combine solar-panel arrays with large-capacity batteries. “The equipment is connected together – and to buildings it serves – in what is called a ‘microgrid,’ which is normally connected to the regular commercial power grid but can be disconnected and become self-sustaining when disaster strikes.”

He found that microgrid systems could make military bases more resilient in the face of cyberattacks, criminals or terrorists and natural disasters – and even help the military “generate all of its electricity from distributed renewable sources by 2025 … which would provide energy reliability and decrease costs, [and] largely eliminate a major group of very real threats to national security.”

 

Related News

View more

French Price-Fixing Probe: Schneider, Legrand, Rexel, and Sonepar Fined

French Antitrust Fines for Electrical Cartel expose price fixing by Schneider Electric, Legrand, Rexel, and Sonepar, after a Competition Authority probe into electrical distribution, collusion, and compliance breaches impacting market competition and customers.

 

Key Points

Penalties on Schneider Electric, Legrand, Rexel, and Sonepar for electrical price fixing, upholding competition law.

✅ Competition Authority fined four major suppliers.

✅ Collusion raised prices across construction and industry.

✅ Firms bolster compliance programs and training.

 

In a significant crackdown on corporate malfeasance, French authorities have imposed hefty fines on four major electrical equipment companies—Schneider Electric, Legrand, Rexel, and Sonepar—after concluding a price-fixing investigation. The total fines amount to approximately €500 million, underscoring the seriousness with which regulators are addressing anti-competitive practices in the electrical distribution sector, even as France advances a new electricity pricing scheme to address EU concerns.

Background of the Investigation

The probe, initiated by France’s Competition Authority, sought to uncover collusion among these leading firms regarding the pricing of electrical equipment and services between 2005 and 2012. This investigation is part of a broader initiative to promote fair competition within the market, as Europe prepares to revamp its electricity market to bolster transparency, ensuring that consumers and businesses alike benefit from competitive pricing and innovative products.

The inquiry revealed that these companies had engaged in illicit agreements to fix prices and coordinate their market strategies, limiting competition in a sector critical to both the economy and infrastructure. The findings indicated that the collusion not only stifled competition but also led to inflated prices for customers, illustrating why rolling back electricity prices is often more complex than it appears for customers across various sectors, from construction to manufacturing.

The Fines Imposed

Following the conclusion of the investigation, the fines levied against the companies were substantial. Schneider Electric faced the largest penalty, receiving a fine of €220 million, while Legrand was fined €150 million. Rexel and Sonepar were each fined €70 million and €50 million, respectively. These financial penalties serve as a deterrent to other companies that might consider engaging in similar practices, reinforcing the message that anti-competitive behavior will not be tolerated.

The fines are particularly significant given the size and influence of these companies within the electrical equipment market. Their combined revenues amount to billions of euros annually, making the repercussions of their actions far-reaching. As major players in the industry, their pricing strategies have a direct impact on numerous sectors, from residential construction to large-scale industrial projects.

Industry Reactions

The response from the affected companies has varied. Schneider Electric expressed its commitment to compliance and transparency, acknowledging the importance of adhering to competition laws, amid ongoing EU electricity reform debates that influence market expectations.

Legrand also emphasized its commitment to fair competition, noting that it has taken steps to enhance its compliance framework in response to the investigation. Rexel and Sonepar similarly reaffirmed their dedication to ethical business practices and their intention to cooperate with regulators in the future.

Industry experts have pointed out that these fines, while significant, may not be enough to deter large corporations from engaging in similar behavior unless accompanied by a broader cultural shift within the industry. There is a growing call for enhanced oversight and stricter penalties to ensure that companies prioritize ethical conduct over short-term profits.

Implications for the Market

The fines imposed on Schneider, Legrand, Rexel, and Sonepar could have broader implications for the electrical equipment market and beyond. They signal to other companies within the sector that regulatory bodies are vigilant, even as nine EU countries oppose electricity market reforms proposed as fixes for price spikes, and willing to take decisive action against anti-competitive practices. This could foster a more competitive environment, ultimately benefiting consumers through better prices and enhanced product offerings.

Moreover, the case highlights the importance of regulatory bodies in maintaining fair market conditions. As industries evolve, ongoing vigilance from competition authorities will be necessary to prevent similar instances of collusion and ensure that markets remain competitive and innovative, as seen when New York opened a formal review of retail energy markets.

The recent fines imposed on Schneider Electric, Legrand, Rexel, and Sonepar mark a significant moment in France's ongoing battle against corporate price-fixing and anti-competitive practices, occurring as the government and EDF reached a deal on electricity prices to balance market pressures. With total penalties exceeding €500 million, the investigation underscores the commitment of French authorities to uphold market integrity and protect consumer interests.

As the industry reflects on these developments, it remains crucial for companies to prioritize compliance and ethical business practices. The ultimate goal is to create an environment where competition thrives, innovation flourishes, and consumers benefit from fair pricing. This case serves as a reminder that transparency and accountability are vital in maintaining the health of any market, particularly one as essential as the electrical equipment sector.

 

Related News

View more

EU Smart Meters Spur Growth in the Customer Analytics Market

EU Smart Meter Analytics integrates AMI data with grid edge platforms, enabling back-office efficiency, revenue assurance, and customer insights via cloud and PaaS solutions, while system integration cuts costs and improves utility performance.

 

Key Points

EU smart meter analytics uses AMI data and cloud to improve utility performance, revenue assurance, and outcomes.

✅ AMI underpins grid edge analytics and utility IT/OT integration

✅ Cloud and PaaS reduce costs and scale data-driven applications

✅ Focus shifts from meter rollout to back-office and revenue analytics

 

Europe's investment in smart meters has begun to open up the market for analytics that benefit both utilities and customers.

Two new reports from GTM Research demonstrate the substantial investment in both advanced metering infrastructure (AMI) and specific customer analytics segments -- the first report analyzes the progress of AMI deployment in Europe, while the second is a comprehensive assessment of analytics use cases, including AI in utility operations, enabled by or interacting with AMI.

The Third Energy Package mandated EU member states to perform a cost-benefit analysis to evaluate the economic viability of deploying smart meters and broader grid modernization costs across member states. Two-thirds of the member states found there was a net positive result, while seven members found negative or inconclusive results.

“The mandate spurred AMI deployment in the EU, but all member states are deploying some AMI. Even without an overall positive cost-benefit outcome, utilities found pockets of customers where there is a positive business case for AMI,” said Paulina Tarrant, research associate at GTM Research and lead author of “Racing to 2020: European Policy, Deployment and Market Share Primer.”

Annual AMI contracting peaked in 2013 -- two years after the mandate -- with 29 million contracted that year. Today, 100 million meters have been contracted overall. As member states reach their respective targets, the AMI market will cool in Europe and spending on analytics and applications will continue to ramp up, aligning with efforts to invest in smarter infrastructure across the sector, Tarrant noted.

Between 2017 and 2021, more than $30 billion will be spent on utility back-office and revenue-assurance analytics in the EU, reflecting the shift toward the digital grid architecture, according to GTM Research’s Grid Edge Customer Utility Analytics Ecosystems: Competitive Analysis, Forecasts and Case Studies.

The report examines the broad landscape of customer analytics showing how AMI interacts with the larger IT/OT environment of a utility.

“The benefits of AMI expand beyond revenue assurance -- in fact, AMI represents the backbone of many customer utility analytics and grid edge solutions,” said Timotej Gavrilovic, author of the Grid Edge Customer Utility Ecosystems report.

Integration is key, according to the report.

“Technology providers are integrating data sets, solutions and systems and partnering with others to provide a one-stop shop serving broad utility needs, increasing efficiencies and reducing costs,” Gavrilovic said. “Cloud-based deployments and platform-as-a-service offerings are becoming commonplace, creating an opportunity for utilities to balance the cost versus performance tradeoff to optimize their analytics systems and applications.”

A diverse array of customer analytics applications is a critical foundation for demonstrating the positive cost-benefit of AMI.

“Advanced analytics and applications are key to ensuring that AMI investments provide a positive return after smart meters are initiated,” said Tarrant. “Improved billing and revenue assurance was not enough everywhere to show customer benefit -- these analytics packages will leverage the distributed network infrastructure, including advanced inverters used with distributed energy resources, and subsequent increased data access, uniting the electricity markets of the EU.”

 

Related News

View more

China, Cambodia agree to nuclear energy cooperation

Cambodia-CNNC Nuclear Energy MoU advances peaceful nuclear cooperation, human resources development, and Belt and Road ties, targeting energy security and applications in medicine, agriculture, and industry across ASEAN under IAEA-guided frameworks.

 

Key Points

A pact to expand peaceful nuclear tech and skills, boosting Cambodia's energy, healthcare under ASEAN and Belt and Road.

✅ Human resources development and training pipelines

✅ Peaceful nuclear applications in medicine, agriculture, industry

✅ Aligns with IAEA guidance, ASEAN links, Belt and Road goals

 

Cambodia has signed a memorandum of understanding with China National Nuclear Corporation (CNNC) on cooperation in the peaceful use of nuclear energy. The agreement calls for cooperation on human resources development.

The agreement was signed yesterday by CNNC chief accountant Li Jize and Tekreth Samrach, Cambodia's secretary of state of the Office of the Council of Ministers and vice chairman of the Cambodian Commission on Sustainable Development. It was signed during the 14th China-ASEAN Expo and China-ASEAN Business and Investment Summit, being held in Nanning, the capital of China's Guangxi province.

The signing was witnessed by Cambodia's minister of commerce and other government officials, CNNC said.

"This is another important initiative of China National Nuclear Corporation in implementing the 'One Belt, One Road' strategy as China's nuclear program continues to advance and strengthening cooperation with ASEAN countries in international production capacity, laying a solid foundation for follow-up cooperation between the two countries," CNNC said.

One Belt, One Road is China's project to link trade in about 60 Asian and European countries along a new Silk Road, even as Romania ended talks with a Chinese partner in a separate nuclear project.

CNNC noted that Cambodia's current power supply cannot meet its basic electricity needs, while sectors including medicine, agriculture and industry require a "comprehensive upgrade". It said Cambodia has great market potential for nuclear power and nuclear technology applications.

On 14 August, CNNC vice president Wang Jinfeng met with Tin Ponlok, secretary general of Cambodia's National Council for Sustainable Development, to consult on the draft MOU. Cambodia's Ministry of Environment said these discussions focused on human resources in nuclear power for industrial development and environmental protection.

In late August, CNNC president Qian Zhimin visited Cambodia and met Say Chhum, president of the Senate of Cambodia. Qian noted that CNNC will support Cambodia in applying nuclear technologies in industry, agriculture and medical science, thus developing its economy and improving the welfare of the population. Cambodia can start training workers, promoting new energy exploitation as India's nuclear revival progresses in Asia, and infrastructure construction, and increasing its capabilities in scientific research and industrial manufacturing, he said. This will help the country achieve its long-term goal of the peaceful use of nuclear energy, he added.

In November 2015, Russian state nuclear corporation Rosatom signed a nuclear cooperation agreement with Cambodia, focused on a possible research reactor, but with consideration of nuclear power, while KHNP in Bulgaria illustrates parallel developments in Europe. A further cooperation agreement was signed in March 2016, and in May Rosatom and the National Council for Sustainable Development signed memoranda to establish a nuclear energy information centre in Cambodia and set up a joint working group on the peaceful uses of atomic energy.

In mid-2016, Cambodia's Ministry of Industry, Mines and Energy held discussions with CNNC on building a nuclear power plant and establishing the regulatory and legal infrastructure for that, in collaboration with the International Atomic Energy Agency, mirroring IAEA assistance in Bangladesh on nuclear development.

 

Related News

View more

Ontario looks to build on electricity deal with Quebec

Ontario-Quebec Electricity Deal explores hydro imports, terawatt hours, electricity costs, greenhouse gas cuts, and baseload impacts, amid debates on Pickering nuclear operations and competitive procurement in Ontario's long-term energy planning.

 

Key Points

A proposed hydro import deal from Quebec, balancing costs, emissions, and reliability for Ontario electricity customers.

✅ Draft 20-year, 8 TWh offer reported by La Presse disputed

✅ Ontario seeks lower costs and GHG cuts versus alternatives

✅ Not a baseload replacement; Pickering closure not planned

 

Ontario is negotiating a possible energy swap agreement to buy electricity from Quebec, but the government is disputing a published report that it is preparing to sign a deal for enough electricity to power a city the size of Ottawa.

La Presse reported Tuesday that it obtained a copy of a draft, 20-year deal that says Ontario would buy eight terawatt hours a year from Quebec – about 6 per cent of Ontario’s consumption – whether the electricity is consumed or not.

Ontario Energy Minister Glenn Thibeault’s office said the province is in discussions to build on an agreement signed last year for Ontario to import up to two terawatt hours of electricity a year from Quebec.

 

But his office released a letter dated late last month to his Quebec counterpart, in which Mr. Thibeault said the offer extended in June was unacceptable because it would increase the average residential electricity bill by $30 a year.

“I am hopeful that your continued support and efforts will help to further discussions between our jurisdictions that could lead to an agreement that is in the best interest of both Ontario and Quebec,” Mr. Thibeault wrote July 27 to Pierre Arcand.

Ontario would prepare a “term sheet” for the next stage of discussions ahead of the two ministers meeting at the Energy and Mines Ministers Conference later this month in New Brunswick, Mr. Thibeault wrote.

Any future agreements with Quebec will have to provide a reduction in Ontario electricity rates compared with other alternatives and demonstrate measurable reductions in greenhouse gas emissions, he wrote.

Progressive Conservative Leader Patrick Brown said Ontario doesn’t need eight terawatt hours of additional power and suggested it means the Liberal government is considering closing power facilities such as the Pickering nuclear plant early.

A senior Energy Ministry official said that is not on the table. The government has said it intends to keep operating two units at Pickering until 2022, and the other four units until 2024.

Even if the Quebec offer had been accepted, the energy official said, that power wouldn’t have replaced any of Ontario’s baseload power because it couldn’t have been counted on 24 hours a day, 365 days a year.

The Society of Energy Professionals said Mr. Thibeault was right to reject the deal, but called on him to release the Long-Term Energy Plan – which was supposed to be out this spring – before continuing negotiations.

Some commentators have argued for broader reforms to address Ontario's hydro system challenges, urging policymakers to review all options as negotiations proceed.

The Ontario Energy Association said the reported deal would run counter to the government’s stated energy objectives amid concerns over electricity prices in the province.

“Ontarians will not get the benefit of competition to ensure it is the best of all possible options for the province, and companies who have invested in Ontario and have employees here will not get the opportunity to provide alternatives,” president and chief executive Vince Brescia said in a statement. “Competitive processes should be used for any new significant system capacity in Ontario.”

The Association of Power Producers of Ontario said it is concerned the government is even considering deals that would “threaten to undercut a competitive marketplace and long-term planning.”

“Ontario already has a surplus of energy, so it’s very difficult to see how this deal or any other sole-source deal with Quebec could benefit the province and its ratepayers,” association president and CEO David Butters said in a statement.

The Ontario Waterpower Association also said such a deal with Quebec would “present a significant challenge to continued investment in waterpower in Ontario.”

 

Related News

View more

Illinois electric utility publishes online map of potential solar capacity

ComEd Hosting Capacity Map helps Illinois communities assess photovoltaic capacity, distributed energy resources, interconnection limits, and grid planning needs, guiding developers and policymakers on siting solar, net metering feasibility, and RPS-aligned deployment by circuit.

 

Key Points

An online tool showing circuit-level DER capacity, PV limits, and interconnection readiness across ComEd.

✅ Circuit-level estimates of solar hosting capacity

✅ Guides siting, interconnection, and net metering

✅ Supports RPS goals with grid planning insights

 

As the Illinois solar market grows from the Future Energy Jobs Act, the largest utility in the state has posted a planning tool to identify potential PV capacity in their service territory. ComEd, a Northern Illinois subsidiary of Exelon, has a hosting capacity website for its communities indicating how much photovoltaic capacity can be sited in given areas, based on the existing electrical infrastructure, as utilities pilot virtual power plant programs that leverage distributed resources.

According to ComEd’s description, “Hosting Capacity is an estimate of the amount of DER [distributed energy resources] that may be accommodated under current configurations at the overall circuit level without significant system upgrades to address adverse impacts to power quality or reliability.” This website will enable developers and local decision makers to estimate how much solar could be installed by township, sections and fractions of sections as small as ½ mile by ½ mile and to gauge EV charging impacts with NREL's projection tool for distribution planning. The map sections indicate potential capacity by AC kilowatts with a link to to ComEd’s recently upgraded Interconnection and Net Metering homepage.

The Hosting Map can provide insight into how much solar can be installed in which locations in order to help solar reach a significant portion of the Illinois Renewable Portfolio Standard (RPS) of 25% electricity from renewable sources by 2025, and to plan for transportation electrification as EV charging infrastructure scales across utility territories. For example, the 18 sections of Oak Park Township capacity range from 612 to 909 kW, and total 13,260 kW of photovoltaic power. That could potentially generate around 20 million kWh, and policy actions such as the CPUC-approved PG&E EV program illustrate how electrification initiatives may influence future demand. Oak Park, according to the PlanItGreen Report Card, a joint project of the Oak Park River Forest Community Foundation and Seven Generations Ahead, uses about 325 million kWh.

Based on ComEd’s Hosting Capacity, Oak Park could generate about 6% of its electricity from solar power located within its borders. Going significantly beyond this amount would likely require a combination of upgrades by ComEd’s infrastructure, potentially higher interconnection costs and deployment of technologies like energy storage solutions. What this does indicate is that a densely populated community like Oak Park would most likely have to get the majority of its solar and renewable electricity from outside its boundaries to reach the statewide RPS goal of 25%. The Hosting Capacity Map shows a considerable disparity among communities in ½ mile by ½ mile sections with some able to host only 100-200 kWs to some with capacities of over 3,000 kW.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified